Aspects of the exemplary embodiment relate to chemically modifiable structured surfaces that are lithographically patterned for applications in measuring surface-induced cell behavior, which includes but is not limited to adhesion, migration, differentiation, division, secretion, apoptosis and necrosis.
Man-made materials that promote cell adhesion, migration, differentiation and proliferation are central to numerous medical applications. For instance, successful implants and bone augmentation scaffolds rely upon the formation of a strong bond between the material and a seed layer of cells. Biomaterials for wound healing and regeneration aim to promote adhesion but also target cell division, differentiation and migration. All such materials should be designed with an understanding that cells respond to a variety of environmental signals, both physical and chemical. The most extensively studied biochemical adhesion mechanism involves specific bonds between cell surface proteins, or receptors, and molecules in the extra-cellular environment, called ligands. In addition, cell adhesion is known to be strongly dependent on substrate roughness and stiffness.
With regards to chemical signaling, it has long been recognized that extracellular glycoproteins, such as fibronectin and collagen, promote adhesion and migration (Ricoult et al., “Tuning cell-surface affinity to direct cell specific responses to patterned proteins,” Biomaterials 35(2): 727-736 (2014) and Smith et al., “Directed cell migration on fibronectin gradients: Effect of gradient slope,” Experimental Cell Research 312(13): 2424-2432 (2006)). The strength of adhesion in turn strongly influences cell motility in a bi-phasic manner, with high receptor-ligand bond densities favoring static conditions and low-densities preventing adequate support for migration (Palecek et al., “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness,” Nature 385(6616): 537-540 (1997)). A common problem in surface biofunctionalization studies is that surface ligand concentrations and ligand activity can vary from run to run, and the controls necessary to account for such variations are time consuming and not routinely carried out. As a result, the density of ligands per unit area and the ability of those ligands to actively bind their cognate receptors is not well characterized in the vast majority of such investigations.
Adhesive dependencies have also been observed as a function of substrate surface roughness, with results being highly cell-type specific (Nikkhah et al., “Engineering microscale topographies to control the cell-substrate interface,” Biomaterials 33(21): 5230-5246 (2012) and Anselme et al., “Role of materials surface topography on mammalian cell response,” International Materials Reviews 56(4) 243-266 (2011)). For example, while bone cells tend to show improved bonding with increased surface roughness, epithelial cells adhere more efficiently to smoother surfaces. Such studies often involve isotropic roughening techniques, such as sanding or chemical etching. When lithographic techniques are employed, the resulting surfaces can be either isotropic or anisotropic and incorporate heights, widths and pitches that are well-characterized to the nanoscale. This enhanced structural control has illuminated the fact that cells are exquisitely sensitive to surface topography (Mahmud et al., “Directing cell motions on micropatterned ratchets,” Nature Physics 5(8), 606-512 (2009) and Fraser et al., “Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media,” Journal of Biomedical Materials Research Part A 86A(3) 725-735 (2008)). Lithographically patterned steps as small as tens of nanometers can cause a wide range of cell types to preferentially orient and migrate along shoulders, a phenotypic behavior known as contact guidance (Gamboa et al., “Linear fibroblast alignment on sinusoidal wave micropatterns,” Colloids and Surfaces B-Biointerfaces 104, 318-324 (2013); Sun et al., “Asymmetric nanotopography biases cytoskeletal dynamics and promotes unidirectional cell guidance,” Proceedings of the National Academy of Sciences of the United States of America 112(41)12557-12562 (2015); and Kim et al., “Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients,” Biomaterials 30(29), 5433-5444 (2009)).
