Substrate processing station for laser-based machining of sheet-like glass substrates

Abstract
A glass sheet processing apparatus includes a first gantry assembly that extends across a glass sheet in a cross-machine direction. The first gantry assembly includes a processing head that moves along a length of the first gantry assembly and includes a laser comprising an optical arrangement positioned in a beam path of the laser providing a laser beam focal line that is formed on a beam output side of the optical arrangement. A second gantry assembly extends across the glass sheet in the cross-machine direction. The second gantry assembly includes a processing head that moves along a length of the second gantry assembly.
Description
FIELD

This disclosure relates to methods and apparatuses for machining sheet-like substrates and, more particularly, to substrate processing stations for laser-based machining of sheet-like glass substrates.


BACKGROUND

Various methods and apparatuses for severing glass sheets are known. One illustrative method employs lasers, which by virtue of wavelength and power that are strongly absorbed by the glass material, or after the first interaction make the material strongly absorbent, can then ablate the material. Another method is a specifically directed, laser-induced crack formation in which a trace on the surface is first strongly heated by the laser and immediately thereafter, this trace is cooled quickly (e.g., by a water jet) such that the thermal stresses thereby achieved lead to crack formation, which may be propagated through the thickness of the material (mechanical stress) in order to sever the material.


In some known cutting processes, a glass cutting apparatus including X/Y (sometimes referred to as 2D) positioning tables may be used. For example, a carrier may be used to transport the glass sheet between processing locations. The X/Y positioning table of the glass cutting apparatus may be mounted with the carrier and the glass sheet located thereon. The carrier may then by moved by linear actuators in both X and Y directions in a horizontal plane while a stationary process head including a laser directs a laser beam onto the glass sheet for the cutting operation.


While the above-described process may be suitable for cutting the glass sheet, the handling of the individual glass sheets on carriers can be time-consuming and can be less suitable for higher volume operations. The scrap from the cutting operation typically remains on the carriers thereby introducing another step where the scrap must be removed from the carrier.


SUMMARY

An object of the present invention is therefore to provide a method (and a corresponding device) with which sheet-like substrates, in particular of brittle materials, can be machined, in particular completely severed, without significant particle formation, without significant melt edges, with minimal crack formation at the edge, without significant cutting gaps (that is to say material losses), with straightest-possible cut edges and with a high speed of the process.


In one embodiment, a glass sheet processing apparatus includes a first gantry assembly that extends across a glass sheet in a cross-machine direction. The first gantry assembly includes a processing head that moves along a length of the first gantry assembly and includes a laser comprising an optical arrangement positioned in a beam path of the laser providing a laser beam focal line that is formed on a beam output side of the optical arrangement. A second gantry assembly extends across the glass sheet in the cross-machine direction. The second gantry assembly includes a processing head that moves along a length of the second gantry assembly.


In another embodiment, a method for laser-based machining of a sheet-like substrate, in order to separate the substrate into multiple portions, in which the laser beam of a laser for machining the substrate is directed onto the substrate is provided. The method includes processing the sheet-like substrate using a first gantry assembly that extends across the sheet-like substrate in a cross-machine direction. The first gantry assembly includes a processing head that moves along a length of the first gantry assembly and includes a laser including an optical arrangement positioned in a beam path of the laser providing a laser beam focal line that is formed on a beam output side of the optical arrangement. The sheet-like substrate is processed using a second gantry assembly that extends across the sheet-like substrate in the cross-machine direction. The second gantry assembly includes a processing head that moves along a length of the second gantry assembly.


In another embodiment, a glass sheet processing apparatus includes a gantry assembly that extends across a glass sheet in a cross-machine direction. The gantry assembly includes multiple processing heads that move along a length of the gantry assembly in the cross-machine direction. A first processing head includes a laser that separates the glass sheet into multiple portions including an optical arrangement positioned in a beam path of the laser providing a laser beam focal line that is formed on a beam output side of the optical arrangement.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.


The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates diagrammatic plan view of a glass sheet processing apparatus suitable for use with laser-based machining of sheet-like substrates, according to one or more embodiments shown and described herein;



FIG. 2 illustrates a side section view of the glass sheet processing apparatus of FIG. 1;



FIG. 3 illustrates a portion of a glass holding conveyor belt for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 4 illustrates another view of the glass holding conveyor belt along line 4-4 of FIG. 3;



FIG. 5 illustrates another view of the glass holding conveyor belt of FIG. 3;



FIG. 6 illustrates another view of the glass holding conveyor belt of FIG. 3;



FIG. 7 is a section view of the glass sheet processing apparatus of FIG. 1 with a glass holding conveyor belt removed, according to one or more embodiments shown and described herein;



FIG. 8 illustrates an optical arrangement of a laser for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 9 represents a surface of a substrate machined using the glass sheet processing apparatus of FIG. 1;



FIG. 10 illustrates another optical arrangement of a laser for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 11 illustrates a multi-gantry assembly for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 12 illustrates a gantry assembly including multiple processing heads, according to one or more embodiments shown and described herein;



FIG. 13 is a schematic illustration of a beam splitting arrangement for the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 14 illustrates a glass waste processing apparatus for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein;



FIG. 15 is a schematic illustration of a glass cutting process, according to one or more embodiments shown and described herein;



FIG. 16 is another schematic illustration of the glass cutting process of FIG. 15; and



FIG. 17 illustrates a glass waste processing apparatus for use with the glass sheet processing apparatus of FIG. 1, according to one or more embodiments shown and described herein.





DETAILED DESCRIPTION

Embodiments described herein relate generally to glass sheet transfer apparatuses suitable for use with laser-based machining of sheet-like glass substrates. The glass sheet transfer apparatuses may be part of a glass sheet processing apparatus that generally includes one or more of a glass sheet loading station that is used to load the glass sheets into the glass sheet processing apparatus, a glass sheet centering station that is used to position the glass sheet in the cross machine direction, a glass sheet processing station where cutting tools (e.g., lasers) are used in cutting the glass sheet, a glass unloading station where desired parts are removed from the undesired scrap and a glass waste disposal station where remaining glass scrap is processed to reduce the size of the undesired scrap and deposit the crushed scrap in a holding location.


Referring to FIG. 1, a glass sheet processing apparatus 10 according to one or more embodiments is shown. The glass sheet processing apparatus 10 includes a glass sheet loading station 12, a glass sheet centering station 14, a glass sheet processing station 16 and a glass waste disposal station 18. The glass sheet loading station 12 is of a tilting table configuration having an infeed end 20 and an outfeed end 22. The glass sheet loading station 12 may include a table support body 24 that includes an array 26 of conveyor belts 28 that together define a support surface for a glass sheet 44 supported thereon. The conveyor belts 28 may be spaced apart in the cross machine direction (indicated by arrow 30) any distance that is suitable to transport the glass sheets, yet inhibit contact between adjacent belts 28 during use.


The table support body 24 may have a loading configuration and a transfer configuration. In the loading configuration, the infeed end 20 of the table support body 24 can be lowered (e.g., closer to a floor or other infeed device) using an actuator (e.g., a pneumatic actuator, motor, etc.) where a glass sheet can be readily fed onto the support surface that is defined by the conveyor belts 28. The conveyor belts 28 may be used to pull the glass sheet onto the table support body 24 through their movement in the machine direction (indicated by arrow 32) at a predetermined velocity. Once the glass sheet 14 is on the table support body 24, the infeed end 20 may be raised such that the infeed end 20 and the outfeed end 22 are at substantially the same elevation and the support surface is substantially horizontal for feeding the glass sheet from the glass sheet loading station 12 to the glass sheet centering station 14 using the conveyor belts 28. In some embodiments, the infeed end 20 may remain substantially horizontal throughout the glass sheet infeed process and may not be lowered and raised.


In the illustrated embodiment, the glass sheet centering station 12 may include a first side position adjustment mechanism 40 located at one side edge 42 of glass sheet 44 and a second side position adjustment mechanism 46 located at an opposite side edge 47 of the glass sheet 44. The first and second side position adjustment mechanisms 40 and 46 include an adjustment belt 48 that is trained about end drive rollers 50 and 52 and a central belt positioning roller 54. The central belt positioning rollers 54 are located inboard toward a centerline of the drive path P from the upstream end drive rollers 20, which creates a tapered region 56 of the first and second side position adjustment regions 40 and 46. The tapered regions 56 decrease the available width of the drive path P, which can adjust the cross-machine location of the glass sheet 44 to a desired location right before the glass sheet 44 is received by a glass holding conveyor belt 60 for laser processing.


The glass holding conveyor belt 60 can carry the glass sheet 44 through the glass sheet processing station 16. The glass sheet processing station 16 may be a multi-gantry type including at least two gantry assemblies 64 and 66 that are arranged substantially parallel to each other, extending in the cross machine direction. The gantry assemblies 64 and 66 may be controlled by a controller to move independently along the glass sheet processing station 16 in the machine direction 32. Movement of the gantry assemblies 64 and 66 may be dictated by dimensions and numbers of the parts being machined from the glass sheet 44. As will be described in greater detail below, each gantry assembly 64 and 66 may include one or more processing head 68 and 70 that are moveable linearly in the cross machine direction 30 and each include a respective laser cutting device that can be used to sever sections of the glass sheet 44 from another. The linear movement of the gantry assemblies 64 and 66 in the machine direction 30 and the linear movement of the processing heads 68 and 70 in the cross machine direction 32 allow for cutting the glass sheet 44 into various complex and non-complex shapes, depending on the needs of the end product. Further the processing heads 68 and 70 may work together for cutting through the glass sheet 44 in a multi-stage cutting process.


Referring to FIG. 2, the glass holding conveyor belt 60 extends between a downstream drive roller 76 and an upstream drive roller 78 in a continuous loop defining a conveying portion 80 that conveys the glass sheets 44 downstream and a return portion 82 that travels toward the upstream drive roller 78. As illustrated by FIG. 2, the glass holding conveyor belt 60 is held relatively taught at the conveying portion 80 to provide a substantially flat support surface for the glass sheets 44. This is compared to the return portion 82, which is held relatively slack, allowing the return portion 82 to rest upon idle support rollers 84 as the return portion 82 of the glass holding conveyor belt 60 travels toward the upstream drive roller 78. A tension roller 86 may be provided between idle support rollers 84a and 84b immediately adjacent the downstream drive roller 76 to maintain a consistent tension for the glass holding conveyor belt 60 to exit the conveying portion 80 into the return portion 82, about the downstream drive roller 76. The downstream drive roller 76 and upstream drive roller 78 may each be connected to a motor to drive the glass holding conveyor belt 60 in a continuous fashion. In some embodiments, only the downstream drive roller 76 may be driven by a motor.


Referring to FIG. 3, a portion of the glass holding conveyor belt 60 is shown and includes conveyor belt segments 90 that are interconnected to provide the continuous glass holding conveyor belt 60. The conveyor belt segments 90a and 90b may be connected along joint lines 92 that allow for articulating (e.g., rotating) movement between the conveyor belt segments 90a and 90b relative to one another. Referring briefly to FIG. 4, conveyor belt segment 90a may include interlocking members 94a in the form of integrally formed loop members that extend outwardly from a substantially planar support portion 96a and form a loop portion 98a with an opening 100a by extending back toward an underside 102a of the conveyor belt segment 90a. Likewise, the conveyor belt segment 90b may include interlocking members 94b in the form of integrally formed loop members that extend outwardly from a substantially planar support portion 96b and form a loop portion 98b with an opening 100b by extending back toward an underside 102b of the conveyor belt segment 90b. The interlocking members 94a and 94b may engage in a side-by-side arrangement with their openings 100a and 100b aligned and sized to receive a connecting rod 104 therethrough, which allows movement of the conveyor belt segments 90a and 90b in the direction of arrow 95 while inhibiting separation of the conveyor belt segments 90a and 90b. As shown by FIG. 5, a number of the interlocking members 94 of adjacent conveyor belt segments 90 are positioned side by side in a row to receive the connecting rod 104 in a rotatable fashion. Each conveyor belt segment 90 may be connected in the same fashion providing the glass holding conveyor belt 60 with a relatively high degree of articulation and ability to remove/replace sections of the glass holding conveyor belt.


Referring to FIG. 6, a series of vacuum openings 110 are provided along each joint line 92 due to the interconnections between and sizes of the interlocking members 94a and 94b. The vacuum openings 110 are provided through the thickness of the glass holding conveyor belt 60 and follow an air flow path through the interconnections between the interlocking members 94a and 94b to allow negative pressure generated below the glass holding conveyer belt 60 to draw air through the vacuum openings 110. In some embodiments, a negative pressure of up to 280 millibar or more may be generated. This negative pressure may be used to hold the glass sheets 44 against the glass holding conveyor belt 60 and inhibit movement of the glass sheets 44 as they travel in the machine direction 32.


The glass holding conveyor belt 60 may be formed of any material that is suitable for contacting the high-quality glass sheets 44. As one example, polyoxymethylene C (POM C) may be used due to its suitability to contact the glass sheets 44 and thermal resistance during the laser cutting process. The natural color of POM C (no added color ingredients) is white, which reduces any interference with the laser and can reduce the amount of process residue on the parts produced from the glass sheets 44. POM C can also be suitable for a wide range of laser processes.


