The present invention is directed to surface reliefs, and more particularly to, substrates and articles having selective printed surface reliefs that are applied using conventional printing equipment.
Conventional holographic surface reliefs are manufactured by slow embossing and casting processes that are separate from mainstream printing processes. For example, the processes may involve embossing onto pre-metallized materials or casting onto clear films and papers, and then metallizing the embossed materials. These embossing and casting processes suffer from a number of known drawbacks, including: (1) the processes are not suitable for use with the printing equipment; (2) embossing or casting in localized regions is not possible with conventional metallizing equipment; (3) the metallizing equipment is prohibitively expensive; (4) printing onto the embossed and metallized material is very slow and expensive; (5) conventional embossing and casting systems are much slower than printing equipment; (6) it is difficult to overprint onto a holographic substrate when perfect registration is required; (7) holographic substrates may cover the entire face of the substrate, which may be a problem if the final product is a label, package or security document; and (8) holographic hot-stamping and cold-stamping substrates may have to be added to the printing in attachments placed on the conventional printing equipment.
In view of the foregoing, it is an object of the present invention to provide substrates and articles having selectively printed surface reliefs that are applied using conventional printing equipment.
It is another object of the invention to provide substrates and articles (such as currency, flexible and rigid packaging, labels, and printed forms) having selective printed surface reliefs that are applied using conventional printing equipment.
It is a further object of the invention to provide substrates and articles having printing surface reliefs that are applied at the same speeds as conventional printing processes and in substantially perfect registration to conventional printing using the same printing equipment.
The present invention is directed to substrates and articles having selective printed surface reliefs that are applied using conventional printing equipment. For example, the articles may comprise labels, flexible and rigid packaging, continuous forms, government documents, currency, plastic bottles, plastic containers, ceramics, and other substrates and articles. In operation, the surface reliefs are selectively printed or printed as a continuous pattern, preferably using conventional printing processes such as intaglio, flexography, rotogravure, offset printing, litho; ink jet or digital printing. The surface reliefs may be created with high refractive index inks such as metallic inks, transparent inks, semi-transparent inks, security inks, color shifting inks, luminescent inks, phosphorescent inks, thermochromatic inks, invisible inks, scratch off inks, pearlescent inks, dielectric inks, silver inks, conductive inks and combinations thereof. These inks may be UV/EB based, solvent based, water based or silver reduction based.
One aspect of the present invention involves an article comprising a substrate, a coating that is applied to the substrate, and surface reliefs that are cast or embossed onto the coating at substantially the same speeds and widths of conventional printing, and in substantially perfect register to conventional printing, wherein the coating is selected from the group consisting of HRISR coatings, LRISR coatings, water-based coatings, solvent-based coatings, UV/EB based coatings, sol-gel based coatings, conductive coatings, silver reduction based coatings and metallic coatings. A protective or printed layer may (or may not) be applied on top of the coating. Specifically, if the coating is an HRISR or LRISR coating, then it is unnecessary to apply a special high refractive layer because HRISR and LRISR coatings inherently contain the refractive index properties that are necessary to keep the surface reliefs viewable despite any printing on top of the coating. Otherwise, if the coating does not comprise an HRISR or LRISR coating, then a high refractive protective layer is applied on top of the coating, wherein the protective layer follows a topography of the surface reliefs such that a thickness of the protective coating is substantially uniform. The article may comprise an item including without limitation: (1) a tattoo; (2) a shrink wrap label; (3) flexible packaging; (4) rigid packaging; (5) a credit card; (6) a license; (7) a security document; (8) a retroreflective structure; (9) a non-reflective structure; (10) a self cleaning substrate; (11) a radio frequency identification product; (12) a plastic chip; (13) a micro-analysis system; (14) an optical component; (15) a medical application; (16) a polymer display; (17) a solar panel; (18) a defense application; or (19) a radar invisibility application.
In accordance with the principles of the invention, the surface reliefs may include, but are not limited to: holograms; optical variable devices; gratings; computer generated holograms; ebeam generated structures; dot matrix holograms; dot matrix stereograms; retroreflective structures (e.g., corner cubes); nanostructures; microstructures; micro fluidic structures; micro electronic circuits; moire patterns; radio frequency identification (RFID) antennas; lenticular lenses; lenses; self cleaning structures; moth-eye structures; and combinations of these structures. According to some embodiments of the invention, a high or low refractive index lacquer or sol-gel is used to cast or emboss the surface reliefs on top of the substrate. According to additional embodiments, the article may further comprise a protective coating applied on top of the surface reliefs, the transparent coating comprising a transparent ink, adhesive or laminate that conforms to the topography of the surface reliefs such that a thickness of the protective coating is substantially uniform.
