The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
The invention is directed to a substrate structure for display applications. An interfacial layer is disposed on a substrate to prevent spread of electrode paste patterns on the substrate. The interfacial layer can improve surface tension of the electrode paste and reduce wettability between the electrode paste patterns and the substrate. The contact angle between the electrode paste patterns and the interfacial layer is preferably greater than 35°, more preferably greater than 40°. Since the interfacial layer can prevent spread of electrode paste, the contact angle between the electrode paste pattern and the interfacial layer is greater the contact angle between the electrode paste pattern and the substrate. Compared with printing an electron paste pattern of 50 μm line width and 50 μm line interval on a glass substrate, the contact angle can increase by at least 15° due to addition of the interfacial layer. Moreover, a substrate structure with a high resolution electron paste pattern of 17 μm line width and 83 μm line interval can further achieved due to addition of the interfacial layer.
Referring to
Referring to
According to embodiments of the invention, the interfacial layer can be transparent or opaque. The interfacial later can comprises conductive or metallic materials. The interfacial layer and the electrode paste pattern can be co-fired for process simplification. Note that any material which can increase the contact angle at least 15° is suitable for the interfacial layer to prevent spread of the electrode paste patterns.
The interfacial layer can comprise insulating materials, such as SiO2, SiOy, SiNx, SiC, B2O3, Al2O3, SrBaTiO3, ZnS, ZrO2, BST, PZT, HfSiOz, HfO2, ZnO or Polyimide. The interfacial layer can alternatively comprise Pb, Zn, B, Si, or Bi, or oxides thereof which are sintered at low temperature with high transparency and flatness. Moreover, the interfacial layer can alternatively comprise conductive material such as Ag, Cu, Au, Pd, Pt, CNT, or other electrode materials which can serve as an interface between an electrode and an electrode field emitter. The interfacial layer can alternatively comprise a green tape. The green tape can preferably comprise a silicide, a boride, a metal oxide, a metal nitride, or combination thereof Moreover, the patterned paste layer comprises an emitter paste, phosphor paste, conductor paste, dielectric layer paste, or binder layer paste. For example, the emitter paste may comprise carbon nanotube (CNT), diamond like carbon (DLC), graphite, PdO, or TiOW. The conductor paste may comprise a metal paste (e.g, Ag, Au, Cu, Pt, or Pd), or conducting polymer (e.g., PEDOT or polyaniline). The dielectric paste may comprise SiO2, SiOy, SiNx, SiC, B2O3, ZnO, ZnS, ZrO2, BST, PZT, HfSiOz, HfO2, or polyimide. The interfacial layer can alternatively comprise a sintered silicon oxide, aluminum oxide, or combinations thereof. Note that a surface improvement process can be performed on the substrate. For example, the interfacial layer can be formed on a sand blasted substrate to remedy a damaged substrate surface to increase contact angle.
Accordingly, the interfacial layer for use in the present invention is not limited to those types described above, and may be of the other types if applicable to the present invention. Several materials with different surface tension and wettability can be chosen to serve as an electrode comprising a high contact angle with an electron field emitter thereon. The straightness and resolution of the screen printing can be improved due to the interfacial layer. Those skilled in the art will appreciate that other substrate structures, such as FE-BLU, CNT-FED structures and plasma display panels (PDP), are also applicable to the invention.
An anode electrode 560 is disposed on the upper substrate 502. Red, green, and blue fluorescent layers 575 are alternately disposed on the anode electrode 560. A black matrix 570 is disposed between the red, green, and blue fluorescent layers 575.
Subsequently, a patterned cathode electrode 630 or data electrode is formed on the interfacial layer 620. For example, a patterned conductive paste layer is screen printed on the interfacial layer 620. Since the difference in wettability between the patterned conductive paste layer and the interfacial layer 620 is apparent, the surface tension of the patterned conductive paste layer on the interfacial layer 620 is strong, resulting in a high contact angle between the patterned conductive paste layer and the interfacial layer 620. Compared with printing a patterned conductive paste pattern layer directly formed on the glass substrate, the contact angle can increase by at least 15° due to addition of the interfacial layer.
Referring to
Referring to
The upper substrate 690 comprises an anode electrode structure including a scan electrode 680a and a sustain electrode 680b. A dielectric layer 670 is disposed on the upper substrate 690 covering the scan electrode 680a and the sustain electrode 680b. A passivation layer 660 such as an MgO layer is disposed on the dielectric layer 670.
Accordingly, the invention is advantageous in that an interfacial layer which can control surface tension between a glass substrate and a patterned paste is formed on a substrate structure. The interfacial layer can change wettability between the glass substrate and the patterned paste. Since the interfacial layer can maintain surface tension between the glass substrate and the patterned paste, the contact angle increases due to the interfacial layer. A high contact angle can prevent the spread of the patterned paste, thereby reducing the interval of line patterns and increasing resolution. Moreover, the interfacial layer can be a highly transparent material to meet requirements for FE-BLU. A sand blast pretreatment may be needed on the glass substrate. The sand blasted glass substrate, however, comprises a low contact angle, leading to spread of the patterned paste. The interfacial layer can be formed on the substrate treated by sand blasting to remedy damage due to the sand blasting.
Compared with printing an electron paste pattern of 50 μm line width and 50 μm line interval on a glass substrate, the contact angle can increase by at least 15° due to addition of the interfacial layer. Moreover, a substrate structure with a high resolution electron paste pattern of 17 μm line width and 83 μm line interval can further be achieved due to addition of the interfacial layer.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
TW95116883 | May 2006 | TW | national |