Many aspects of the present substrate structure and the present method can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present substrate structure and the present method.
Reference numbers indicate corresponding parts throughout the drawings. The exemplifications set out herein illustrate at least one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Reference will now be made to the drawings to describe the preferred embodiments of the present substrate structure and the present method in detail.
Referring to
Referring to
Referring to
It should be noted that the conductive layer 112 can be directly formed to cover the banks 106 and the patterned layer 110.
A method for manufacturing a substrate structure mainly includes the following steps:
(1) providing a substrate;
(2) forming a plurality of banks on the substrate, the banks and the substrate cooperatively defining a plurality of accommodating rooms;
(3) dispensing ink into accommodating rooms in such a manner that the ink covers the bank located between at least two adjacent accommodating rooms using a dispenser;
(4) solidifying the ink in the accommodating rooms to form a patterned layer;
(5) optionally, forming an overcoat layer covering the banks and the patterned layer; and
(6) optionally, forming an electrically conductive layer on the overcoat layer.
With reference to
In step 1, a substrate 100 is provided, referring to
In step 2, a plurality of banks 102 are formed on the substrate 100, referring to
In step 3, ink 108 is dispensed into the accommodating rooms 106 in such a manner that the ink 108 covers the bank 102 located between at least two adjacent accommodating rooms 106 in a Y direction using a dispenser, referring to
In step 4, the ink 108 is solidified to form a patterned layer 110, referring to
In step 5, an overcoat layer is optionally formed covering the banks 102 and the patterned layer 110, as seen in
In step 6, an electrically conductive layer 112 is optionally formed on the overcoat layer 111, as seen in
It should be noted that the conductive layer 112 can be directly formed covering the banks 106 and the patterned layer 110.
In the above method for manufacturing the substrate structure, ink is dispensed into the accommodating rooms in such a manner that the ink covers the bank located between at least two adjacent accommodating rooms. Accordingly, an amount of the ink in each strip is roughly same. Therefore, the patterned layer is more even after the ink is solidified. The substrate structure manufactured using the method is also more even.
It should be noted that the substrate structure can be devices such as, for example, color filters and organic light emitting display devices. The method for manufacturing the substrate structure can be used to manufacture the above-mentioned devices. In the manufacturing of color filters, the method can be used to manufacture RGB (red, green, and blue) color layers. Correspondingly, the bank mentioned above can include single layer banks (using black matrix only as the bank), or multi-layer banks (using black matrix and one or more top layers on the black matrix as the bank). This method can also be used to manufacture, for example, emission-material layers, electron-transfer layers, hole-transfer layers and electron-ejection layers.
When the substrate structure is a color filter, the occurrence of blank areas (i.e., leakage of light through the transparent area) is decreased due to the continuous color layers. Thus a display device using the color filter has a higher contrast and a higher color purity.
Although the present invention has been described with reference to specific embodiments, it should be noted that the described embodiments are not necessarily exclusive, and that various changes and modifications may be made to the described embodiments without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
95112507 | Apr 2006 | TW | national |