While the term contact guidance implies mechano-transduction of signaling from the substrate to the cell cytoskeleton, there is likely a chemical component as well since the surfaces are coated with extracellular proteins that can be (i) deposited as part of the surface preparation protocol, (ii) adsorbed from the media, (iii) secreted by the cells, or any combination of the three. The interdependencies between topographical and chemical signaling required to influence cell adhesion, orientation, migration and differentiation remain largely unexplored (Rodriguez et al., “Directed cell migration in multi-cue environments,” Integrative Biology 5(11), 1306-1323 (2013); Lin et al., “Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration,” Nature Communications I DOI: 10.1038/ncomms7619 (2015); and Wong et al., “Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response,” Surface Science 570(1-2), 119-132 (2004)).
The lack of live cell data incorporating both topographical and chemical parameters is a result of the fact that current techniques are optimized for either roughness or chemistry, but not both. Lithographically patterned structures designed for contact guidance or roughness studies, for example, will have surface chemistries characteristics that are only known in a qualitative sense. As a result, biofunctionalization properties (i.e. surface density, activity), which are known to vary considerably from run to run, cannot be taken into account.
Another confounding factor is that cell cultures present a range of phenotypes and exist at different points along the cell cycle, increasing the spectrum of responses that will be observed on a given surface. As a result, large numbers of cells must be investigated to elucidate cell characteristics (i.e. migration speed, adhesion, differentiation, division, apoptosis) that are induced by the substrate and not an artifact of the phenotypic spectrum.
Thus, it would be desirable to have a method and system in which (1) both the topography and the surface chemistry could be systematically varied in a quantifiable manner and (2) the topography and surface chemistry could be systematically varied for either cell-to-cell comparisons or within the footprint of an individual cell.
In accordance with one aspect of the exemplary embodiment, a method for measuring surface-induced cellular behavior includes one or more lithographically patterned, functionalizable structures on a substrate, for example gold islands, in contact with a fluid and in registry with at least one living cell for a plurality of times. The structures' shape, height, pitch and ordering are controlled by the lithographic process and their biofunctionality is subsequently imparted via surface chemistry. Cellular behavior data—which includes but is not limited to adhesion, migration, differentiation, division, secretion, apoptosis and necrosis—is measured using imaging sensors in relation to the surface topography and surface chemistry for a plurality of times.
In accordance with another aspect of the exemplary embodiment, the substrate surrounding the structures can be selectively etched so that the structures sit atop pillars, thereby further varying the surface roughness with nanometer precision. The etched substrate areas are defined with lithographic techniques, capable of alternating between etched and non-etched regions within nanoscale and microscale resolutions. Such resolution allows for a range of experimental setups for a plurality of times, from a single roughness for a plurality of cells to a range of surface roughnesses for single cells, the latter of which allows for single cell investigations without being subject to the phenotypic or genotypic variations inherent in the prior art.
In accordance with another aspect of the exemplary embodiment, the method may further comprise biofunctionalizing the structures with ligands for binding cell surfaces or secretions. The structures are biofunctionalized by techniques such as microfluidics, drop coating, or soft lithography, which enable the patterning of a plurality of chemistries to the structures with nanoscale and microscale resolutions. Such resolution allows for a range of experimental setups for a plurality of times, from a single chemistry for a plurality of cells to a plurality of chemistries for single cells, the latter of which allows for single cell investigations without being subject to the phenotypic or genotypic variations inherent in the prior art.
In accordance with another aspect of the exemplary embodiment, regions of substrate may be etched to a uniform depth, multiple depths or with a functionally defined spatial gradient, providing a range of substrate features either in registry with the structures or independent of them. Alternatively, the topography may be varied by adding substrate material via deposition. Uniform etching or deposition of substrate material may be accomplished by standard photomasking or hard masking of select regions of the substrate and then reactive ion etching of the unprotected regions or sputtering additional material into those regions. For more complex three dimensional (3-D) topographies, “graytone lithography” in combination with a plasma etching step may be used to etch the glass to desired shape (Gal, U.S. Pat. No. 5,310,623 (1994)).