Referring to FIG. 7, a section view of the glass sheet processing apparatus 10 is illustrated with the glass holding conveyor belt 60 removed for clarity. The glass holding conveyor belt is supported by a vacuum support apparatus 200. The vacuum support apparatus 200 supports the glass holding conveyor belt 60 against a conveyor support surface 206 as the glass holding conveyor belt 60 is being conveyed. The conveyor support surface 206 is provided by a plurality of worktable support sections 208 that are aligned together in both the machine longitudinal and machine lateral directions to define a substantially planar worktable assembly 210 that includes the conveyor support surface 206 arranged substantially horizontally. The individual worktable support sections 208 may be formed as plates that, in the illustrated embodiment, are rectangular, but may be any suitable shape that are shaped to fit together in a side-by-side arrangement.


The worktable support sections 208 may be aligned both vertically and horizontally using height adjustment spacer assemblies 212. The height adjustment spacer assemblies 212 may include spacer members 216 that are positioned between an individual worktable support section 208 and a vacuum chamber floor 214. The spacer members 216 may be substantially the same height to align the worktable support sections 208 vertically to provide the substantially planar conveyor support surface 206. The height adjustment spacer assemblies 212 may also provide a vacuum chamber volume 218 that is provided between the vacuum chamber floor 214 and the worktable assembly 210.


Each worktable support section 208, while used to support the glass holding conveyor belt 60 as the glass holding conveyor belt 60 moves relative to the worktable support assembly 210, also facilitates application of a negative pressure along lengths of the glass holding conveyor belt 60. In particular, the worktable support sections 208 include vacuum openings 220 that are provided through thicknesses of the worktable support sections 208. In some embodiments, the vacuum openings 220 of each worktable support section 208 may be aligned in both rows and columns to provide an array of the vacuum openings 220 that is spread across areas of the conveyor support surface 206. The vacuum openings 220 provide communication passageways through the worktable support sections 208 for negative pressure to be applied to the glass holding conveyor belt 60 from the vacuum chamber volume 218.


Positively holding the glass sheet 44 against the glass holding conveyor belt 60 can allow for improved handling of the glass sheet 44, such as maintaining position of the glass sheet 44 on the glass holding conveyor belt 60 during relatively high conveyor belt accelerations and decelerations (e.g., at least about 2 m/s2, such as at least about 5 m/s2) in the machine direction and for relatively fast transfer rates of the glass sheets 44 onto the glass holding conveyor belt 60 (e.g., at least about 1 m/s) with relatively low tact time (e.g., about 3 to 7 seconds).


Referring again to FIG. 1, as indicated above, the glass sheet processing station 16 may be multi-gantry type that includes at least two gantry assemblies 64 and 66 that are arranged substantially parallel to each other, extending in the cross machine direction between side edges 42 and 48 of the glass sheet 44. The gantry assemblies 64 and 66 may move independently along the glass sheet processing station 16 in the machine direction 32 along track assembly 122 using linear motors 115 and 117. Each gantry assembly 64 and 66 may include one or more processing heads 68 and 70 that are moveable linearly in the cross machine direction 30 along track assemblies 126 and 136 provided by the gantry assemblies 64 and 66 and each include the respective laser cutting device that can be used to sever sections of the glass sheet 44 from another.


The glass sheet 44 may be transferred onto the glass holding conveyor belt 60 of the glass sheet processing station 16 for laser processing (e.g., cutting) of the glass sheet 44 using lasers of the processing heads 68 and 70. Generally, the laser processing may perforate the glass sheet 44 that is transparent to the laser, sometimes referred to herein as the “transparent material,” and the perforation may cause or contribute to cutting the transparent material at the perforation. The laser processing may be used to separate portions of the glass sheet 44 to form a desired shape. The general mechanism of separating the substrate into individual parts is described below.


The separating method of the glass sheet processing apparatus 10 produces for each laser pulse a laser focal line (as distinct from a focal point) using laser optics suitable therefor (hereinafter also referred to as an optical arrangement). The focal line determines the zone of the interaction between the laser and the material of the glass sheet 44. If the focal line falls in the material to be separated, the laser parameters can be chosen such that an interaction with the material which produces a crack zone along the focal line takes place. Important laser parameters are the wavelength of the laser, the pulse duration of the laser, the pulse energy of the laser and possibly also the polarization of the laser. The following can be provided for the interaction of the laser light with the material:


1) The wavelength of the laser can be chosen such that the material of the glass sheet 44 is substantially transparent at this wavelength (specifically for example: absorption <<10% per mm of material depth⇒γ<<1/cm; γ: Lambert-Beer absorption coefficient).


2) The pulse duration of the laser can be chosen such that no significant heat transport (heat diffusion) out of the zone of interaction can take place within the time of interaction (specifically for example: τ<<d2/α, d: focus diameter, τ: laser pulse duration, α: heat diffusion constant of the material).


3) The pulse energy of the laser can be chosen such that the intensity in the zone of interaction, that is to say in the focal line, produces an induced absorption, which leads to local heating of the material of the glass sheet 44 along the focal line, which in turn leads to crack formation along the focal line as a result of the thermal stress introduced into the material.


4) The polarization of the laser influences both the interaction at the surface (reflectivity) of the glass sheet 44 and the type of interaction within the material in the induced absorption. The induced absorption may take place by way of induced, free charge carriers (typically electrons), either after thermal excitation, or by way of multiphoton absorption and internal photoionization, or by way of direct field ionization (field strength of the light breaks electron bonding directly). The type of generation of the charge carriers can be assessed for example by way of the so-called Keldysh parameter. In the case of certain materials (for example birefringent materials) it may just be important that the further absorption/transmission of the laser light depends on the polarization, and consequently the polarization by way of suitable optics (phase plates) should be chosen by the user to be conducive for separating the respective material, for example simply in a heuristic way. Therefore, if the material is not optically isotropic, but for example birefringent, the propagation of the laser light in the material is also influenced by the polarization. Thus, the polarization and the orientation of the polarization vector may be chosen such that, as desired, there only forms one focal line and not two (ordinary and extraordinary rays). In the case of optically isotropic materials, this does not play any role.


5) Furthermore, the intensity should be chosen on the basis of the pulse duration, the pulse energy and the focal line diameter such that there is preferably no significant ablation or significant melting, but preferably only crack formation in the microstructure of the solid body. For typical materials such as glass or transparent crystals, this requirement can be satisfied most easily with pulsed lasers in the sub-nanosecond range, that is to say in particular with pulse durations of for example between 10 and 100 ps.


The process for the crack formation in the material occurring, and made to extend vertically to the plane of the glass sheet 44, is mechanical stress that exceeds the structural strength of the material (compressive strength in MPa). The mechanical stress is achieved here by way of rapid, inhomogeneous heating (thermally induced stress) by the laser energy. Presupposing appropriate positioning of the glass sheet 44 in relation to the focal line, the crack formation starts at the surface of the glass sheet 44, since that is where the deformation is greatest. The reason for this is that in the half-space above the surface there is no material that can absorb forces. This argument also applies to materials with hardened or toughened surfaces, as long as the thickness of the hardened or toughened layer is great in comparison with the diameter of the abruptly heated material along the focal line.


The type of interaction can be set by way of the fluence (energy density in Joules per cm2) and the laser pulse duration with a selected focal line diameter such that, in some embodiments, 1.) no significant melting takes place at the surface or in the volume and 2.) no significant ablation with particle formation takes place at the surface. In the substantially transparent materials, several types of induced absorption are known:


a) In semiconductors and isolators with a low band gap, on the basis for example of a low residual absorption (due to traces of impurities in the material or due to charge carriers already thermally excited at the temperature before the laser machining), rapid heating up within a first fraction of the laser pulse duration will lead to thermal excitation of further charge carriers, which in turn leads to increased absorption and consequently to a cumulative increase in the laser absorption in the focal line.


b) In isolators, if there is sufficiently high light intensity, a photo absorption leads to an ionization on the basis of a nonlinear-optical interaction with the atoms of the material, and consequently in turn to the generation of free charge carriers, and consequently to increased linear absorption of the laser light.


The production of the geometry of a desired separating surface (relative movement between the laser beam of one of the processing heads 68 and 70 and the substrate of the glass holding conveyor belt 60 along a line on the substrate surface) is described below.


The interaction with the glass sheet 44 produces for each laser pulse an individual, continuous (seen in the direction perpendicular to the substrate surface) crack zone in the material along a focal line. For the complete severing of the material, a series of these crack zones for each laser pulse is set so close together along the desired separating line that a lateral connection of the cracks produces a desired crack surface/contour in the material. For this, the laser is pulsed at a specific repetition rate. The spot size and spacing are chosen such that a desired, directed crack formation occurs at the surface, along the line of the laser spots. The spacing of the individual crack zones along the desired separating surface is obtained from the movement of the focal line in relation to the material within the time period from laser pulse to laser pulse.


To produce the desired separating surface in the material of the glass sheet 44, the pulsed laser light is moved over the material by an optical arrangement that is movable parallel to the plane of the glass sheet 44 such that the desired separating line is formed. The orientation of the focal line in relation to the surface of the glass sheet 44, whether perpendicular or at an angle to the surface, may either be chosen as a fixed value or be changed by way of a pivotable optical arrangement (hereinafter also referred to for simplicity as optics) and/or a pivotable beam path of the laser along the desired separating line.


Altogether, for forming the desired separating line, the focal line may be passed through the material in up to five separately movable axes: two spatial axes (x, y), which fix the point of penetration of the focal line into the material, two angular axes (theta, phi), which fix the orientation of the focal line from the point of penetration into the material, and a further spatial axis (z′, not necessarily orthogonal to x, y), which fixes how deep the focal line reaches into the material from the point of penetration at the surface.


There are generally restrictions here, dictated by the optics and the laser parameters: the orientation of the angles in theta and phi can only take place to the extent that the refraction of the laser light in the material allows (less than the angle of total reflection in the material), and the depth of penetration of the laser focal line is restricted by the available laser pulse energy and the accordingly chosen laser optics, which only forms a length of the focal line that can produce the crack zone with the laser pulse energy available.


The separation of the material along the crack surface/contour produced takes place either by internal stress of the material or by forces introduced, for example mechanically (tension) or thermally (uneven heating/cooling). Since, no significant amount of material may be ablated, there is generally initially no continuous gap in the material, but only a highly disturbed fracture surface area (microcracks), which is meshed within itself and under some circumstances still connected by bridges. The forces subsequently introduced have the effect of separating the remaining bridges and overcoming the meshing by way of lateral crack growth (taking place parallel to the plane of the substrate), so that the material can be separated along the separating surface.


Referring to FIG. 8, a method for the laser-based machining of the glass sheet 44, in order to separate the substrate into multiple parts, in which the laser beam 102a, 102b of a laser 103 for machining the glass sheet 44 is directed onto the latter, is characterized in that with an optical arrangement 106 positioned in the path of rays of the laser 103, an extended laser beam focal line 102b, seen along the direction of the beam, is formed on the beam output side of the optical arrangement 106 from the laser beam 102a directed onto the latter, the glass sheet 44 being positioned in relation to the laser beam focal line 102b such that an induced absorption is produced in the material of the glass sheet 44 along an extended portion 102c, seen in the direction of the beam, of the laser beam focal line 102b, with the effect that an induced crack formation takes place in the material of the substrate along this extended portion 102c.


In some embodiments, the glass sheet 44 is positioned in relation to the laser beam focal line 102b such that the extended portion 102c of the induced absorption in the material, that is to say in the interior of the glass sheet 44, extends up to at least one of the two opposite substrate surfaces 101a, 101b.


In certain embodiments, the glass sheet 44 is positioned in relation to the laser beam focal line 102b such that the extended portion 102c of the induced absorption in the material, that is to say in the interior of the glass sheet 44, extends from one 101a of the two opposite substrate surfaces up to the other 101b of the two opposite substrate surfaces, that is to say over the entire layer thickness d of the glass sheet 44 or in that the glass sheet 44 is positioned in relation to the laser beam focal line 102b such that the extended portion 102c of the induced absorption in the material, that is to say in the interior of the glass sheet 44, extends from one 101a of the two opposite substrate surfaces into the glass sheet 44, but not up to the other 101b of the two opposite substrate surfaces, that is to say not over the entire layer thickness d of the glass sheet 44, preferably extends over 80% to 98%, preferably over 85 to 95%, particularly preferably over 90%, of this layer thickness.


In some embodiments, the induced absorption is produced such that the crack formation takes place in the microstructure of the glass sheet 44 without ablation and without melting of material of the glass sheet 44.