Another aspect of the present invention involves an article comprising a substrate, a V or EB coating applied on top of the substrate, a high or low refractive index lacquer or sol-gel applied on top of the coating, surface reliefs created by the WV or EB coating, and surface reliefs created by the high or low refractive index lacquer or sol-gel. According to the invention, the lacquer or sol-gel may be water-based, UV/EB, solvent based, or silver reduction based. In some embodiments, the high or low refractive index lacquer or sol-gel is used to cast or emboss the surface reliefs on top of the substrate. During printing, the surface reliefs are applied to the substrate at substantially the same speeds and widths of conventional printing, and in substantially perfect register to conventional printing. The article may further comprise a transparent protective coating applied on top of the surface reliefs, the coating comprising a transparent ink, adhesive or laminate that conforms to the topography of the surface reliefs such that a thickness of the protective coating is substantially uniform.
Other features and advantages of the present invention should become apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
Embodiments of the present invention will now be described, by way of example only, with reference to the following drawings, in which:
In the following paragraphs, the present invention will be described in detail by way of example with reference to the attached drawings. Throughout this description, the preferred embodiment and examples shown should be considered as exemplars, rather than as limitations on the present invention. As used herein, the “present invention” refers to any one of the embodiments of the invention described herein, and any equivalents. Furthermore, reference to various feature(s) of the “present invention” throughout this document does not mean that all claimed embodiments or methods must include the referenced feature(s).
The present invention is directed to articles that incorporate micro and nano surface reliefs such as holograms, optically variable devices, diffractions gratings, nano optical color structures, biological and animal structures, and structures that exhibit surface reliefs between about 10 nm to about 3 mm. The surface relief structures are also referred to herein as “surface reliefs”. The articles of the invention may feature coatings (such as high refractive index surface relief (HRISR) coatings, low refractive index surface relief (LRISR) coatings, metallic inks and or lacquers, sol-gel coatings, silver reduction coatings, metallic inks, conductive inks or silver inks) for surface reliefs that are “printed” or cast (cured) using conventional or digital printing equipment with perfect registration to the conventional printing stations to produce surface relief structures such as holograms.
In accordance with the principles of the invention, the surface reliefs are printed on an article or substrate. For example, the surface reliefs may be applied using conventional printing processes such as flexography, intaglio, rotogravure, ink jet printing, digital printing, tampography and other printing processes. According to further embodiments of the invention, the surface reliefs may be applied to various substrates and articles using laser engraving techniques with or without a metal backing or injection molding techniques for producing high refractive index plastics. The surface reliefs described herein may be applied to any suitable article or substrate, either selectively or in a continuous pattern. When the surface reliefs are selectively applied, a portion of the article or substrate does not contain any surface reliefs. In many cases, the area on the substrate or article that contains surface reliefs is much smaller than the corresponding area that is devoid of surface reliefs, thereby providing a significant reduction in manufacturing cost.
The surface reliefs of the present invention may be created in a single step at a single station by applying a metallic ink or foil on top of a substrate, and then applying a transparent UV curable high refractive index (HRISR) ink, lacquer or sol-gel coating on top of the metallic ink or foil layer. Alternatively, the surface reliefs may be created by first applying any suitable ink and/or lacquer or sol-gel coating to an article or substrate, and then applying a HRISR ink and/or lacquer or sol-gel coating in register to the surface reliefs. As a further alternative, a single ink such as a UV curable metallic ink may be used to create both the surface reliefs and the high refractive properties needed for a specific application.
According to further embodiments of the invention, the surface reliefs may be created in two steps at two separate stations. By way of example, in a first step, a transparent high refractive index lacquer (no holography) is applied to a substrate at a first station, whereas in a second step, surface reliefs are embossed onto the high refractive index lacquer using pressure and heat. The resulting hologram is both highly refractive and transparent. Alternatively, a metallic ink (or stamping foil, silver ink, conductive ink, W based ink, solvent based ink, etc.) is applied to a substrate at a first station in a first step, while in a second step at a second station, the metallic ink is embossed. in this example, a high refractive index ink is not necessary because the ink is metallic. According to a further embodiment, in a first step at a first station, any UV curable lacquer is applied to a substrate to create holography. If a normal coating is applied, the holography would disappear because the coating is not highly refractive. in a second step at a second station, a high refractive index sol-gel or lacquer is applied on top of the UV curable ink, wherein the high refractive index sol-gel or lacquer follows the topography of the holography.