In accordance with another aspect of the exemplary embodiment, a method for receiving sensor data from one or more arrays of functionalized plasmonic nanostructures in contact with a fluid, by localized surface plasmon resonance imaging (LSPRi) or spectroscopy (Raphael et al., “A new methodology for quantitative LSPR biosensing and imaging,” Analytical Chemistry, 84, p.1367 (2012) and Raphael et al., U.S. Pat. No. 9,791,368 (2017)) is incorporated on the same chip for (i) verifying structure and pillar surface functionalization potential and its reproducibility after chip surface regeneration and (ii) the sensing of binding of cell secretions or cell surface receptors to the plasmonic nanostructures. Intensity and spectral data are determined for the plasmonic nanostructures based on the sensor data for each of the plurality of times, upon the (i) addition of analyte or (ii) in the presence of at least one cell. Additionally, fractional occupancy data is determined for the plasmonic nanostructures, based on either the spectral shift or the intensity data for each of the plurality of times. In the case of cell secretions, extracellular concentration data of the analyte is determined, based on the fractional occupancy data for each of the plurality of times.
One or more of the steps of the method may be performed with a processor.
One or more of the steps of the method may be performed with a processor controlled X, Y, Z positioning microscopy stage for collecting a plurality of images at each time point.
The present invention provides methods and systems for measuring the cellular response to extracellular chemical and physical signals wherein cells are cultured to be in contact with nano and micro-lithographically patterns on substrates that may be biofunctionalized with a plurality of chemistries. The chemical cues and physical cues may be varied independently. The technique is useful for determining how cells integrate a variety of chemical and physical signaling inputs resulting in a range of possible phenotypic outputs and for developing design principles for future biomaterials.
In embodiments disclosed herein, arrays of topographically patterned substrate and gold structures are used for interfacing with live cells both by their chemical functionalization and their three dimensional structure, and the cellular response is determined by imagery. The multi-cue interfacing with live cells is accomplished by two lithographic approaches. First, gold structures can be lithographically patterned such that the gold surface serves as a geometrically defined substrate for biofunctionalization and, thereby, chemically interfacing with cells. Second, lithography and substrate etching or the deposition of additional substrate material can be used to form topographically patterned regions within the substrate as well as gold capped pillars, thereby, varying the physical topography the cells encounter.
Uniform etching of substrate regions with or without gold structures can be accomplished by standard photomasking or hard masking of select regions and then reactive ion etching of the unprotected regions. Deposition of substrate material can be accomplished by deposition techniques such as sputtering or electron beam evaporation. For more complex three dimensional (3-D) topographies, “graytone lithography” in combination with a plasma etching step may be used to etch the substrate to the desired shape. “Graytone lithography” is a way of “photo-sculpting” resist films to create 3-D profiles in photo-resist via a low cost, short cycle time, single exposure process. Graytone lithography in combination with RIE (Reactive Ion Etching) allows the resist profiles to be transformed into 3-D structures. The combination of graytone lithography and a dry reactive ion etch step is called “graytone technology”. (Gal, U.S. Pat. No. 5,310,623 (1994); Henke et al., “Simulation assisted design of processes for gray-tone lithography,” Microelectronic Eng., 27, 267 (1995); and Christophersen et al., “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008)).
Non-patterned sections of the substrates may be utilized as negative controls for both chemical and physical cues. Etched or deposited regions without gold may be used for negative controls of gold-functionalized chemical cues.
Gold structures in the absence of substrate etching may be used as negative controls for physical cues.
Gold nanostructure arrays with defined nanoplasmonic resonance peaks, the wavelength and intensity of which are sensitive to analyte, can be used (i) as positive controls to verify and quantify surface biofunctionalizion and (ii) to sense cell secretions or detect binding of cell surface receptors. (Raphael, U.S. Pat. No. 9,791,368 (2017); Raphael et al., “A new methodology for quantitative LSPR biosensing and imaging,” Analytical Chemistry, 84, p.1367 (2012); and Byers et al., “Quantifying Time-Varying Cellular Secretions with Local Linear Models,” Heliyon, (3) e00340, doi:10.1016/j.heliyon.2017 (2017)).