In certain embodiments, the extent of the laser beam focal line 102b and/or the extent of the portion 102c of the induced absorption in the glass sheet 44, that is to say in the interior of the glass sheet 44, seen in each case in the longitudinal direction of the beam, is between 0.1 mm and 100 mm, preferably between 0.3 mm and 10 mm, and/or in that the layer thickness d of the glass sheet 44, measured perpendicularly to the two opposite substrate surfaces 101a, 101b, is between 30 μm and 3000 μm, preferably between 100 μm and 1000 μm. In some embodiments, the average diameter δ of the laser beam focal line 102b, that is to say the spot diameter, is between 0.5 μm and 5 μm, preferably between 1 μm and 3 μm, preferably is 2 μm, and/or in that the pulse duration τ of the laser 103 is chosen such that, within the time of interaction with the material of the glass sheet 44, the heat diffusion in this material is negligible, preferably no heat diffusion takes place, for which preferably τ, δ and the heat diffusion constant α of the material of the glass sheet 44 are set according to τ<<δ2/α and/or preferably τ is chosen to be less than 10 ns, preferably less than 100 ps, and/or in that the pulse repetition rate of the laser 103 is between 10 kHz and 1000 kHz, preferably is 100 kHz, and/or in that the laser 103 is operated as a single-pulse laser or as a burst-pulse laser, and/or in that the average laser power, measured directly on the output side of the beam of the laser 103, is between 10 watts and 100 watts, preferably between 30 watts and 50 watts.


In certain embodiments, the wavelength λ of the laser 103 is chosen such that the material of the glass sheet 44 is transparent to this wavelength or is substantially transparent, the latter being understood as meaning that the decrease in intensity of the laser beam taking place along the direction of the beam in the material of the glass sheet 44 per millimeter of the depth of penetration is 10% or less, the laser being, in particular for glasses or crystals that are transparent in the visible wavelength range as the glass sheet 44, preferably an Nd:YAG laser with a wavelength λ of 1064 nm or a Y:YAG laser with a wavelength λ of 1030 nm, or, in particular for semiconductor substrates that are transparent in the infrared wavelength range, preferably an Er:YAG laser with a wavelength λ of between 1.5 μm and 1.8 μm.


In some embodiments, the laser beam 102a, 102b is directed perpendicularly onto the glass sheet 44, in that therefore the glass sheet 44 is positioned in relation to the laser beam focal line 102b such that the induced absorption along the extended portion 102c of the laser beam focal line 102b takes place perpendicularly to the plane of the substrate or in that the laser beam 102a, 102b is directed onto the glass sheet 44 at an angle β of greater than 0° in relation to the normal to the plane of the glass sheet 44, in that therefore the glass sheet 44 is positioned in relation to the laser beam focal line 102b such that the induced absorption along the extended portion 102c of the laser beam focal line 102b takes place at the angle 90°-β to the plane of the substrate, where preferably β≤45°, preferably β≤30°.


Referring to FIG. 9, in certain embodiments, the laser beam 102a, 102b is moved in relation to the surface 101a of the glass sheet 44 along a line 105 along which the glass sheet 44 is to be severed to obtain the multiple parts, a multiplicity (102c-1, 102c-2, . . . ) of extended portions 102c of induced absorption in the interior of the glass sheet 44 being produced along this line 105, where preferably the ratio of the average spacing a of directly adjacent extended portions 102c of induced absorption, that is to say portions produced directly one after the other, and the average diameter δ of the laser beam focal line 102b, that is to say the spot diameter, is between 0.5 and 3.0, preferably between 1.0 and 2.0.


In some embodiments, during and/or after the production of the multiplicity (102c-1, 102c-2, . . . ) of extended portions 102c of induced absorption in the interior of the glass sheet 44, mechanical forces are exerted on the glass sheet 44 and/or thermal stresses are introduced into the glass sheet 44, in particular the substrate is unevenly heated and cooled again, in order to bring about crack formation for separating the substrate into the multiple parts respectively between directly adjacent (102c-1, 102c-2) extended portions 102c of induced absorption, the thermal stresses preferably being introduced by irradiating the glass sheet 44 with a CO2 laser along the line 105.


Referring to FIG. 10, a device for the laser-based machining of the glass sheet 44, in order to separate the substrate into multiple parts, with which the laser beam 102a, 102b of a laser 103 for machining the glass sheet 44 can be directed onto the latter, is characterized by an optical arrangement 106, which is positioned in the path of rays of the laser 103 and with which an extended laser beam focal line 102b, seen along the direction of the beam, can be formed on the beam output side of the optical arrangement 106 from the laser beam 102a directed onto the latter, the glass sheet 44 being able to be positioned or being positioned in relation to the laser beam focal line 102b such that an induced absorption takes place in the material of the glass sheet 44 along an extended portion 102c, seen in the direction of the beam, of the laser beam focal line 102b, with the effect that an induced crack formation is brought about in the material of the substrate along this extended portion 102c.


In certain embodiments, the optical arrangement 106 comprises a focusing optical element with spherical aberration, preferably a spherically ground convex lens 107, a diaphragm 108 of the optical arrangement 106, such as an annular diaphragm positioned before this focusing optical element 107 in the path of rays of the laser 103, with the effect that the bundle of rays (102aZ) lying at the center of the laser beam 102a impinging onto the diaphragm can be blocked out, so that only the peripheral rays (102aR) lying outside this center impinge onto this focusing optical element.


In some embodiments, the optical arrangement 106 comprises an optical element with a non-spherical free surface which is shaped for forming the laser beam focal line 102b with a defined extent, that is to say a defined length, seen in the direction of the beam, the optical element with the non-spherical free surface preferably being a cone prism or an axicon.


In certain embodiments, the optical arrangement 106 comprises in the path of rays of the laser 103 firstly a first optical element with a non-spherical free surface, which is shaped for the forming of the extended laser beam focal line 102b, preferably a cone prism or an axicon, and, on the beam output side of this first optical element, a second, focusing optical element, in particular a convex lens, these two optical elements being positioned and aligned such that the first optical element projects the laser radiation impinging on it annularly onto the second optical element, so that the extended laser beam focal line is produced on the beam output side of the second optical element.


In some embodiments, a third, focusing optical element, which is in particular a plano-convex collimation lens, is positioned between the first and second optical elements in the path of rays of the laser 103, the third optical element preferably being positioned and aligned such that the laser radiation formed annularly by the first optical element falls onto the third optical element with a defined average ring diameter and in that the third optical element projects the laser radiation annularly with this ring diameter and with a defined ring width onto the second optical element.


The methods or devices described above can be used for separating substrates of glass (e.g., having a thickness of about 0.7 mm or less), in particular of quartz, borosilicate, sapphire or soda-lime glass, sodium-containing glass, hardened glass or unhardened glass, of crystalline Al2O3, of SiO2.nH2O (opal) or of a semiconductor material, in particular Si, GaAs, GaN, separating single- or multi-layered substrates, in particular glass-glass composites, glass-film composites, glass-film-glass composites or glass-air-glass composites, separating coated substrates, in particular metal-coated sapphire wafers, silicon wafers provided with metal or metal-oxide layers or substrates coated with ITO or AlZnO, and/or completely severing a single- or multi-layered substrate or severing one or more, but not all of the layers of a multi-layered substrate.


The laser beam focal line produced by means of the optical arrangement described above is alternatively also referred to above and below for simplicity as the focal line of the laser beam. The glass sheet 44 is separated or individually separated into the multiple parts, seen in the plane of the glass sheet 44, by the crack formation (induced absorption along the focal line made to extend perpendicularly to the plane of the substrate). The crack formation consequently takes place perpendicularly to the plane of the glass sheet 44 into the glass sheet 44 or into the interior of the substrate (longitudinal crack formation). As already described, generally a multiplicity of individual laser beam focal lines are introduced into the glass sheet 44 along a line on the substrate surface, in order that the individual parts of the glass sheet 44 can be separated from one another. For this purpose, either the glass sheet 44 may be made to move parallel to the plane of the glass sheet 44 in relation to the laser beam or in relation to the optical arrangement or, conversely, the optical arrangement may be moved parallel to the plane of the glass sheet 44 in relation to the glass sheet 44.


Example

Suitable, for example, for severing flat glasses is a commercially available picosecond laser 103, which has the following parameters: wavelength 1064 nm, pulse duration of 10 picoseconds, pulse repetition rate of 100 kHz, average power (measured directly after the laser) of up to 50 W. The laser beam initially has a beam diameter (measured at 13% of the peak intensity, i.e. 1/e2 diameter of a Gaussian bundle of rays) of about 2 mm, the beam quality is at least M2<1.2 (determined in accordance with DIN/ISO 11146). With beam expanding optics (commercially available Kepler beam telescope), the beam diameter is increased by a factor of 10 to about 20-22 mm (21, 23, 24 and 25 are beam-deflecting mirrors). With a so-called annular diaphragm 8 of 9 mm in diameter, the inner part of the bundle of rays is cut off, so that an annular beam forms. With this annular beam, a plano-convex lens with a 28 mm focal length (quartz glass with a radius of 13 mm) is illuminated for example. The strong (desired) spherical aberration of the lens has the effect of producing the focal line.


Referring to FIG. 11, the first gantry assembly 64 and the second gantry assembly 66 are illustrated. One or both of the gantry assemblies 64 and 66 may include a laser cutting assembly 123, 125 that is suitable for use in severing the glass sheet 44, such as described above, as an example. The first gantry assembly 64 includes a base assembly 120 that is slidably connected to the track assembly 122 extending alongside the glass sheet processing station 16. The track assembly 122 allows linear movement of the first gantry assembly 64 in the machine direction 30. A processing head support assembly 124 is supported by the base assembly 120. The processing head support assembly 124 provides the track assembly 126 that allows linear movement of the processing head 68 in the cross-machine direction 32 using a linear actuator. Thus, with the machine direction track assembly 122 and the cross-machine direction track assembly 126, positioning of the processing head 68 and associated laser cutting assembly 123 anywhere in an X-Y plane can be achieved.


The second gantry assembly 66 includes a base assembly 130 (a base plate of the base assembly is removed for illustration) that is slidably connected to the track assembly 122 extending alongside the glass sheet processing station 16. The track assembly 122 allows linear movement of the second gantry assembly 66 in the machine direction 30. A processing head support assembly 134 is supported by the base assembly 130. The processing head support assembly 134 provides a track assembly 136 that allows linear movement of the processing head 70 in the cross-machine direction 32 using a linear actuator. Thus, with the machine direction track assembly 132 and the cross-machine direction track assembly 136, positioning of the processing head 70 and associated laser cutting assembly 125 anywhere in an X-Y plane can be achieved.


While a gantry assembly embodiment is illustrated by FIG. 11 that includes a single processing head (one for each gantry assembly), in some embodiments, a gantry assembly 140 may include more than one processing heads 142, 144 and 146, all provided on the same gantry assembly 140 as shown by FIG. 12. As above, any one or more of the processing heads 142, 144 and 146 may include a laser cutting assembly used in severing the glass sheet 44. While any one or more of the processing heads 142, 144 and 146 may include the laser cutting assemblies, they may include other tools for processes other than substrate separation, such as sprayers for dies and coatings, cleaning nozzles and other processing tools. The additional processing heads 142, 144 and 146 can allow for machining of additional parts from the same or multiple glass sheets 14. The parts may be substantially the same or they may be different. The multiple processing heads 142, 144, 146 may utilize their own linear actuator to allow for independent control of the processing heads 142, 144, 146. Laser beam splitting may be employed to provide a laser beam to the optics of different processing heads simultaneously.


Referring briefly to FIG. 13, for example, a beam splitting device 300 may be located in a laser beam path of a laser source 302. The beam splitting device 300 may include an optical arrangement that is suitable to split an initial laser beam 304 provided by the laser source 302 into two separate laser beams 306a and 306b. Each laser beam 306a and 306b may be delivered to a respective processing head and laser cutting assembly, such as the processing heads 68 and 70 and laser cutting assemblies 123 and 125. In some embodiments, the laser source 302 may utilize an optical arrangement 312 that alters an energy profile of the laser beam 304 that can be useful in perforating the glass sheets and can be split into multiple laser beams 306a and 306b. In some embodiments, the optical arrangement 312 may include a waxicon optical arrangement that is used to alter the energy profile of the laser beam 304. Such an optical arrangement can reduce costs and complexity associated with multiple laser sources to generate the separate laser beams 306a and 306b.


Referring, for example, to FIG. 14, a diagrammatic illustration of a substrate processing station 320 for use with the glass sheet processing apparatus 10 of FIG. 1 includes a multi-gantry processing apparatus 322. The multi-gantry processing apparatus 322 includes a first gantry assembly 324 and a second gantry assembly 326 with each first and second gantry assembly 324 and 326 extending across the glass sheet 44 in the cross-machine direction 30. As above, the first gantry assembly 324 may have a linear motor 328 operatively connected thereto for effectuating movement of the first gantry assembly 324 in the machine direction 32. Likewise, the second gantry assembly 326 may also include a linear motor 330 operatively connected thereto for effectuating movement of the second gantry assembly 326 in the machine direction. A controller 332 may include logic that controls simultaneous movement or otherwise of the first gantry assembly 324 and the second gantry assembly 326 in a cooperative manner.


The first gantry assembly 324 may include multiple processing heads 334, 336 and 338. Each processing head 334, 336 and 338 may have a linear motor 340, 342 and 344 operatively connected thereto for effectuating movement of the processing heads 334, 336 and 338 in the cross-machine direction 30 along a length of the first gantry assembly 324. Likewise, the second gantry assembly 326 may include multiple processing heads 348, 350 and 352. Each processing head 348, 350 and 352 may have a linear motor 354, 356 and 358 operatively connected thereto for effectuating movement of the processing heads 348, 350 and 352 in the cross-machine direction along a length of the second gantry assembly 226. The controller 332 may include logic that control simultaneous movement or otherwise of the processing heads 334, 336, 338, 348, 350 and 352 in a cooperative manner.