Additional embodiments of the invention may involve a silver reduction reaction, whereby predetermined chemicals are mixed to cause the silver reduction reaction. For example, a transparent UV curable lacquer is employed to create the surface reliefs, which are then exposed to a catalyst such as UV radiation. The exposure to Uv radiation having a predetermined wavelength (different than the wavelength of the UW radiation used to cure the transparent UV curable lacquer) causes the silver reduction reaction and makes the surface reliefs highly reflective. If not exposed to the U radiation, the surface reliefs remain transparent.
According to the invention, the surface reliefs may comprise inks possessing high and low refractive properties plus a wide variety of other effects including, but not limited to: (1) color shifting effects; (2) thermochromatic effects; (3) dielectric effects; (4) luminescent effects; (5) phosphorescent effects; (6) conductive effects; (7) metallic effects; and (8) combinations thereof. Additionally, the surface reliefs may be printed with any suitable ink and/or lacquer, and then covered with a registered HRISR ink and/or lacquer to provide the desired effects (e.g., color shifting, thermochromatic, etc.). According to further embodiments of the invention, surface reliefs are printed using conventional inks, wherein the entire substrate is flooded with a high and/or low refractive index ink and or lacquer to provide the desired effects (e.g., color shifting, thermochromatic, etc.).
The above-described surface reliefs may be printed in different shades or grades. In addition, the surface reliefs may be printed in register on top of already applied inks and/or lacquers, or may be overprinted with any suitable inks and/or lacquers in register or in a wallpaper pattern. These inks and lacquers obviate the need for already-embossed substrates including films, hot-starnping foils and cold-stamping foils. Such already-embossed substrates are expensive and difficult to integrate with conventional printing at high speeds and proper registration. Moreover, any of the surface reliefs described herein may be created by reverse printing a metallic ink and/or lacquer in order to give the resulting product a metallic look.
Applications for the surface reliefs of the present invention include, but are not limited to: (1) tattoos; (2) labels; (3) shrink wrap labels; (4) flexible packaging; (5) rigid packaging; (6) containers; (7) bottles; (8) credit cards; (9) licenses; (10) currency; (11) security documents such as continuous forms; (12) retrorefective structures; (13) non-reflective structures; (14) online lenticularprinting; (15) intelligent substrates such as self cleaning substrates; (16) radio frequency identification products; (17) plastic chips; (18) micro-analysis systems; (19) optical components; (20) medical applications; (21) polymer displays; (22) solar panels; (23) defense applications; and (24) radar invisibility applications.
The printed articles and substrates may include continuous wallpaper or may include selective areas with surface reliefs and/or lenticular images. In addition, the printed articles and substrates may include selective areas with non-shifting color structures or deep structures, such as Aztec holograms, that are either synthetically made or copied from biological and animal structures, such as by scanning or casting processes.
The coatings of the present invention may have a high refractive index, a low refractive index and/or metallic particles, as well as a good release from the embossing and/or casting tools used to produce the surface reliefs. Additionally, the coatings may be water-based, UV/EB, solvent based, or silver reduction based. In order to keep the holography viewable on the substrate, it is important that the HRISR and/or LRISR coatings have a different refractive index from any adhesives, laminates inks and/or lacquers that are applied to the surface relief. The holography is viewable even if the difference in refractive index is quite small.
The present invention provides nano-, micro- and macrostructures that exhibit surface reliefs of more than 5 nanometers to less than 3 millimeters in depth and width are “printed” or cast (cured) in conventional or digital printing equipment with perfect registration to the other printing stations. Such structures may be optical or non-optical in nature. For example, holograms may be printed such that they become reflective, semi-reflective or non-reflective in just one pass through the “printing” station. Some of the advancements described herein are due in part to recent developments in metallic ink technology, gearless technology, sleeve technology, electron beam technology, UV technology, and temperature control technology.