Applying this approach to measure the surface adhesion characteristics of individual A549 lung epithelial carcinoma cells can be accomplished by a combination of nano- and micro-lithography steps utilized to create surfaces that introduce multiple surface topographies to individual cells. First, electron beam nanolithography can be employed to pattern gold nanostructures (or nanodots) atop a quartz substrate with pre-patterned alignment marks. The density of ligands presented can be readily tuned by varying the nanodot pitch and using established two-component thiol chemistry techniques for biofunctionalization. Second, the roughness can be varied with nanoscale precision by selectively etching substrate patches to create gold-capped quartz nanopillars. The completed substrate can combine arrays of 2D (two dimensional) gold nanodots adjacent to gold-capped nanopillars, with the two types of arrays typically falling within a single cell's footprint. In this way, membrane dynamics and adhesion on the highly textured nanopillar regions can be compared directly to that of the 2D nanodots for individual cells, eliminating cell-to-cell variability while also ensuring the nanodots and nanopillars are biofunctionalized in parallel. Both bare gold and Arginylglycylaspartic acid (RGD) tripeptide functionalized gold can be utilized to compare the dynamics of individual A549 making simultaneous contact with nanodot and nanopillar surfaces. In both cases, cells preferentially bound to the gold-capped nanopillars. Transfecting the cells with a fluorescent actin fusion protein (GFP-actin) showed strong correlation of the nanopillar locations to which the cells were bound with increased actin localization, consistent with focal adhesion formation. Gold nanostructure arrays with defined nanoplasmonic resonance peaks were used as positive controls to ensure active biofunctionalization (Raphael, U.S. Pat. No. 9,791,368 (2017) and Raphael et al., “A new methodology for quantitative LSPR biosensing and imaging,” Analytical Chemistry, 84, p.1367 (2012)).
A chamber 19, mounted on the substrate 14, holds a liquid medium 20, which is in contact with the structures 16 and the substrate 14. The liquid medium 20 may contain one or more living cells 21. An objective lens 22 is positioned adjacent the substrate to receive refractions or emitted light from the structures and light refracted or emitted from the cells passing therethrough. A charge coupled (CCD) or complementary metal-oxide-semiconductor (CMOS) device 24, such as a CCD or CMOS camera, is positioned to receive inputs from the lens 22. In particular embodiments, the apparatus 10 may include one or more of: beam splitters or dichroic 25, a linear polarizer or excitation filter 26, 27, a crossed linear polarizer or emissions filter 28, and a mirror 30. Other detection devices, such as a spectrometer 131, may optionally be included. In use, the excitation light from a visible light source 35, 36 such as a halogen lamp, passes through the linear polarizer or filter 26, 27 and illuminates the cells 21 and substrate 14 through the objective lens 22. Photons refracted, reflected or emitted by the cells, structures and substrate are collected by the objective lens 22, passed through the crossed linear polarizer or filter 28 and reflected by mirror 30 to CCD or CMOS camera (labeled CCD/CMOS). Optionally, a beam splitter 31, intermediate the mirror 30 and CCD, allows some of the energy (reflected light) to enter the spectrometer 131. Alternatively, the spectrometer 131 is omitted from the system 1. Structure/etched area data 32 from the detection device(s) 24, 131 are sent to a processing system 33. In particular embodiments, polarizers or filter positions 26, 27, 28 and objective lens 22 may incorporate prisms and apertures necessary for differential interference contrast (DIC), confocal, dark field, phase contrast and fluorescence microscopy.