Such a multi-gantry processing apparatus can allow for machining of portions of a single glass sheet 44 simultaneously or for simultaneous machining of multiple glass sheets 44 as the same or different processes. For example, the multiple gantry assemblies 324 and 326 with their associated multiple processing heads 334, 336, 338, 348, 350 and 352 can allow for machining of multiple, discreet sections simultaneously or otherwise in a split pattern process, which can reduce cutting time associate with machining multiple parts from glass sheets. In some embodiments, the laser cutting assemblies may each be configured to provide multiple laser beams that can be used to form desired part shapes. Glass sheets up to 5000 mm×5000 mm, such as between about 100 mm×100 mm to about 5000 mm×5000 mm and between about 25 μm and about 10 mm in thickness may be machined.


Referring now to FIG. 15, a glass sheet cutting process is illustrated where outer sections 360 and 362 of the glass sheet 44 are separated from an inner section 364 of the glass sheet 44. In this example, the outer sections 360 and 362 may be considered scrap and the inner section 364 may be a quality part that is formed by severing the glass sheet 44, ultimately forming three disconnected sections 360, 362 and 364. A laser beam 366 provided by one of the laser cutting assemblies and associated processing heads described above may initiate the cutting operation at a location spaced away from the glass sheet 44 with the glass sheet being held flat against the glass holding conveyor belt 60 using negative pressure as described above. Because the laser beam 366 initiates a cutting path, which is represented by dashed lines C, at a location spaced from the glass sheet 44, the laser beam 366 is directed onto an upper conveyor belt surface 368 before being directed onto the glass sheet 44 and following the cutting path C.


Referring to FIG. 16, the laser cutting assembly provides a succession of laser beams 366 that directly impact the glass holding conveyor belt 60 as the laser cutting assembly moves toward the glass sheet 44. As discussed above, the glass holding conveyor belt 60 may be formed of POM C, which is suitable to contact the glass sheets 44 and has a thermal resistance that can reduce alteration of the glass holding conveyor belt 60 during the laser cutting process. As one example, the laser beam 366, such as that provided by the laser described in the Example above, may create a recess 372 in the glass holding conveyor belt 60 that is no greater than about 300 microns in depth d and no greater than about 300 microns in width w. Such an arrangement can allow the glass holding conveyor belt 60 to be reused repeatedly for multiple glass sheets 44 without any need to replace portions of the glass holding conveyor belt 60.


Referring back to FIG. 1, the glass sheet processing apparatus 10 may include a glass unloading station 150 where desired glass parts formed from the glass sheets 44 may be removed from the glass holding conveyor belt 60. The glass parts may be removed manually or automatically, for example, by a robot, leaving glass scrap on the glass holding conveyor belt 60. The glass scrap may then be conveyed on the glass holding conveyor belt 60 to the glass waste disposal station 18.


Referring to FIG. 17, the glass waste disposal station 18 includes a glass waste processing apparatus 152 that can further break down the glass waste into smaller sizes for depositing into a holding location 154 (e.g., a bin). The glass waste processing apparatus 152 includes a first glass breaking assembly 155 and a second glass breaking assembly 156. The first glass breaking assembly 155 includes a first break roller 158 and a second break roller 160 that receive glass waste 162 from the glass holding conveyor belt 60. In the illustrated example, the first break roller 158 includes a pair of blades 164 and 166 that engage and break the glass waste 162 (e.g., every 180 degrees of rotation) against the second break roller 160 in a cross-machine direction break. A brush roller 176 may be provided to dampen the shock of the first glass breaking assembly 155 on the glass waste 162 and also to inhibit or shield the belt surface from broken glass particles. Another brush roller 178 may be provided to clean the surface of the glass holding conveyor belt 60. The broken glass waste 168 may then slide down a ramp structure 170 toward the second glass breaking assembly 156. The second glass breaking assembly 156 may include a first break roller 172 and a second break roller 174. The first and second break rollers 172 and 174 may include saw-like teeth that further break the broken glass waste 168 in the machine direction. The broken glass waste 168 may then be deposited in the holding location 154.


Handling of glass-like substrates can be awkward and complex in terms of retaining flatness and stability during and after parts separation. The above-described glass sheet processing apparatus can provide a glass holding conveyor belt that can hold the substrate thereagainst by applying a vacuum force against the substrate that does not interfere with cutting processes or substrate quality. The glass sheet processing station uses a glass holding conveyor belt that can be used to carry multiple glass sheets to the laser cutting apparatus for multiple cutting and severing operations in a repeated fashion (i.e., one after another) with minimal, micron-sized affect on the surface of the glass holding conveyor belt. The glass sheet loading station may be provided that includes a tiltable table support body that can transfer the substrate to the glass holding conveyor belt by relatively small, individual belts, since the substrate is not yet separated. The glass sheet centering station may be provided that can align the substrate to an XY orientation for proper processing positioning. A glass waste disposal station may be provided that can further reduce the size of the waste removed from the parts.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A glass sheet processing apparatus comprising: a first gantry assembly that extends across a glass sheet in a cross-machine direction, the first gantry assembly comprising a first processing head and a second processing head, which move along a length of the first gantry assembly, and comprising a laser that provides a laser beam, the laser comprising an optical arrangement that is positioned in a beam path of the laser beam and that is configured to split the laser beam into a first laser beam provided to the first processing head and a second laser beam provided to the second processing head, the first laser beam and the second laser beam each providing a laser beam focal line that is configured to form a fracture surface area in the glass sheet, the optical arrangement comprising a first focusing optical element and a second focusing optical element spaced apart from the first focusing optical element, the first and second focusing optical elements being configured to generate each laser beam focal line on a beam output side of the second focusing optical element, andthe optical arrangement comprising a third focusing optical element positioned between the first focusing optical element and the second focusing optical element along the beam path of the laser beam; anda second gantry assembly that extends across the glass sheet in the cross-machine direction, the second gantry assembly comprising a third processing head that moves along a length of the second gantry assembly.
  • 2. The glass sheet processing apparatus of claim 1 further comprising a first linear actuator operatively connected to the first gantry assembly that moves the first gantry assembly in a machine direction.
  • 3. The glass sheet processing apparatus of claim 2 further comprising a second linear actuator operatively connected to the second gantry assembly that moves the second gantry assembly in the machine direction.
  • 4. The glass sheet processing apparatus of claim 1, wherein the third processing head of the second gantry assembly comprises a laser comprising an optical arrangement positioned in a beam path of the laser providing a laser beam focal line that is formed on a beam output side of the optical arrangement.
  • 5. The glass sheet processing apparatus of claim 1 further comprising a controller that controls movement of the processing heads of the first gantry assembly and the second gantry assembly.
  • 6. The glass sheet processing apparatus of claim 1, wherein the second gantry assembly comprises multiple processing heads where each processing head of the second gantry assembly moves along a length of the second gantry assembly in the cross-machine direction.
  • 7. The glass sheet processing apparatus of claim 1 further comprising a conveyor belt configured to carry a glass sheet through the glass sheet processing apparatus, the conveyor belt comprising first and second belt segments connected together and configured to articulate relative to each other.
  • 8. The glass sheet processing apparatus of claim 1, wherein the first focusing optical element is an axicon and the second focusing optical element is a convex lens.
  • 9. The glass sheet processing apparatus of claim 8, wherein the third focusing optical element is a plano-convex collimation lens.
  • 10. The glass sheet processing apparatus of claim 1, wherein the processing head of the second gantry assembly comprises a processing tool that is different from the first processing head and from the second processing head.
  • 11. The glass sheet processing apparatus of claim 10, wherein the processing head of the second gantry assembly comprises a sprayer or a cleaning nozzle.
  • 12. The glass sheet processing apparatus of claim 1, wherein the optical arrangement is further configured to split the laser beam into the first laser beam provided to the first processing head, the second laser beam provided to the second processing head, and a third laser beam provided to the third processing head, the first laser beam, the second laser beam, and the third laser beam each providing a laser beam focal line that is configured to form a fracture surface area in the glass sheet.
Parent Case Info