In accordance with the principles of the present invention, a selected HRISR or LJRISR coating may contain particulate matter such as metallic particles and/or high refractive index particles to make the coating highly reflective. Suitable particulate matter for producing reflective surface reliefs include, but are not limited to: (1) aluminum particles; (2) silver particles; (3) gold particles; (4) cobalt particles; (5) chromium particles; (6) platinum particles; (7) palladium particles; (8) nickel particles; (9) cobalt particles; (10) carbon particles; (11) platelets; (12) flakes; (13) dielectric particles; (14) cholesteric liquid crystal polymer particles; (15) magnetic pigment flakes; (16) holographic glitter particles; (17) aluminum oxides (e.g., AL2O3); (18) Ce2O3; (19) SnO2; (20) B2; (21) O3; (22) titanium dioxide (TIO2); (23) iron oxides (e.g., Fe3O4 and Fe2O3); (24) zirconium oxide (ZrO2); (25) zinc oxide (ZnO); (26) zinc sulfide (ZnS); (27) bismuth oxychloride; (28) indium oxide (In2O3); (29) indium-tin-oxide (ITO); (30) tantalum pentoxide (Ta2O5); (31) cenic oxide (CeO2); (32) yttrium oxide (Y2O3); (33) europium oxide (Eu2O3); (34) hafnium nitride (HfN); (35) hafnium carbide (HfC); (36) hafnium oxide (HfO2); (37) lanthanum oxide (La2O3); (38) magnesium oxide (MgO); (39) neodymium oxide (Nd2O3); (40) praseodymium oxide (Pr6O11); (41) samarium oxide (Sm2O3); (42) antimony trioxide (Sb2O3); (43) silicon carbide (SiC; (44) silicon nitride (Si3N4); (45) silicon monoxide (SiO); (46) selenium trioxide (Se2O3); (47) tin oxide (SnO2); (48) tungsten trioxide (WO3); and (49) combinations thereof.
According to further embodiments of the invention, a selected HRISR or LRISR coating may contain particulate matter adapted to create semi-transparent and metallizing effects. Suitable particulate matter for maintaining the transparency of the coating while keeping surface relief reflective enough in order to be easily seen (even when covered by adhesives, inks, lacquers, and/or laminates) include, but are not limited to: (1) titanium dioxide (TiO2); (2) iron oxide Fe2O3; (3) aluminum oxide (Al2O3); (4) Ce2O3; (5) tin oxide (SnO2); (6) boric oxide (B2O3); (7) titanium dioxide (TiO2); (8) zirconium; (9) zinc oxide (ZnO); (10) zinc sulfide (ZnS); (11) bismuth oxychloride; (12) Sb2O5; (13) zirconium oxide (ZrO2); (14) dielectric particles; (15) tungsten oxide (SnWO4); (16) oxide of bismuth (BiOx); (17) bismuth oxide (Bi2O3); (18) titanium oxide (TiO); (19) niobium oxide (Nb2O5); (20) carbon; (21) indium oxide (Jn2O3); (22) indium-tin-oxide (ITO); (23) tantalum pentoxide (Ta2O5); (24) ceric oxide (CeO2); (25) yttrium oxide (Y2O3); (26) europium oxide (Eu2O3); (27) Fe3O4; (28) hafnium nitride (HN); (29) hafnium carbide (HfC); (30) hafnium oxide (HfO2); (31) lanthanum oxide (La2O3); (32) magnesium oxide (MgO); (33) neodymium oxide (Nd2O3); (34) preododymium oxide (Pr6O11); (35) samarium oxide (Sm2O3); (36) antimony trioxide (Sb2O3); (37) silicon carbide (SiC; (38) silicon nitride (Si3N4); (39) silicon monoxide (SiO); (40) selenium trioxide (Se2O3); (41) tungsten trioxide (WO3); and (42) combinations thereof.
The HRISR and LRISR coatings described herein may also include particulate matter for achieving high transparency. Suitable particulate matter for LRISR coatings for producing the desired high transparency include, but are not limited to: (1) silicon dioxide (SiO2); (2) aluminum oxide AL2O3; (3) magnesium fluoride (MgF2); (4) aluminum fluoride (AlF3); (5) cerium fluoride (CeF3); (6) lanthanum fluoride (LaF3); (7) sodium aluminum fluorides (e.g., Na3AlF6 and Na3Al3Fl4); (8) neodymium fluoride (dF3); (9) samarium fluoride (SmF3); (10) barium fluoride (BaF2); (11) calcium fluoride (CaF2); (12) lithium fluoride (LiF); (13) monomers; (14) polymers; (15) dienes; (16) alkenes; (17) acrylates; (18) perfluoroalkenes; (19) polytetrafluoroethylene; (20) fluorinated ethylene propylene (FEP); and (21) combinations thereof.