With reference to
In the embodiment illustrated in
With reference again to
With reference once again to
With reference to
The structures 16 may be arranged in different patterns, such as an n×m array 40, where each of n and m is at least 5, and up to 10,000. For example, the structures 16 may be arranged in 20×20 arrays. In particular embodiments, the structures 16 may be spaced from 100 to 10,000 nm apart, center-to-center, which thus defines the pitch range. The array designs may incorporate disorder such that structures 16 are stochastically removed from the lithographic pattern or their positions shifted. The positioning of the structures 16 within the array may incorporate pitch gradients and functional spatial variations such that their pitches are varied within the array in a manner specified in the lithographic design. The structures 16 may thus have a pitch of 100-10,000 nm. The arrays 40, 44, 48 may have a pitch of at least 5 μm, or at least 20 μm, or at least 30 μm, or up to 1000 μm, or up to 40 μm, e.g., 33 μm as measured from their respective centers.
With reference to
With reference to
Uniform etching of substrate regions with structures 44 can be accomplished by standard photomasking or hard masking of select regions and then reactive ion etching of the unprotected regions. For more complex three dimensional (3-D) topographies 48, “graytone lithography” in combination with a plasma etching step may be used to etch the glass to desired shape. (Gal, U.S. Pat. No. 5,310,623 (1994); Henke et al., “Simulation assisted design of processes for gray-tone lithography,” Microelectronic Eng., 27, 267 (1995); and Christophersen et al., “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008)).
With reference to
With reference to
With reference to
With reference to
Returning once again to
Returning once again to
In another exemplary embodiment, arrays of gold plasmonic nanostructures are used for real-time imaging of secreted protein concentrations. The inference of fractional occupancy or concentration from nanoplasmonic imagery is assisted by two techniques. First, when normalized, LSPRi can be used to determine the fraction of active surface ligands bound to the analyte (fractional occupancy). Second, to calculate concentration, an analysis approach is used that is based on temporal filtering that utilizes the LSPRi-determined fractional occupancy and reaction rate constants as inputs. (Byers, et al., “Quantifying Time-Varying Cellular Secretions with Local Linear Models,” Heliyon, (3) e00340, doi:10.1016/j.heliyon.2017 (2017)).
Methods for forming the nanoplasmonic arrays of structures are described, for example, in publications: Raphael et al., “A new methodology for quantitative LSPR biosensing and imaging,” Analytical Chemistry, 84, p.1367 (2012); Raphael et al., “Quantitative Imaging of Protein Secretions from Single Cells in Real Time,” Biophysical Journal, 105, p.602 (2013); and Raghu et al., “A Label-free Technique for the Spatio-temporal Imaging of Single Cell Secretions,” J. Vis. Exp. (105), e53120, doi:10.3791/53120 (2015).
Methods for detecting changes of nanoplasmonic arrays intensity and spectral shifts and calculating fractional occupancy and secreted concentrations from these detections are described, for example, in Raphael et al., “Quantitative LSPR Imaging for Biosensing with Single Nanostructure Resolution,” Biophysical Journal, 104, p.30 (2012) and Byers et al., “Quantifying Time-Varying Cellular Secretions with Local Linear Models,” Heliyon, (3) e00340, doi:10.1016/j.heliyon.2017 (2017).
Various applications of the system and method are contemplated. Cell phenotypes such as adhesion, division, migration, death and differentiation can be correlated with the defined substrate topography and chemical functionalization. The substrates can be regenerated allowing for multiple experiments and chemistries to be integrated with the same topographical features. The chip is designed to work with live cell microscopes, stand-alone incubators or microscope/incubator combinations. The integration of multiple microscopy techniques, including fluorescence, enables specific cellular structures and signaling pathways to visualized and that information correlated with substrate topography and chemistry.
Without intending to limit the scope of the exemplary embodiment, the following examples illustrate the application of the system and method.
The substrates used for patterning the nanostructures and nanopillars were 25.4 mm diameter quartz coverslips with an average thickness of 170 μm. Substrate cleaning involved soaking in piranha acid (3:1 H2SO4: H2O2) for a minimum of 10 hrs and then washing with copious amounts of deionized, distilled water (DDW). Substrates were rinsed with acetone followed by IPA and baked on a hot plate to dehydrate the surface and promote resist adhesion.