This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/411,938, filed on Oct. 24, 2016, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (610)
Number Name Date Kind
1529243 Drake et al. Mar 1925 A
1626396 Drake Apr 1927 A
1790397 Woods et al. Jan 1931 A
2682134 Stookey Jun 1954 A
2749794 O'Leary Jun 1956 A
2754956 Sommer Jul 1956 A
3647410 Heaton et al. Mar 1972 A
3673900 Jendrisak et al. Jul 1972 A
3695497 Dear Oct 1972 A
3695498 Dear Oct 1972 A
3729302 Heaton Apr 1973 A
3775084 Heaton Nov 1973 A
3947093 Goshima et al. Mar 1976 A
4076159 Farragher Feb 1978 A
4226607 Domken Oct 1980 A
4441008 Chan Apr 1984 A
4546231 Gresser et al. Oct 1985 A
4618056 Cutshall Oct 1986 A
4623776 Buchroeder et al. Nov 1986 A
4642439 Miller et al. Feb 1987 A
4646308 Kafka et al. Feb 1987 A
4764930 Bille et al. Aug 1988 A
4891054 Bricker et al. Jan 1990 A
4907586 Bille et al. Mar 1990 A
4918751 Pessot et al. Apr 1990 A
4929065 Hagerty et al. May 1990 A
4951457 Deal Aug 1990 A
4997250 Ortiz, Jr. Mar 1991 A
5035918 Vyas Jul 1991 A
5040182 Spinelli et al. Aug 1991 A
5104210 Tokas Apr 1992 A
5104523 Masaharu et al. Apr 1992 A
5108857 Kitayama et al. Apr 1992 A
5112722 Tsujino et al. May 1992 A
5114834 Nachshon May 1992 A
5221034 Bando Jun 1993 A
5256853 McIntyre Oct 1993 A
5265107 Delfyett Nov 1993 A
5326956 Lunney Jul 1994 A
5400350 Galvanauskas et al. Mar 1995 A
5410567 Brundage et al. Apr 1995 A
5418803 Zhiglinsky et al. May 1995 A
5434875 Rieger et al. Jul 1995 A
5436925 Lin et al. Jul 1995 A
5475197 Wrobel et al. Dec 1995 A
5521352 Lawson May 1996 A
5541774 Blankenbecler Jul 1996 A
5553093 Ramaswamy et al. Sep 1996 A
5574597 Kataoka et al. Nov 1996 A
5578229 Barnekov et al. Nov 1996 A
5586138 Yokayama Dec 1996 A
5656186 Mourou et al. Aug 1997 A
5676866 Schulte et al. Oct 1997 A
5684642 Zumoto et al. Nov 1997 A
5692703 Murphy et al. Dec 1997 A
5696782 Harter et al. Dec 1997 A
5715346 Liu Feb 1998 A
5736061 Fukada et al. Apr 1998 A
5736709 Neiheisel Apr 1998 A
5776220 Allaire et al. Jul 1998 A
5781684 Liu Jul 1998 A
5796112 Ichie Aug 1998 A
5854490 Ooaeh et al. Dec 1998 A
5854751 Di et al. Dec 1998 A
5878866 Lisec Mar 1999 A
5968441 Seki Oct 1999 A
6003418 Bezama et al. Dec 1999 A
6016223 Suzuki et al. Jan 2000 A
6016324 Rieger et al. Jan 2000 A
6027062 Bacon et al. Feb 2000 A
6033583 Musket et al. Mar 2000 A
6038055 Hansch et al. Mar 2000 A
6055829 Witzmann et al. May 2000 A
6078599 Everage et al. Jun 2000 A
6137632 Bernacki Oct 2000 A
6156030 Neev Dec 2000 A
6160835 Kwon Dec 2000 A
6185051 Chen et al. Feb 2001 B1
6186384 Sawada Feb 2001 B1
6191880 Schuster Feb 2001 B1
6210401 Lai Apr 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6259058 Hoekstra Jul 2001 B1
6259151 Morrison Jul 2001 B1
6259512 Mizouchi Jul 2001 B1
6272156 Reed et al. Aug 2001 B1
6301932 Allen et al. Oct 2001 B1
6308055 Welland et al. Oct 2001 B1
6322958 Hayashi Nov 2001 B1
6339208 Rockstroh et al. Jan 2002 B1
6373565 Kafka et al. Apr 2002 B1
6381391 Islam et al. Apr 2002 B1
6396856 Sucha et al. May 2002 B1
6407360 Choo et al. Jun 2002 B1
6438996 Cuvelier Aug 2002 B1
6445491 Sucha et al. Sep 2002 B2
6449301 Wu et al. Sep 2002 B1
6461223 Bando Oct 2002 B1
6484052 Visuri et al. Nov 2002 B1
6489589 Alexander Dec 2002 B1
6501576 Seacombe Dec 2002 B1
6501578 Bernstein et al. Dec 2002 B1
6520057 Steadman Feb 2003 B1
6552301 Herman et al. Apr 2003 B2
6573026 Aitken et al. Jun 2003 B1
6592703 Habeck et al. Jul 2003 B1
6611647 Berkey et al. Aug 2003 B2
6635849 Okawa et al. Oct 2003 B1
6635850 Amako et al. Oct 2003 B2
6720519 Liu et al. Apr 2004 B2
6729151 Thompson May 2004 B1
6729161 Miura et al. May 2004 B1
6737345 Lin et al. May 2004 B1
6744009 Xuan et al. Jun 2004 B1
6787732 Xuan et al. Sep 2004 B1
6791935 Hatano et al. Sep 2004 B2
6800237 Yamamoto et al. Oct 2004 B1
6800831 Hoetzel Oct 2004 B1
6856379 Schuster Feb 2005 B2
6885502 Schuster Apr 2005 B2
6904218 Sun et al. Jun 2005 B2
6958094 Ohmi et al. Oct 2005 B2
6992026 Fukuyo et al. Jan 2006 B2
7009138 Amako et al. Mar 2006 B2
7061583 Mulkens et al. Jun 2006 B2
7102118 Acker et al. Sep 2006 B2
7187833 Mishra Mar 2007 B2
7196841 Melzer et al. Mar 2007 B2
7259354 Pailthorp et al. Aug 2007 B2
7353829 Wachter et al. Apr 2008 B1
7402773 Nomaru Jul 2008 B2
7408616 Gruner et al. Aug 2008 B2
7408622 Fiolka et al. Aug 2008 B2
7511886 Schultz et al. Mar 2009 B2
7535634 Savchenkov et al. May 2009 B1
7555187 Bickham et al. Jun 2009 B2
7565820 Foster et al. Jul 2009 B2
7633033 Thomas et al. Dec 2009 B2
7642483 You et al. Jan 2010 B2
7649153 Haight et al. Jan 2010 B2
7726532 Gonoe Jun 2010 B2
7794904 Brueck Sep 2010 B2
7800734 Komatsuda Sep 2010 B2
7832675 Bumgarner et al. Nov 2010 B2
7901967 Komura et al. Mar 2011 B2
7920337 Perchak Apr 2011 B2
7978408 Sawabe et al. Jul 2011 B2
8035803 Fiolka Oct 2011 B2
8035882 Fanton et al. Oct 2011 B2
8035901 Abramov et al. Oct 2011 B2
8041127 Whitelaw Oct 2011 B2
8041172 Sillard et al. Oct 2011 B2
8068279 Schuster et al. Nov 2011 B2
8104385 Hayashi et al. Jan 2012 B2
8118971 Hori et al. Feb 2012 B2
8123515 Schleelein Feb 2012 B2
8132427 Brown et al. Mar 2012 B2
8144308 Muramatsu Mar 2012 B2
8158514 Krueger et al. Apr 2012 B2
8164818 Collins et al. Apr 2012 B2
8168514 Garner et al. May 2012 B2
8194170 Golub et al. Jun 2012 B2
8211259 Sato et al. Jul 2012 B2
8218929 Bickham et al. Jul 2012 B2
8237918 Totzeck et al. Aug 2012 B2
8245539 Lu et al. Aug 2012 B2
8245540 Abramov et al. Aug 2012 B2
8248600 Matousek et al. Aug 2012 B2
8259393 Fiolka et al. Sep 2012 B2
8269138 Garner et al. Sep 2012 B2
8279524 Fiolka et al. Oct 2012 B2
8283595 Fukuyo et al. Oct 2012 B2
8283695 Salcedo et al. Oct 2012 B2
8292141 Cox et al. Oct 2012 B2
8296066 Zhao et al. Oct 2012 B2
8327666 Harvey et al. Dec 2012 B2
8339578 Omura Dec 2012 B2
8341976 Dejneka et al. Jan 2013 B2
8347551 Van Der Drift Jan 2013 B2
8347651 Abramov et al. Jan 2013 B2
8358868 Iketani Jan 2013 B2
8358888 Ramachandran Jan 2013 B2
8379188 Mueller et al. Feb 2013 B2
8444905 Li et al. May 2013 B2
8444906 Lee et al. May 2013 B2
8448471 Kumatani et al. May 2013 B2
8475507 Dewey et al. Jul 2013 B2
8482717 Fiolka et al. Jul 2013 B2
8491983 Ono et al. Jul 2013 B2
8518280 Hsu et al. Aug 2013 B2
8549881 Brown et al. Oct 2013 B2
8584354 Cornejo et al. Nov 2013 B2
8584490 Garner et al. Nov 2013 B2
8592716 Abramov et al. Nov 2013 B2
8604380 Howerton et al. Dec 2013 B2
8607590 Glaesemann et al. Dec 2013 B2
8616024 Cornejo et al. Dec 2013 B2
8635857 Crosbie Jan 2014 B2
8635887 Black et al. Jan 2014 B2
8680489 Martinez et al. Mar 2014 B2
8685838 Fukuyo et al. Apr 2014 B2
8687932 Peckham et al. Apr 2014 B2
8697228 Carre et al. Apr 2014 B2
8720228 Li May 2014 B2
8724937 Barwicz et al. May 2014 B2
8826696 Brown et al. Sep 2014 B2
8842358 Bareman et al. Sep 2014 B2
8847112 Panarello et al. Sep 2014 B2
8852698 Fukumitsu Oct 2014 B2
8887529 Lu et al. Nov 2014 B2
8916798 Pluss Dec 2014 B2
8943855 Gomez et al. Feb 2015 B2
8951889 Ryu et al. Feb 2015 B2
8971053 Kariya et al. Mar 2015 B2
9028613 Kim et al. May 2015 B2
9052605 Van et al. Jun 2015 B2
9086509 Knutson Jul 2015 B2
9138913 Arai et al. Sep 2015 B2
9170500 Van et al. Oct 2015 B2
9227868 Matsumoto et al. Jan 2016 B2
9290407 Barefoot et al. Mar 2016 B2
9296066 Hosseini et al. Mar 2016 B2
9324791 Tamemoto Apr 2016 B2
9327381 Lee et al. May 2016 B2
9341912 Shrivastava et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9446590 Chen et al. Sep 2016 B2
9477037 Bickham et al. Oct 2016 B1
9481598 Bergh Nov 2016 B2
9499343 Cornelissen et al. Nov 2016 B2
9517929 Hosseini Dec 2016 B2
9517963 Marjanovic et al. Dec 2016 B2
9701581 Kangastupa et al. Jul 2017 B2
9703167 Parker et al. Jul 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9850160 Marjanovic et al. Dec 2017 B2
9873628 Haloui et al. Jan 2018 B1
9878304 Kotake et al. Jan 2018 B2
10190363 Behmke et al. Jan 2019 B2
10730783 Akarapu et al. Aug 2020 B2
20010019404 Schuster et al. Sep 2001 A1
20010027842 Curcio et al. Oct 2001 A1
20020006765 Michel et al. Jan 2002 A1
20020046997 Nam et al. Apr 2002 A1
20020082466 Han Jun 2002 A1
20020097486 Yamaguchi et al. Jul 2002 A1
20020097488 Hay et al. Jul 2002 A1
20020110639 Bruns Aug 2002 A1
20020126380 Schuster Sep 2002 A1
20020139786 Amako et al. Oct 2002 A1
20030006221 Hong et al. Jan 2003 A1
20030007772 Borrelli et al. Jan 2003 A1
20030007773 Kondo et al. Jan 2003 A1
20030038225 Mulder et al. Feb 2003 A1
20030070706 Fujioka Apr 2003 A1
20030227663 Agrawal et al. Dec 2003 A1
20040051982 Perchak Mar 2004 A1
20040075717 O'Brien et al. Apr 2004 A1
20040108467 Eurlings et al. Jun 2004 A1
20040144231 Hanada Jul 2004 A1
20040021615 Postupack et al. Nov 2004 A1
20040218882 Bickham et al. Nov 2004 A1
20040221615 Postupack et al. Nov 2004 A1
20040228593 Sun et al. Nov 2004 A1
20050024743 Camy-Peyret Feb 2005 A1
20050064707 Sinha Mar 2005 A1
20050098458 Gruetzmacher et al. May 2005 A1
20050098548 Kobayashi et al. May 2005 A1
20050115938 Sawaki et al. Jun 2005 A1
20050116938 Ito et al. Jun 2005 A1
20050205778 Kitai et al. Sep 2005 A1
20050209898 Asai et al. Sep 2005 A1
20050231651 Myers et al. Oct 2005 A1
20050274702 Deshi Dec 2005 A1
20050277270 Yoshikawa et al. Dec 2005 A1
20060011593 Fukuyo Jan 2006 A1
20060021385 Cimo et al. Feb 2006 A1
20060028706 Totzeck et al. Feb 2006 A1
20060028728 Li Feb 2006 A1
20060050261 Brotsack Mar 2006 A1
20060109874 Shiozaki et al. May 2006 A1
20060118529 Aoki et al. Jun 2006 A1
20060127679 Gulati et al. Jun 2006 A1
20060146384 Schultz et al. Jul 2006 A1
20060151450 You et al. Jul 2006 A1
20060170617 Latypov et al. Aug 2006 A1
20060213883 Eberhardt et al. Sep 2006 A1
20060227440 Glukstad Oct 2006 A1
20060266744 Nomaru Nov 2006 A1
20060289410 Morita et al. Dec 2006 A1
20060291835 Nozaki et al. Dec 2006 A1
20070021548 Hattori et al. Jan 2007 A1
20070030471 Troost et al. Feb 2007 A1
20070044606 Kang et al. Mar 2007 A1
20070045253 Jordens et al. Mar 2007 A1
20070051706 Bovatsek et al. Mar 2007 A1
20070053632 Popp Mar 2007 A1
20070068648 Hu et al. Mar 2007 A1
20070090180 Griffis et al. Apr 2007 A1
20070091977 Sohn et al. Apr 2007 A1
20070111119 Hu et al. May 2007 A1
20070111390 Komura et al. May 2007 A1
20070111480 Maruyama et al. May 2007 A1
20070119831 Kandt May 2007 A1
20070132977 Komatsuda Jun 2007 A1
20070138151 Tanaka et al. Jun 2007 A1
20070177116 Amako Aug 2007 A1
20070202619 Tamura et al. Aug 2007 A1
20070209029 Ivonin et al. Sep 2007 A1
20070228616 Bang Oct 2007 A1
20070298529 Maeda et al. Dec 2007 A1
20080000884 Sugiura et al. Jan 2008 A1
20080050584 Noguchi et al. Feb 2008 A1
20080079940 Sezerman et al. Apr 2008 A1
20080087629 Shimomura et al. Apr 2008 A1
20080099444 Misawa et al. May 2008 A1
20080158529 Hansen Jul 2008 A1
20080165925 Singer et al. Jul 2008 A1
20080190981 Okajima et al. Aug 2008 A1
20080239268 Mulder et al. Oct 2008 A1
20080309902 Rosenbluth Dec 2008 A1
20080310465 Achtenhagen Dec 2008 A1
20080314879 Bruland et al. Dec 2008 A1
20080318028 Winstanley et al. Dec 2008 A1