In accordance with the invention, surface reliefs such as holograms are cast or embossed onto an HRISR or LRISR coating in a single pass, or in multiple passes. The surface reliefs may be metallized, semi-metallized or made transparent without the need for prohibitively expensive vacuum-metallizing or sputtering-metallizing equipment. Additionally, the coatings may be selected to possess optical coating properties such as magnetic properties, metallic properties and the ability to change colors. Moreover, the surface reliefs of the invention may be configured to interact with the HRISR and LRISR coatings to create innovative and improved optical effects.
In accordance with an aspect of the present invention, the HRISR and LRISR coatings allow a printer to print surface reliefs such as holography online and in register with conventional printing. Specifically, the coatings of the invention may be applied to an article or substrate using conventional printing equipment including, but not limited to: (1) offset printing; (2) flexographic printing; (3) rotogravure printing; (4) ink jet printing; (5) letterpress printing; (6) digital printing; (7) silk-screen printing; (8) intaglio printing; and (10) litho printing. The surface reliefs may also be produced using laser engraving processes with or without a metal backing material or injection molding processes for producing high refractive index plastics. The HRISR or LRISR coatings preferably are applied and embossed with a surface relief at the same color station. Alternatively, the HRISR or LRISR coatings may be applied in a co responding color station in register to a surface relief that was previously placed at a different color station.
The coatings of the present invention allow for the embossing and or casting of myriad surface reliefs online with any of the above-identified conventional printing equipment in substantially perfect register or without register to the printing of other conventional inks and/or lacquers. When HRISR or LRISR coatings are employed, these coatings already possess the desired visual properties (e.g., reflective, metallic, transparent, dielectric, etc.), such there is no need to coat the surface reliefs with additional coatings such as reflective and dielectric layers. The holography printed on the coatings does not disappear if other materials such as adhesives, laminates and other coatings are applied to the surface reliefs.
The coatings of the present invention may comprise: (1) dielectric coatings; (2) color shifting pigments; (3) luminescent pigments; (4) magnetic pigments; (5) security inks; (6) fluorescent pigments; and/or (7) phosphorescent pigments. A coating preferably is chosen such that various surface reliefs may be selectively applied to the final substrate in one or more passes. The coating may contain color shifting properties, magnetic properties, dielectric properties, and other properties. Additionally, any of the above-identified pigments and coatings may be mixed with microspheres in order to make the pigments brighter.
The coatings described herein are adapted to receive embossed or cast surface reliefs including, but not limited to: (1) holograms; (2) optical variable devices; (3) gratings; (4) computer generated holograms; (5) ebeam generated structures; (6) dot matrix holograms; (7) dot matrix stereograms; (8) retroreflective structures (e.g., corner cubes); (9) nano structures; (10) icrostructures; (11) micro fluidic structures; (12) micro electronic circuits; (13) moire patterns; (14) radio frequency identification (RFID) antennas; (15) lenticular lenses; (16) lenses; (17) self cleaning structures; (18) moth-eye structures; and (19) combinations of these structures.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
According to the invention, any of the above-identified UV/EB surface reliefs may be coated with a HRISR or LRISR coating to create a wide range of structures for labeling, packaging and security applications. By way of example, the coatings of the present invention may be used for printing: (1) currency; (2) security labels; (3) security documents; (4) travel checks; (5) driver licenses; (6) passports; (7) visas; (8) government documents; (9) tags; (10) packaging; and (11) many other labeling, packaging and security applications. The HRISR, LRISR and metallic coatings described herein may comprise high refractive index solvent based, water based, UV/EB inks and/or lacquers, metallic inks, conductive inks, silver inks and other coatings. Transparent curable ink may be applied on top of, or below, an HRISR or LRISR coating. The use of high or low refractive index transparent inks and lacquers (or metallic inks, etc.) prevents the resulting structure from becoming invisible when overprinted or overlaminated.