Following the nanofabrication, localized patches of nanopillars were created by reactive ion-etching regions of the chip specified by a checkerboard patterned mask (
As shown in
With reference to
Human lung epithelial carcinoma cells, A549 (CCL-185, ATTC), were cultured in plastic flasks or petri dishes containing DMEM supplemented with 10% fetal bovine serum (ATCC) and Penicillin (100 IU)-Streptomycin (100 μg/mL) solution (Corning Cellgro) and placed in an incubator set to 37 ° C. and 5% CO2. Approximately 1.5×105 cells were plated onto each 35 mm plastic petri dish. After 24 hrs, cells in 80% confluence were then subjected to transfection with lipofectamine 2000 (Thermo Fisher Scientific). For transfection, cells were washed with 2 mL of DMEM without serum 3 times and then kept in 0.5 mL serum free DMEM until the addition of DNA-lipofectamine complex. To obtain DNA-lipofectamine complexes, 0.2 μg of plasmid DNA, encoding the fusion of actin-binding peptide and green fluorescent protein was mixed in 125 μL serum free DMEM at room temperature (RT) for 5 min and then was added into the lipofectamine solution, which had 2.5 μL of lipofectamine 2000 diluted into 122.5 μL of serum free DMEM. The mixture was incubated at RT for 30 min, before adding to the cells in a 35 mm dish and placed in the CO2 incubator for 5 hrs, followed by the addition of 3 mL complete DMEM with serum. After 24 hours, cells were washed 2 times with phosphate buffer saline (PBS) without calcium and magnesium and were trypsinized by adding 1 ml of trypsin-EDTA (ATCC) at 37° C. for 3-4 min before the addition of DMEM with serum. Cells were then spun down at 130×g for 10 min and the cell pellet was re-suspended in 1 mL of DMEM with serum. Cell numbers were counted (Nexcelome Cellomoter), and the distribution of fluorescent cells were measured by using flow cytometry (Accuri C6) and were tabulated versus control cells.
Live cell imaging was performed using transmitted light illumination and a 63X, 1.46 numerical aperture oil-immersion objective. A thermoelectrically-cooled CCD camera (Hamamatsu ORCA R2) was used to capture images in both bright field and LSPRi modes. Fluorescent imagery was taken using a Yokagawa spinning disk confocal microscope with the same objective and coupled to an Andor iXon EMCCD camera. A heated stage and temperature controlled enclosure held the stage temperature at 37.0±0.04° C. (Zeiss). Humidity and CO2 were regulated at 98% and 5%, respectively, by flowing a gas-air mixture through a heated water bottle and into the enclosure. XY plane drift was corrected for with image alignment software (Zeiss Zen Blue) and focus was stabilized using an integrated hardware-based focus correction device (Zeiss Definite Focus). Approximately 75 cells were drop coated on the chip and incubated for one hour to provide time for surface adhesion. Time-lapse live-cell imaging was conducted with fluorescence, bright field and LSPRi images captured at each time point. The exposure times were 1 sec, 500 ms and 150 ms, respectively.
In
With reference to
The live cell measurements reflected in
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art that are also intended to be encompassed by the following claims.
The present application is a non-provisional application claiming the benefit of U.S. Provisional Application No. 62/590,734 filed on Nov. 27, 2017 by Marc P. Raphael et al., entitled “SUBSTRATES WITH INDEPENDENTLY TUNABLE TOPOGRAPHIES AND CHEMISTRIES FOR QUANTIFYING SURFACE-INDUCED CELL BEHAVIOR,” the entire contents of which is incorporated herein by reference. All publications, including journal articles, patents, and patent applications, referenced in this application are incorporated in their entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
62590734 | Nov 2017 | US |