20090013724 Koyo et al. Jan 2009 A1
20090032510 Ando et al. Feb 2009 A1
20090033902 Mulder et al. Feb 2009 A1
20090050661 Na et al. Feb 2009 A1
20090060437 Fini et al. Mar 2009 A1
20090091731 Ossmann et al. Apr 2009 A1
20090104721 Hirakata et al. Apr 2009 A1
20090157341 Cheung Jun 2009 A1
20090170286 Tsukamoto et al. Jul 2009 A1
20090176034 Ruuttu et al. Jul 2009 A1
20090183764 Meyer Jul 2009 A1
20090184849 Nasiri et al. Jul 2009 A1
20090188543 Bann Jul 2009 A1
20090199694 Uh et al. Aug 2009 A1
20090212033 Beck Aug 2009 A1
20090242528 Howerton et al. Oct 2009 A1
20090250446 Sakamoto Oct 2009 A1
20090293910 Ball et al. Dec 2009 A1
20090294419 Abramov et al. Dec 2009 A1
20090294422 Lubatschowski et al. Dec 2009 A1
20090323160 Egerton et al. Dec 2009 A1
20090323162 Fanton et al. Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20090324903 Rumsby Dec 2009 A1
20100020304 Soer et al. Jan 2010 A1
20100024865 Shah et al. Feb 2010 A1
20100025387 Arai et al. Feb 2010 A1
20100027951 Bookbinder et al. Feb 2010 A1
20100029460 Shojiya et al. Feb 2010 A1
20100032087 Takahashi et al. Feb 2010 A1
20100038349 Ke et al. Feb 2010 A1
20100046761 Henn et al. Feb 2010 A1
20100086741 Bovatsek et al. Apr 2010 A1
20100089631 Sakaguchi et al. Apr 2010 A1
20100089682 Martini et al. Apr 2010 A1
20100089882 Tamura Apr 2010 A1
20100102042 Garner et al. Apr 2010 A1
20100129603 Blick et al. May 2010 A1
20100145620 Georgi et al. Jun 2010 A1
20100147813 Lei et al. Jun 2010 A1
20100206008 Harvey et al. Aug 2010 A1
20100252538 Zeygerman Oct 2010 A1
20100252540 Lei et al. Oct 2010 A1
20100252959 Lei et al. Oct 2010 A1
20100276505 Smith Nov 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100287991 Brown et al. Nov 2010 A1
20100291353 Dejneka et al. Nov 2010 A1
20100320179 Morita et al. Dec 2010 A1
20100326138 Kumatani et al. Dec 2010 A1
20100332087 Claffee et al. Dec 2010 A1
20110017716 Rumsby Jan 2011 A1
20110023298 Chujo et al. Feb 2011 A1
20110037149 Fukuyo et al. Feb 2011 A1
20110049764 Lee et al. Mar 2011 A1
20110049765 Lei et al. Mar 2011 A1
20110088324 Wessel Apr 2011 A1
20110094267 Aniolek et al. Apr 2011 A1
20110100401 Fiorentini May 2011 A1
20110111179 Blick et al. May 2011 A1
20110127697 Milne Jun 2011 A1
20110132581 Moss Jun 2011 A1
20110132881 Liu Jun 2011 A1
20110136303 Lee Jun 2011 A1
20110139760 Shah et al. Jun 2011 A1
20110143470 Lee Jun 2011 A1
20110177325 Tomamoto et al. Jul 2011 A1
20110183116 Hung et al. Jul 2011 A1
20110191024 Deluca Aug 2011 A1
20110210105 Romashko et al. Sep 2011 A1
20110238308 Miller et al. Sep 2011 A1
20110240476 Wang et al. Oct 2011 A1
20110240611 Sandstrom et al. Oct 2011 A1
20110240617 Cheon et al. Oct 2011 A1
20110261429 Sbar et al. Oct 2011 A1
20110277507 Lu et al. Nov 2011 A1
20110300691 Sakamoto et al. Dec 2011 A1
20110318555 Bookbinder et al. Dec 2011 A1
20120017642 Teranishi et al. Jan 2012 A1
20120026573 Collins et al. Feb 2012 A1
20120047951 Dannoux et al. Mar 2012 A1
20120047956 Li Mar 2012 A1
20120047957 Dannoux et al. Mar 2012 A1
20120048604 Cornejo et al. Mar 2012 A1
20120061440 Roell Mar 2012 A1
20120064306 Kang et al. Mar 2012 A1
20120067858 Kangastupa et al. Mar 2012 A1
20120103018 Lu et al. May 2012 A1
20120106117 Sundaram et al. May 2012 A1
20120111310 Ryu et al. May 2012 A1
20120125588 Nam et al. May 2012 A1
20120131961 Dannoux et al. May 2012 A1
20120131962 Mitsugi May 2012 A1
20120135195 Glaesemann et al. May 2012 A1
20120135607 Shimoi et al. May 2012 A1
20120135608 Shimoi et al. May 2012 A1
20120145331 Gomez et al. Jun 2012 A1
20120147449 Bhatnagar et al. Jun 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120196454 Shah et al. Aug 2012 A1
20120205356 Pluss Aug 2012 A1
20120211923 Garner et al. Aug 2012 A1
20120214004 Hashimoto et al. Aug 2012 A1
20120216570 Abramov et al. Aug 2012 A1
20120229787 Van et al. Sep 2012 A1
20120234049 Bolton Sep 2012 A1
20120234807 Sercel et al. Sep 2012 A1
20120237731 Boegli et al. Sep 2012 A1
20120255935 Kakui et al. Oct 2012 A1
20120262689 Van et al. Oct 2012 A1
20120293784 Xalter et al. Nov 2012 A1
20120297568 Spezzani Nov 2012 A1
20120299219 Shimoi et al. Nov 2012 A1
20120302139 Darcangelo et al. Nov 2012 A1
20120320458 Knutson Dec 2012 A1
20120324950 Dale et al. Dec 2012 A1
20120327499 Parker et al. Dec 2012 A1
20130019637 Sol et al. Jan 2013 A1
20130031879 Yoshikane et al. Feb 2013 A1
20130034688 Koike et al. Feb 2013 A1
20130044371 Rupp et al. Feb 2013 A1
20130047671 Kohli Feb 2013 A1
20130056450 Lissotschenko et al. Mar 2013 A1
20130061636 Imai et al. Mar 2013 A1
20130068736 Mielke et al. Mar 2013 A1
20130071079 Peckham et al. Mar 2013 A1
20130071080 Peckham et al. Mar 2013 A1
20130071081 Peckham et al. Mar 2013 A1
20130075480 Yokogi et al. Mar 2013 A1
20130078891 Lee Mar 2013 A1
20130091897 Fujii Apr 2013 A1
20130122264 Fujii et al. May 2013 A1
20130126573 Hosseini et al. May 2013 A1
20130126751 Mizoguchi et al. May 2013 A1
20130129947 Harvey et al. May 2013 A1
20130133367 Abramov et al. May 2013 A1
20130136408 Bookbinder et al. May 2013 A1
20130216573 Hosseini et al. May 2013 A1
20130139708 Hotta Jun 2013 A1
20130143416 Norval Jun 2013 A1
20130149434 Oh et al. Jun 2013 A1
20130149494 Koike et al. Jun 2013 A1
20130167590 Teranishi et al. Jul 2013 A1
20130171425 Wang et al. Jul 2013 A1
20130174607 Wootton et al. Jul 2013 A1
20130174610 Teranishi et al. Jul 2013 A1
20130177033 Muro et al. Jul 2013 A1
20130180285 Kariya Jul 2013 A1
20130180665 Gomez et al. Jul 2013 A2
20130189806 Hoshino Jul 2013 A1
20130192305 Black et al. Aug 2013 A1
20130209731 Nattermann et al. Aug 2013 A1
20130210245 Jackl Aug 2013 A1
20130220982 Thomas et al. Aug 2013 A1
20130221053 Zhang Aug 2013 A1
20130222877 Greer et al. Aug 2013 A1
20130224439 Zhang Aug 2013 A1
20130228918 Chen et al. Sep 2013 A1
20130247615 Boek et al. Sep 2013 A1
20130248504 Kusuda Sep 2013 A1
20130266757 Giron et al. Oct 2013 A1
20130270240 Kondo Oct 2013 A1
20130280495 Matsumoto Oct 2013 A1
20130286458 Lamine et al. Oct 2013 A1
20130288010 Akarapu et al. Oct 2013 A1
20130291598 Saito et al. Nov 2013 A1
20130312460 Kunishi et al. Nov 2013 A1
20130323469 Abramov Dec 2013 A1
20130334185 Nomaru Dec 2013 A1
20130340480 Nattermann et al. Dec 2013 A1
20130344684 Bowden Dec 2013 A1
20140023087 Czompo Jan 2014 A1
20140027951 Srinivas et al. Jan 2014 A1
20140034730 Lee Feb 2014 A1
20140036338 Bareman et al. Feb 2014 A1
20140042202 Lee Feb 2014 A1
20140047957 Wu Feb 2014 A1
20140076869 Lee et al. Mar 2014 A1
20140083986 Zhang et al. Mar 2014 A1
20140102146 Saito et al. Apr 2014 A1
20140110040 Cok Apr 2014 A1
20140113797 Yamada et al. Apr 2014 A1
20140133119 Kariya et al. May 2014 A1
20140141192 Fernando et al. May 2014 A1
20140141217 Gulati et al. May 2014 A1
20140147623 Shorey et al. May 2014 A1
20140147624 Streltsov et al. May 2014 A1
20140165652 Saito Jun 2014 A1
20140174131 Saito et al. Jun 2014 A1
20140182125 Rozbicki et al. Jul 2014 A1
20140199519 Schillinger Jul 2014 A1
20140216108 Wiegel et al. Aug 2014 A1
20140238962 Nawrodt et al. Aug 2014 A1
20140239034 Cleary et al. Aug 2014 A1
20140239552 Srinivas et al. Aug 2014 A1
20140290310 Green Oct 2014 A1
20140291122 Bando Oct 2014 A1
20140320947 Egerton et al. Oct 2014 A1
20140333929 Sung et al. Nov 2014 A1
20140339207 Sugiyama et al. Nov 2014 A1
20140340730 Bergh et al. Nov 2014 A1
20140352400 Barrilado et al. Dec 2014 A1
20140361463 Desimone et al. Dec 2014 A1
20150014891 Amatucci et al. Jan 2015 A1
20150034612 Hosseini et al. Feb 2015 A1
20150038313 Hosseini Feb 2015 A1
20150044445 Garner et al. Feb 2015 A1
20150059986 Komatsu Mar 2015 A1
20150060402 Burkett et al. Mar 2015 A1
20150075221 Kawaguchi et al. Mar 2015 A1
20150075222 Mader Mar 2015 A1
20150110442 Zimmel et al. Apr 2015 A1
20150118522 Hosseini Apr 2015 A1
20150121960 Hosseini May 2015 A1
20150122656 Hosseini May 2015 A1
20150136743 Hosseini May 2015 A1
20150140241 Hosseini May 2015 A1
20150140735 Hosseini May 2015 A1
20150151380 Hosseini Jun 2015 A1
20150158120 Courvoisier et al. Jun 2015 A1
20150165396 Mattson et al. Jun 2015 A1
20150165548 Marjanovic Jun 2015 A1
20150165560 Hackert Jun 2015 A1
20150165561 Le et al. Jun 2015 A1
20150165562 Marjanovic Jun 2015 A1
20150165563 Manley Jun 2015 A1
20150166391 Marjanovic Jun 2015 A1
20150166393 Marjanovic Jun 2015 A1
20150166394 Marjanovic Jun 2015 A1
20150166395 Marjanovic Jun 2015 A1
20150166396 Marjanovic et al. Jun 2015 A1
20150166397 Marjanovic Jun 2015 A1
20150183679 Saito Jul 2015 A1
20150209922 Yoshikawa Jul 2015 A1
20150232369 Marjanovic Aug 2015 A1
20150299018 Bhuyan et al. Oct 2015 A1
20150311058 Antsiferov et al. Oct 2015 A1
20150350991 Sayadi et al. Dec 2015 A1
20150352671 Darzi Dec 2015 A1
20150360991 Grundmueller et al. Dec 2015 A1
20150362817 Patterson et al. Dec 2015 A1
20150362818 Greer Dec 2015 A1
20150367442 Bovatsek et al. Dec 2015 A1
20160008927 Grundmueller et al. Jan 2016 A1
20160009066 Nieber Jan 2016 A1
20160009585 Bookbinder et al. Jan 2016 A1
20160016257 Hosseini Jan 2016 A1
20160023922 Addiego et al. Jan 2016 A1
20160031737 Hoppe et al. Feb 2016 A1
20160031745 Ortner et al. Feb 2016 A1
20160039044 Kawaguchi Feb 2016 A1
20160059359 Krueger et al. Mar 2016 A1
20160060156 Krueger et al. Mar 2016 A1
20160097960 Dixit et al. Apr 2016 A1
20160111380 Sundaram et al. Apr 2016 A1
20160138328 Behmke et al. May 2016 A1
20160152516 Bazemore et al. Jun 2016 A1
20160154284 Sano Jun 2016 A1
20160159679 West Jun 2016 A1
20160168396 Letocart et al. Jun 2016 A1
20160279895 Marjanovic et al. Sep 2016 A1
20160280580 Bohme Sep 2016 A1
20160282521 Uchiyama et al. Sep 2016 A1
20160290791 Buono et al. Oct 2016 A1
20160311717 Nieber et al. Oct 2016 A1
20160368100 Marjanovic et al. Dec 2016 A1
20170002601 Bergh et al. Jan 2017 A1
20170008791 Kim et al. Jan 2017 A1
20170052381 Huang Feb 2017 A1
20170169847 Tamaki Jun 2017 A1
20170183168 Jia Jun 2017 A1
20170197868 Gupta Jul 2017 A1
20170225996 Bookbinder et al. Aug 2017 A1
20170229318 Tsunetomo et al. Aug 2017 A1
20170252859 Kumkar et al. Sep 2017 A1
20170355634 Dumenil Dec 2017 A1
20170368638 Tayebati Dec 2017 A1
20180029919 Schnitzler et al. Feb 2018 A1
20180029920 Marjanovic et al. Feb 2018 A1
20180062342 Comstock et al. Mar 2018 A1
20180118602 Hackert May 2018 A1
20180133837 Greenberg et al. May 2018 A1
20180134606 Wagner et al. May 2018 A1
20180186677 Ito et al. Jul 2018 A1
20180186678 Boeker et al. Jul 2018 A1
20180297887 Spier et al. Oct 2018 A1
Foreign Referenced Citations (382)
Number Date Country
1259924 Jul 2000 CN
2388062 Jul 2000 CN
1473087 Feb 2004 CN
1517313 Aug 2004 CN
1573364 Feb 2005 CN
1619778 May 2005 CN
1735568 Feb 2006 CN
1283409 Nov 2006 CN
1890074 Jan 2007 CN
1920632 Feb 2007 CN
1930097 Mar 2007 CN
101031383 Sep 2007 CN
101043936 Sep 2007 CN
101048255 Oct 2007 CN
101386466 Mar 2009 CN
101502914 Aug 2009 CN
101595554 Dec 2009 CN
101610870 Dec 2009 CN
201357287 Dec 2009 CN
101622722 Jan 2010 CN
101637849 Feb 2010 CN
201471092 May 2010 CN
101862907 Oct 2010 CN