Many nano-, micro-, and macro-structures include surface reliefs that are reflective. iolograms are one example of reflective surface reliefs that typically require expensive metallizing equipment that is difficult to integrate with conventional printing. In addition, the manufacturing rate of reflective surface reliefs is traditionally extremely slow. According to an aspect of the invent on, a radiation curable coating that incorporates reflective particles may be applied to nano-, micro- and macro-structures in a single pass rather than two separate operations. A suitable radiation curable coating is a UV/EB ink or lacquer comprising: (1) metallic particles or flakes that become aligned substantially parallel to the substrate upon curing; and (2) a high or low refractive index coating mixed with the particles to brighten the nano-, micro-, and macro-structures. Since the radiation curable coating incorporates reflective particles that provide high refractive qualities, the resultant structures will reflect light and feature a metallic appearance.
According to the invention, metallic high or low refractive inks, lacquers, and other metallic coatings may be employed in the UV/EB curing applications described herein, in order to make the resulting structures reflective. Particularly, the metallic coating is cured while the substrate is wrapped against a surface relief tool, thereby increasing the speed and efficiency of the curing process. when using an electron beam curing process, the composition of the substrate will not affect the ability of the electrons to pass through the substrate to cure the metallic coating. The surface relief tool includes a surface relief that is substantially leveled such that there are no raised areas. The surface relief tool preferably includes localized surface reliefs on its area that may be identical to each other or different from each other.
According to some embodiments of the invention, the surface relief tool is attached to a chilled drum. The surface relief tool may comprise a nickel sleeve, a nickel plate, an etched metallic drum, a clear plastic film or a clear plastic plate. The HRISR or LRISR coating will conform to the surface relief on the embossing tool, thereby making a substantially exact copy of the surface relief features at high speed. Therefore, it is not necessary to emboss or cast the hologram at a first station and then apply the reflective or refractive coating at a second station. Both the embossing/casting step and the application of the coating step may be accomplished in one pass at a single station. According to other embodiments, the embossing and coating steps may be performed at separate stations.
According to another aspect of the invention, a chilling station is used to help cure the UV/EB metallic coating against the surface relief tool in a single curing step. The resulting decrease in curing temperature prevents substrate and surface relief distortions that are common when using prior art systems. Particularly, temperatures in the process rollers may be controlled to permit proper curing of surface relief with minimal distortion of the surface relief and the substrate to which the surface relief is attached. According to some embodiments of the invention, the thickness of the metallic coating may be varied along a continuum from very thin to very thick, depending upon the desired effect of the end product. The variable-thickness feature permits the creation of see-through holograms for packaging and security applications. According to other embodiments of the invention, the metallic coating may comprise a thin coating that substantially conforms to the shape of the surface reliefs.
According to an additional aspect of the invention, surface relief technology is provided that is compatible with reverse printing techniques that are widely used in the printing industry. One advantage of reverse printing is that the ink is protected because it never exposed. Electron beam curable equipment for reverse printing has come down in price considerably in recent years, such that it is economically feasible to install this technology on printing equipment for printing continuous forms, flexible packaging materials, rigid packaging materials, labels, and other printed products.
Due to advances in gearless press technology, it is possible to have substantially perfect registration among multiple print stations without the use of obsolete registration systems such as registration compensators. The coatings of the invention may be applied to an article or substrate using conventional gearless printing equipment including, but not limited to: (1) flexographic equipment; (2) rotogravure equipment; (3) offset equipment; (4) continuous form equipment; (5) digital printing equipment; (6) silkscreen equipment; (7) lithographic equipment; (8) letterpress equipment; and (9) ink jet printing.
The preferred printing machine for printing surface reliefs in accordance with the principles of the invention comprises a gearless machine that ensures substantially perfect registration between printing stations and the curing tool station. Each roller in the printing machine preferably is controlled by a se vomotor that is operated using a programmable logic controller, such that each roller is substantially perfectly synchronized and in register with the other rollers. With a gearless machine, it is possible to have different printing lengths without changing the diameters of the cylinders. Although the preferred printing equipment of the present invention is gearless, it should be evident to one of ordinary skill in the art that the invention maybe practiced using gear presses without departing from the scope of the invention.
According to an additional aspect of the invention, nano-, micro-, and macro-structures are capable of being printed using conventional printing methods, thus enabling printing at high speeds, at required widths, and in register with any conventional printing on the document or label being printed. Such structures include, but are not limited to: (1) electron beam generated holograms; (2) dot matrix holograms; (3) computer generated holograms; (4) optically variable devices (OVDs); (5) diffractive optical variable devices (DOVDs); (6) lenses; (7) lenticular lenses; (8) non-reflective structures; (9) light management structures; (10) deep structures (e.g., structures that diffract only 15 one wavelength at a very wide viewing angle, such as found in some butterflies and other insects); (11) radio frequency identification (RFID) antennas; (12) embossable computer chips; (13) retroreflective structures; (14) metallic-looking structures; (15) wood textures; (16) leather textures; and (17) textile textures.