101965242 Feb 2011 CN
101980982 Feb 2011 CN
102046545 May 2011 CN
102060437 May 2011 CN
102105256 Jun 2011 CN
102248302 Nov 2011 CN
102272355 Dec 2011 CN
102326232 Jan 2012 CN
102343631 Feb 2012 CN
102356049 Feb 2012 CN
102356050 Feb 2012 CN
102574246 Jul 2012 CN
102596830 Jul 2012 CN
102642092 Aug 2012 CN
102649199 Aug 2012 CN
102672355 Sep 2012 CN
102674709 Sep 2012 CN
102741012 Oct 2012 CN
102898014 Jan 2013 CN
102916081 Feb 2013 CN
102923939 Feb 2013 CN
102962583 Mar 2013 CN
103013374 Apr 2013 CN
103079747 May 2013 CN
103086591 May 2013 CN
103143841 Jun 2013 CN
103159401 Jun 2013 CN
203021443 Jun 2013 CN
103237771 Aug 2013 CN
103273195 Sep 2013 CN
103316990 Sep 2013 CN
103329035 Sep 2013 CN
103339559 Oct 2013 CN
103359947 Oct 2013 CN
103359948 Oct 2013 CN
103531414 Jan 2014 CN
10346027 Apr 2014 CN
203509350 Apr 2014 CN
103817434 May 2014 CN
103831539 Jun 2014 CN
104108870 Oct 2014 CN
104344202 Feb 2015 CN
204211638 Mar 2015 CN
105081564 Nov 2015 CN
105164581 Dec 2015 CN
105209218 Dec 2015 CN
105246850 Jan 2016 CN
103224117 Feb 2016 CN
105392593 Mar 2016 CN
105517969 Apr 2016 CN
205328860 Jun 2016 CN
106007349 Oct 2016 CN
1020448 Dec 1957 DE
2231330 Jan 1974 DE
10322376 Dec 2004 DE
102006042280 Jun 2007 DE
10200635555 Jan 2008 DE
102011000768 Aug 2012 DE
102012010635 Nov 2013 DE
102012110971 May 2014 DE
102013103370 Oct 2014 DE
102013223637 May 2015 DE
102014213775 Jan 2016 DE
102014116958 May 2016 DE
102016102768 Aug 2017 DE
004167 Feb 2004 EA
0270897 Jun 1988 EP
0609978 Aug 1994 EP
0656241 Jun 1995 EP
0938946 Sep 1999 EP
0949541 Oct 1999 EP
1043110 Oct 2000 EP
1306196 May 2003 EP
1159104 Aug 2004 EP
1609559 Dec 2005 EP
1990125 Nov 2008 EP
2105239 Sep 2009 EP
2133170 Dec 2009 EP
2202545 Jun 2010 EP
2258512 Dec 2010 EP
2398746 Dec 2011 EP
2574983 Apr 2013 EP
2754524 Jul 2014 EP
2781296 Sep 2014 EP
2783784 Oct 2014 EP
2859984 Apr 2015 EP
3311947 Apr 2018 EP
298294 Oct 2013 FR
0768515 Feb 1957 GB
1242172 Aug 1971 GB
2481190 Dec 2011 GB
53-018756 Feb 1978 JP
61-027212 Feb 1986 JP
61-074794 Apr 1986 JP
62-046930 Feb 1987 JP
63-192561 Aug 1988 JP
64-077001 Mar 1989 JP
01-179770 Jul 1989 JP
1179770 Jul 1989 JP
05-274085 Oct 1993 JP
05-300544 Nov 1993 JP
06-082720 Mar 1994 JP
06-318756 Nov 1994 JP
6318756 Nov 1994 JP
08-184581 Jul 1996 JP
09-109243 Apr 1997 JP
09106243 Apr 1997 JP
11-197498 Jul 1999 JP
11269683 Oct 1999 JP
11-330597 Nov 1999 JP
11-347861 Dec 1999 JP
11347758 Dec 1999 JP
2000-225485 Aug 2000 JP
2000-327349 Nov 2000 JP
2001-130921 May 2001 JP
2001138083 May 2001 JP
2001-179473 Jul 2001 JP
2002-045985 Feb 2002 JP
2002-205181 Jul 2002 JP
2002-210730 Jul 2002 JP
2002228818 Aug 2002 JP
2002-321081 Nov 2002 JP
2003-025085 Jan 2003 JP
2003-088985 Mar 2003 JP
2003062756 Mar 2003 JP
2003114400 Apr 2003 JP
2003154517 May 2003 JP
2003-181668 Jul 2003 JP
2003238178 Aug 2003 JP
3445250 Sep 2003 JP
2003-340579 Dec 2003 JP
2004-182530 Jul 2004 JP
2004209675 Jul 2004 JP
2004-348137 Dec 2004 JP
2005-000952 Jan 2005 JP
2005104819 Apr 2005 JP
2005-135964 May 2005 JP
2005-144487 Jun 2005 JP
2005-179154 Jul 2005 JP
2005-219960 Aug 2005 JP
2005205440 Aug 2005 JP
2005-263623 Sep 2005 JP
2005288503 Oct 2005 JP
2006-108478 Apr 2006 JP
3775250 May 2006 JP
3775410 May 2006 JP
2006130691 May 2006 JP
2006-150385 Jun 2006 JP
2006-182009 Jul 2006 JP
2006-240948 Sep 2006 JP
3823108 Sep 2006 JP
2006248885 Sep 2006 JP
2006-327711 Dec 2006 JP
2007021548 Feb 2007 JP
2007-196277 Aug 2007 JP
2007253203 Oct 2007 JP
2008-018547 Jan 2008 JP
2008-132616 Jun 2008 JP
2008-168327 Jul 2008 JP
2008-522950 Jul 2008 JP
2008-266046 Nov 2008 JP
2008-288577 Nov 2008 JP
2009056482 Mar 2009 JP
2009-082958 Apr 2009 JP
2009-084089 Apr 2009 JP
2009-126779 Jun 2009 JP
2009-142886 Jul 2009 JP
2009-172633 Aug 2009 JP
2009-178725 Aug 2009 JP
2009-255114 Nov 2009 JP
2009-269057 Nov 2009 JP
2010-017990 Jan 2010 JP
2010-042424 Feb 2010 JP
4418282 Feb 2010 JP
2010046761 Mar 2010 JP
04592855 Dec 2010 JP
2011-011212 Jan 2011 JP
2011-037707 Feb 2011 JP
2011049398 Mar 2011 JP
2011-512259 Apr 2011 JP
04672689 Apr 2011 JP
2011-517299 Jun 2011 JP
2011-517622 Jun 2011 JP
2011-138083 Jul 2011 JP
2011-520748 Jul 2011 JP
2011-147943 Aug 2011 JP
2011-171334 Sep 2011 JP
2011-240291 Dec 2011 JP
04880820 Feb 2012 JP
2012024782 Feb 2012 JP
2012031018 Feb 2012 JP
2012-517957 Aug 2012 JP
2012159749 Aug 2012 JP
2012-521889 Sep 2012 JP
2012187618 Oct 2012 JP
2012-232894 Nov 2012 JP
2012-528772 Nov 2012 JP
2013007842 Jan 2013 JP
2013031879 Feb 2013 JP
2013043808 Mar 2013 JP
2013-063863 Apr 2013 JP
2013075802 Apr 2013 JP
2013091578 May 2013 JP
2013-121908 Jun 2013 JP
2013-521131 Jun 2013 JP
2013-132664 Jul 2013 JP
2013-136075 Jul 2013 JP
2013-144613 Jul 2013 JP
2013-528492 Jul 2013 JP
2013-150990 Aug 2013 JP
2013-168445 Aug 2013 JP
05274085 Aug 2013 JP
2013-536081 Sep 2013 JP
05300544 Sep 2013 JP
2013187247 Sep 2013 JP
2013203630 Oct 2013 JP
2013203631 Oct 2013 JP
2013223886 Oct 2013 JP
2013-245153 Dec 2013 JP
2014-001102 Jan 2014 JP
2014-037006 Feb 2014 JP
2014-104484 Jun 2014 JP
2014-117707 Jun 2014 JP
2014-156289 Aug 2014 JP
2015-030040 Feb 2015 JP
2015-076115 Apr 2015 JP
2015-091606 May 2015 JP
2015-129076 Jul 2015 JP
2015-519722 Jul 2015 JP
2015-536896 Dec 2015 JP
2015-543336 Feb 2016 JP
2016-021077 Feb 2016 JP
2016-513024 May 2016 JP
2016-515085 May 2016 JP
6061193 Jan 2017 JP
10-2002-0031573 May 2002 KR
2009057161 Jun 2009 KR
10-2009-0107417 Oct 2009 KR
2010-0120297 Nov 2010 KR
10-2011-0001948 Jan 2011 KR
1020621 Mar 2011 KR
10-2011-0120862 Nov 2011 KR
2011-0121637 Nov 2011 KR
10-2012-0000073 Jan 2012 KR
2012015366 Feb 2012 KR
10-1120471 Mar 2012 KR
2012074508 Jul 2012 KR
2012-0102675 Sep 2012 KR
2013-0031377 Mar 2013 KR
2013031380 Mar 2013 KR
10-1259349 Apr 2013 KR
1269474 May 2013 KR
10-2013-0075651 Jul 2013 KR
2013-0079395 Jul 2013 KR
10-2013-0111269 Oct 2013 KR
2013124646 Nov 2013 KR
10-2013-0135873 Dec 2013 KR
10-2013-0140561 Dec 2013 KR
1344368 Dec 2013 KR
2014022980 Feb 2014 KR
2014022981 Feb 2014 KR
1020140064220 May 2014 KR
10-2014-0112652 Sep 2014 KR
10-2015-0009153 Jan 2015 KR
2015-0016176 Feb 2015 KR
2017998 Jun 2018 NL
480550 Mar 2002 TW
201041027 Nov 2010 TW
201107253 Mar 2011 TW
201139025 Nov 2011 TW
I362370 Apr 2012 TW
201226345 Jul 2012 TW
201311592 Mar 2013 TW
201331136 Aug 2013 TW
201339111 Oct 2013 TW
201433550 Sep 2014 TW
201436968 Oct 2014 TW
I468354 Jan 2015 TW
I520804 Feb 2016 TW
201612615 Apr 2016 TW
9821154 May 1998 WO
1999029243 Jun 1999 WO
1999063900 Dec 1999 WO
0239063 May 2002 WO
2003007370 Jan 2003 WO
2004110693 Dec 2004 WO
2005063645 Jul 2005 WO
2006017583 Feb 2006 WO
2006073098 Jul 2006 WO
2007094160 Aug 2007 WO
2007119740 Oct 2007 WO
2008012186 Jan 2008 WO
2008049389 May 2008 WO
2008080182 Jul 2008 WO
2008102848 Aug 2008 WO
2008108332 Sep 2008 WO
2008126742 Oct 2008 WO
2008128612 Oct 2008 WO
2009012913 Jan 2009 WO
2009114372 Sep 2009 WO
2009114375 Sep 2009 WO
2009119694 Oct 2009 WO
2010035736 Apr 2010 WO
2010096359 Aug 2010 WO
2010111609 Sep 2010 WO
2010129459 Nov 2010 WO
2011025908 Mar 2011 WO
2011056781 May 2011 WO
2012006736 Jan 2012 WO
2012075072 Jun 2012 WO
2012166753 Jun 2012 WO
2012108052 Aug 2012 WO
2013016157 Jan 2013 WO
2013022148 Feb 2013 WO
2013043173 Mar 2013 WO
2013084877 Jun 2013 WO
2013084879 Jun 2013 WO
2013138802 Sep 2013 WO
2013150990 Oct 2013 WO
2013153195 Oct 2013 WO
2014010490 Jan 2014 WO
2014012125 Jan 2014 WO
2014028022 Feb 2014 WO
2014058663 Apr 2014 WO
2014075995 May 2014 WO
2014064492 May 2014 WO
2014079478 May 2014 WO
2014079570 May 2014 WO
2014085663 Jun 2014 WO
2014111385 Jul 2014 WO
2014111794 Jul 2014 WO
2014121261 Aug 2014 WO
2014132493 Sep 2014 WO
2014144322 Sep 2014 WO
2014161534 Oct 2014 WO
2014161535 Oct 2014 WO
2015077113 May 2015 WO
2015094898 Jun 2015 WO
2015095014 Jun 2015 WO
2015095088 Jun 2015 WO
2015095090 Jun 2015 WO
2015095146 Jun 2015 WO
2015095151 Jun 2015 WO
2015114032 Aug 2015 WO
2015128833 Sep 2015 WO
2015132008 Sep 2015 WO
2015127583 Sep 2015 WO
2016007843 Jan 2016 WO
2016010991 Jan 2016 WO
2016005455 Jan 2016 WO
2016010954 Jan 2016 WO
2016079275 May 2016 WO
2016089799 Jun 2016 WO
2016100954 Jun 2016 WO
2016154284 Sep 2016 WO
2017009149 Jan 2017 WO
2017079570 May 2017 WO
2017091529 Jun 2017 WO
2017093393 Jun 2017 WO
Non-Patent Literature Citations (122)
Entry
Unichains, Engineering Manual: Innovative Belt & Chain solutions for every industry and application, available publically at least as of Jun. 1, 2016 as evidenced at the following hyperlink: https://web.archive.org/web/20160601OOOOOO*/http://www.unichains.com/.
European Patent Application No. 20207645.1 Search Report and Search Opinion dated Jun. 14, 2021; 8 Pages; European Patent Office.
ICNIRP, Infrared Radiation, https://www.icnirp.org/en/frequencies/infrared/index.html#:˜:text=Wavelength, accessed Apr. 7, 2021 (Year: 2014).
Liu,Xiuwen, “Graphical Audio-Visual Technology Tips”, Apr. 30, 2006, pp. 58-59. (Original Document Only).
Tian e al., “Development status and Prospects of TFT-LCD Substrate Glass Chemical Composition”, vol. 29, No. 6, 2010, pp. 1348-1362 (English Abstract Submitted).
“Aviation Manufacturing Technology”; Beijing Aviation Manufacturing Engineering Research Institute Aviation Industry Press; (2013) p. 147.
Amended claims 1 , 2 Amended Claims (Nov. 21. 2018) GMvp4 p. 1.
Analyse of claims 1-11 GMvP7 p. 1.
Betriebsanleitung TruMicro Series 5000, “Ausgabe May 2008 Betriebsanleitung TruMicro Series 5000_Anlage E2a-1.pdf”.
Betriebsanleitung; TruMicro 5000; Aug. 2011; pp. 1-4.
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc.
Case study: Simulation einer Beschneidung des Femfelds eines Bessel-GauB-Strahls GMvP6 p. 1.
Claim 1—published on Nov. 20, 2019 EP947: Anspruch 1—erteilt am 20. Nov. 2019 GMvp5 p. 1.
D5 Claims GMvP2 p. 1.
D6 Amended claim 1 EP947: Anspruch 1—geandert am 21. Nov. 2018 GMvp3 p. 1.
EagleEtch; TheAnti-glare Glass for Technical Display Applications; Glass and Polymer Technologies; pp. 1-8; EuropTec USA Inc.
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America.
European Patent Application No. 17794864.3 Communication under Rule 71(3) EPC dated Jul. 15, 2020; 6 Pages; European Patent Office.
European Patent Application No. 17794864.3 Office Action dated Jan. 30, 2020; 3 Pages; European Patent Office.
Faccio et al. “Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption” Optics Express 16(11) 2008, pp. 8213-8218.
Flamm et al., “Higher-order Bessel-like Beams for Optimized Ultrafast Processing of Transparent Materials” GMvP 19.
Flamm et al., “Higher-order Bessel-like Beams for Optimized Ultrafast Processing of Transparent Materials” GMvP 20.
Gollier et al., U.S. Appl. No. 62/024,122, “Systems and Methods for Processing Transparent Materials Using Adjustable Laser Beam Focal Lines”, filed Jul. 14, 2014., U.S. Appl. No. 62/024,122.
GT ASF Grown Sapphire Cover and Touch Screen Material; wvvw.gtat.com, 2012; pp. 1-2; GTAT Corporation.
High aspect ratio machining . . . Anlage E8-1.pdf.
Jonas Weiss, et al., “Optical Interconnects for Disaggregated Resources in Future Datacenters”, ECOC 2014, Cannes-France, 3 pgs.
Kerr. “Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical Analysis” Physical Review A., 4(3) 1971, pp. 1196-1218.
Merkmalsgliederung Patentanspruch 1 des Streitpatents, “Merkmalsgliederung Patentanspruch 1 _Anlage E15-1.pd1”.
Merkmalsgliederung Patentanspruch 12 des Streitpatents,“Merkmalsgliederung Patentanspruch 12 _Anlage E16-1.pdf”.
Norm: DI N EN ISO 11146-2, 2005 DIN EN ISO 11146-2 May 2, 2005 GMvP 21 pages.
Norm: DIN EN ISO 11146-1, 2005 GMvP DIN EN ISO 11146:1999-09 Apr. 1, 2005 GMvP 23 pages.
Norm: ISO/TR 11146-3 , Technical Report First edition GMvP Norm-TR 1 Pages.
Polesana (Polesana, P., Dubietis, A., Porras, A. Kucinskas, E. Faccio, D. Couairon, A. and DiTrapani, P.,, “Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity”, Physical Review E 73, 056612 (2006)).
Product Data Sheet for Corning Eagle XG Slim Glass, Issued Aug. 2013; 2 Pages.
Product data sheet for Corning Eagle XR glass substrate, issued Jan. 2006 (Year: 2006).
Produktbeschreibung Pharos Laser vom Apr. 18, 2011, “Pharos_2011 Anlage E 1 a-1. pdf”.
U.S. Appl. No. 62/208,282, filed Aug. 21, 2015.
Sukumaran, “Design, Fabrication, and Characterization of Ultrathin 3-D Glass Interposers with Through-Package-Vias at Same Pitch as TSVs in Silicon.” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 5: 786-795, (2014.).
Japanese Patent Application No. 2019-521647, Office Action dated Jul. 16, 2021, 7 pages (4 pages of English Translation and 3 pages of Original Document), Japanese Patent Office.
Tsai et al. ,“Internal modification for cutting transparent glass using femtosecond Bessel beams”, Optical Engineering, Soc. of Photo-optical Instrumentation Engineering, Bellingham, vol. 53, May 2014, p. 51503.
Chinese Patent Application No. 201780065972.0, Office Action dated Jun. 2, 2021; 14 pages (English Translation only); Chinese Patent Office.
McGloin et al.“Bessel beams: diffraction in a new light” Contemporary Physics, vol. 46 No. 1 (2005) pp. 15-28.
Merola et al. “Characterization of Bessel beams generated by polymeric microaxicons” Meas. Sci. Technol. 23 (2012) 10 pgs.
Mirkhalaf, M. et al., Overcoming the brittleness of glass through bio-inspiration and micro-achitecture, Nature Communications, 5:3166/ncomm4166(2014).
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-ID-132159, Sep. 1998, pp. 1-38.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24.
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584.
Romero et al. “Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings” J. Opt. Soc. Am. A/vol. 24 No. 8 (2007) pp. 2296-2312.
Salleo A et al., Machining of transparent materials using IR and UV nanosecond laser pulses, Appl. Physics A 71, 601-608, 2000.
Serafetinides et al., “Polymer ablation by ultra-short pulsed lasers” Proceedings of SPIE vol. 3885 (2000) http://proceedings.spiedigitallibrary.org/.
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56.
Shah et al. “Micromachining with a high repetition rate femtosecond fiber laser”, Journal of Laser Micro/Nanoengineering vol. 3 No. 3 (2008) pp. 157-162.
Shealy et al. “Geometric optics-based design of laser beam shapers”,Opt. Eng. 42(11), 3123-3138 (2003), doi:10.1117/1.1617311.
Stoian et al. “Spatial and temporal laser pulse design for material processing on ultrafast scales” Applied Physics A (2014) 114, p. 119-127.
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses” Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224.
Thiele, “Relation between catalytic activity and size of particle” Industrial and Egineering Chemistry, vol. 31 No. 7, pp. 916-920, Published: Jul. 1939.
Toytman et al. “Optical breakdown in transparent media with adjustable axial length and location”, Optics Express vol. 18 No. 24, 24688-24698 (2010).
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274.
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997).
Velpula et al.. “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams”, Proc. Of SPIE vol. 8967 896711-1 (2014).
Wang et al, “Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation”, Biomicrofluidics 6, 012820 (2012).
Wu et al. “Optimal orientation of the cutting head for enhancing smoothness movement in three-dimensional laser cutting” (2013) Zhongguo Jiguang/Chinese Journal of Lasers, 40 (1), art. No. 0103005.
Xu et al. “Optimization of 3D laser cutting head orientation based on the minimum energy consumption” (2014) International Journal of Advanced Manufacturing Technology, 74 (9-12), pp. 1283-1291.
Yan et al. “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes” Optics Letters vol. 37 No. 16 (2012) pp. 3294-3296.
Yoshino et al., “Micromachining with a high repetition rate femtosecond fiber laser”; JLMN-Journal of Laser Micro/Nanoengineering vol. 3, No. 3 (2008), pp. 157-162.
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10.
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364.
“What is the difference between Ra and RMS?”; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016.
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014.
“PHAROS High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2.
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1-4, Aug. 2011.
Abakians et al.“Evaporative Cutting of a Semitransparent Body With a Moving CW Laser”, J. Heat Transfer 110(4a), 924-930 (Nov. 1, 1988) (7 pages) doi:10.1115/1.3250594.
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054.
Ahmed et al. “Display glass cutting by femtosecond laser induced single shot periodic void array” Applied Physics A: Materials Science and Proccessing vol. 93 No. 1 (2008) pp. 189-192.
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657.
Bagchi et al. “Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces” Applied Physics B 88 (2007) p. 167-173.
Bhuyan et al. “Laser micro- and nanostructuring using femtosecond Bessel beams”, Eur. Phys. J. Special Topics 199 (2011) p. 101-110.
Bhuyan et al. “Single shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams” Applied Physics Letters 104 (2014) 021107.
Bhuyan et al. “Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass” Proc. Of SPIE vol. 7728 77281V-1, published Jun. 2010.
Bhuyan et al., “Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation” by IEEE (2011).
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419.
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574.
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf; archived on Oct. 6, 2013).
Chiao et al. 9. “Self-trapping of optical beams,” Phys. Rev. Lett, vol. 13, No. 15, p. 479 (1964).
Corning Inc., “Corning® 1737 AM LCD Glass Substrates Material Information”, issued Aug. 2002.
Corning Inc., “Corning® Eagle2000 TM AMLCD Glass Substrates Material Information”, issued Apr. 2005.
Couairon et al. “Femtosecond filamentation in transparent media” Physics Reports 441 (2007) pp. 47-189.
Courvoisier et al. “Applications of femtosecond Bessel beams to laser ablation” Applied Physics A (2013) 112, p. 29-34.
Courvoisier et al. “Surface nanoprocessing with non-diffracting femtosecond Bessel beams” Optics Letters vol. 34 No. 20, (2009) p. 3163-3165.
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455.
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance” Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680.
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America.
Dong et al. “On-axis irradiance distribution of axicons illuminated by spherical wave”, Optics & Laser Technology 39 (2007) 1258-1261.
Duocastella et al. “Bessel and annular beams for material processing”, Laser Photonics Rev. 6, 607-621, 2012.
Durnin. “Exact solutions for nondiffracting beams I. The scaler theory” J. Opt. Soc. Am. A. 4(4) pp. 651-654, published Apr. 1987.
Eaton et al. “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rates”, Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Gattass et al. “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates” Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98.
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884.
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892.
Gori et al. “Analytical derivation of the optimum triplicator” Optics Communications 157 (1998) pp. 13-16.
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155.
Honda et al. “A Novel Polymer Film that Controls Light Transmission”, Progress in Pacific Polymer Science 3, 159-169 (1994).
http://www.gtat.com/Collateral/Documents/English-US/Sapphire/12-21-12_GT_TouchScreen_V3_web.pdf.
Hu et al. “5-axis laser cutting interference detection and correction based on STL model” (2009) Zhongguo Jiguang/Chinese Journal of Lasers, 36 (12), pp. 3313-3317.
Huang et al., “Laser etching of glass substrates by 1064 nm laser irradiation”, Applied Physics, Oct. 2008, vol. 93, Issue 1, pp. 159-162.
Juodkazis S. et al. Laser induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures., Phys. Rev. Lett. 96, 166101, 2006.
Karlsson et al. “The technology of chemical glass strengthening—a review” Glass Technol: Eur. J. Glass Sci. Technol. A (2010) 51 (2) pp. 41-54.
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031.
Kruger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438.
Kruger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898.
Kruger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps” SPIE vol. 2991, 0277-786X/97, pp. 40-47, published May 1997.
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/s003399900300.
Levy et al. “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett vol. 35, No. 6, p. 880-882 (2010).
Liu X et al. “laser ablation and micromachining with ultrashort laser pulses”, IEEE J. Quantum Electronics, 22, 1706-1716, 1997.
Maeda et al. “Optical performance of angle-dependent light-control glass”, Proc. SPIE 1536, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, 138 (Dec. 1, 1991).
Mbise et al. “Angular selective window coatings: theory and experiments” J. Phys. D: Appl. Phys. 30 2103 (1997).
Sukumaran, “Through-Package-Via Formation and Metallization of Glass Interposers.”, Electronic Components and Technology Conference: 557-563, (2010).
Tymon Barwicz, et al., “Assembly of Mechanically Compliant Interfaces between Optical Fibers and Nanophotonic Chips”, Tymon Barwicz (IBM), et al., Electronic Components & Technology Conference, 2014, . 978-1-4799-2407-3, 2014 IEEE, pp. 179-185.
U.S. Appl. No. 62/137,443, “Laser Cutting and Processing of Display Glass Compositions”, filed Mar. 24, 2015., U.S. Appl. No. 62/137,443.
Chinese Patent Application No. 201780065972.0, Office Action dated Apr. 15, 2022, 14 pages (6 pages of English Translation and 8 pages of Original Document), Chinese Patent Office.
Related Publications (1)
Number Date Country
20180111870 A1 Apr 2018 US
Provisional Applications (1)
Number Date Country
62411938 Oct 2016 US