According to the invention, flexo graphic printing equipment may be employed to apply a curable coating to a suitable substrate. Alternatively, rotogravure equipment, offset equipment, continuous form equipment, digital printing equipment, letterpress equipment, ink jet equipment and other systems may be employed to apply the curable coating. Additionally, metallic or non-metallic high-diffractive index inks or lacquers are employed, for example instead of vacuum deposited aluminum.
Referring to FTG. 14, an exemplary system 200 for printing surface reliefs 202 on substrate 204 using conventional printing equipment will now be described. The system 200 comprises anilox roller 212, flexographic tool 214, surface relief tool 216, curing tool 218 and printing rollers 220. Flexographic tool 214 preferably comprises a flexographic printing sleeve or plate attached to a master roller that is chilled to a predetermined temperature. The flexographic tool facilitates the transfer of complex shapes (raised sections 228) onto surface relief tool 216. Raised sections 228 substantially comprise an exact copy and location of the sections on surface relief tool 216 where the surface reliefs are placed. For example, flexographic tool 214 may include raised areas 228 provided with a metallic HRISR or LRISR coating for transferring the topography of raised areas 228 onto precise sections of surface relief tool 216. The creation of raised sections on the surface relief tool itself would be far more difficult and expensive.
The system 200 further comprises a temperature-controlled tray 230 for the high or low refractive index material, metallic inks, conductive inks, silver inks, or other materials that form the coating. Temperature-controlled tray 230 is designed to feed anilox roller 212, which carries the high or low refractive index material onto flexographic tool 214. The raised features of flexographic tool 214 pick up the high or low refractive index material from anilox roller 212. A doctor blade 232 may be provided for wiping excess ink away from raised areas 228 of flexographic tool 214. One advantage of using an HRISR or LRISR coating is that such a coating enhances the holography since it inherently reflects more light than a conventional thin clear coating, thereby increasing the brightness and definition of the resultant holographic image.
The anilox roller 212 and associated tray are maintained at the predetermined temperature in order to induce the metallic particles within the high or low refractive index material to align substantially parallel to the major surface of the substrate. Anilox roller 212 may be heated or chilled depending on the printing configuration needed for a specific substrate. For example, the anilox roller 212 may be heated to help the metallic particles in the metallic coating accommodate before curing. In addition, the master roller to which the flexographic sleeve is attached may be heated in order to preserve a selected temperature before curing.
In operation, the raised areas 228 on the flexographic tool 214 deposit the HRISR or LRISR coating (or metallic ink, silver ink, conductive ink, etc.) onto the surface of surface relief tool 216 in substantially perfect register to the surface reliefs in surface relief tool 216. The substrate is fed between surface relief tool 216 and printing rollers 220 such that substrate 204 is pressed against surface relief tool 216. Thus, the HRISR or LRISR coating is pressed against the surface relief tool 216 as it is being cured in a single pass by curing tool 218. According to an implementation of the invention, the curing tool 218 provides electromagnetic radiation, such as ultra-violet radiation treated with a beam of high energy electrons (UV/EB), for cuing the coating in a single pass. As would be understood by those of ordinary skill in the art, other types of electromagnetic radiation may be used for curing the coating without departing from the scope of the present invention.
The surface relief tool 216 comprises localized areas having surface relief features that correspond with a very high degree of precision to the location of the areas of refractive index material (or metallic ink, silver ink, conductive ink, etc.) on the flexographic tool 214. The surface relief tool 216 may comprise a nickel surface relief sleeve, a nickel plate and/or a clear embossed plastic plate that is attached to a chilled casting roller in order to maintain the substrate at a predeter ined temperature, which is selected based on the type of substrate being employed as well as the process speed. If the surface relief tool is a sleeve, the chilled casting roller is slid into the sleeve, whereas if the surface relief tool is a plate, the chilled casting roller is clamped to the plate. The use of a chilled casting roller ensures that the surface relief tool imparts a substantially exact copy of the surface relief onto the substrate, at room temperature with no major distortions to either the substrate or the surface reliefs. The curing tool 218 cures the coating in a single pass as the substrate is pressed against the surface relief tool 216.
According to some embodiments of the invention, the printing on the substrate overlaps the surface relief in substantially perfect register. According to other embodiments of the invention, the printing on the substrate does not overlap the surface relief pattern. According to further embodiments, the printing and/or surface relief may be provided as a continuous wallpaper pattern with no registration requirement. Additionally, the printing and/or surface relief may be printed on either major surface of the substrate.
With further reference to
Many prior art holography systems rely on applying a metallic hot-stamping foil, hard embossing using both heat and pressure, or hybrid embossing. By contrast, exemplary system 200 for printing surface reliefs 202 on substrate 204 using conventional printing equipment does not require any external heat or pressure source, and there is no consequential distortion of the substrate or visible loss of resolution of the original image. Additionally, the system 200 of the invention is capable of producing brighter images than conventional systems with minimal wear and tear of the surface relief tool.
Referring to
Similar to the embodiment of
Another method for producing reflective surface reliefs involves: (1) applying metallic ink and or lacquer that it is cured against a mirror finish chilled roller at a first station; and (2) applying a high reflective index ink and/or lacquer that is cured on top of the mirror finish at a second station. Particularly, since the roller has a mirror finish, the metallic ink will become a mirror finish as well. Any type of texture in the macro relief may be imparted onto the mirror finish flexographic roller, and any type of texture may be imparted onto the metallic UV/EB inks (e.g., brushed films, polished aluminum surfaces and engraved stamping dies). The imparting of texture may be used in the production of labels, packaging, shrinkable films, greeting cards, and other products. The application of texture to the mirror finish may require the use of an additional curing tool.
Alternatively hot-stamping metallized foils, cold-stamping metallized foils and metallic inks may be used as the mirror base at the first station, and then the high reflective index ink and/or lacquer is cast and applied onto the already placed metallic finish. The hot-stamping is applied at the first station with a hot-stamping rotary attachment using heat and pressure, whereas the cold-stamping is accomplished by first applying a cold stamping adhesive and laminating the foil to it. In either case, the foils are applied to the surface of the substrate in the exact shape and location that the holography will have on top of them. This method for producing reflective surface reliefs may also be accomplished using a one-step process at a single station.
Referring to
The flexographic tools 314, 354 preferably each comprise a flexographic printing sleeve or plate attached to a master roller that is temperature controlled to a predetermined temperature. Flexographic tool 354 facilitates the transfer of complex shapes (raised sections 328) onto surface relief tool 356. The temperature-controlled tray 330 is designed to feed anilox roller 312, which carries metallic ink that will be cured against mirror finish roller 316. Temperature controlled tray 370 is designed to feed anilox roller 352, which carries a high refractive index material onto flexographic tools 314, 354, respectfully. n operation, the raised areas 328 on the flexographic tool 354 deposit the HRISR or LRISR coating onto the surface of surface relief tool 356 in substantially perfect register to the surface reliefs in surface relief tool 356. The substrate is fed between surface relief tool 356 and printing rollers 360 such that the HRISR or LRISR coating is pressed against surface relief tool 356 as it is being cured by curing tool 358.
The system of
Shrinkable films tend to be extremely sensitive to heat, tension, and pressure. A further application of the principles of the present invention concerns the production of shrinkable films having print and holography that are in register, without causing the films to shrink and/or distort. In some prior art systems, the holography is transferred to the shrinkable film using a transfer process. By contrast, in accordance with the principles of the present invention, the film is printed using conventional printing equipment. Specifically, at a first printing station, a metallic coating is applied to a substrate, and at a second printing station, the holographic structure is cured on top of the metallic surface using a high refractive index lacquer. Alternatively, other metallic or non-metallic HRISR and LRISR coatings may be employed instead of the high refractive index lacquer.
Referring to
Referring to
Referring to
Referring to
The surface reliefs of
Thus, it is seen that substrates and articles having selective printed surface reliefs that are applied using conventional printing equipment are provided. One skilled in the art will appreciate that the present invention can be practiced by other than the various embodiments and preferred embodiments, which are presented in this description for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow. It is noted that equivalents for the particular embodiments discussed in this description may practice the invention as well.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/198,625, filed Aug. 5, 2005, which is a Continuation-In-Part of U.S. patent application Ser. No. 11/144,349, filed Jun. 3, 2005, the contents of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11198625 | Aug 2005 | US |
Child | 11551205 | Oct 2006 | US |
Parent | 11144349 | Jun 2005 | US |
Child | 11198625 | Aug 2005 | US |