The present invention relates in general subterranean wellbores and more specifically to selectively closing an annulus in the wellbore, below the surface, upon failure of the casing.
Wells in general, and wellbores specifically, are drilled down to a formation for the purpose of producing fluid from and/or injecting a fluid into a specific subterranean formation. To complete the well for production and/or injection of fluids the wellbore is typically lined with casing that is cemented within the wellbore drilled into the earth. The casing is opened to the desired formation to allow fluid communication between the earthen formation and the wellbore. The wellbore is often further completed with another string of pipe, referred to herein as tubing, disposed within the casing to a desired formation to provide a conduit between the formation and the surface.
As is well known in the art, fluid may be produced from a formation and/or injected into a formation through the tubing string and/or the tubing-casing annulus. Often fluid is injected into the formation at a point in time and then fluid is produced from the formation through the wellbore to the surface.
In some wells casing integrity may be jeopardized due to geologic conditions such as subsidence and fault movements, or from production methods such as steam injection. Loss of casing integrity, in wells without a downhole packer, can cause uncontrolled flow, which is hazardous to personnel and the environment.
In some well designs a downhole packer is positioned within the tubing-casing annulus separating the lower portion of the annulus from the upper portion of the annulus. While this well configuration provides fluid control through the annulus, it also prevents annular injection or annular production.
There are prior art devices to provide tubing isolation, but these devices do not provide a deep annular barrier upon casing failure. Some of these devices, such as annular safety valves and subsurface surface-controlled safety valves, control the flow in the tubing string or near the surface annulus. There are also surface flow control devices such as blow-out preventers. There are devices requiring mechanically rotation of the tubing at the surface to seal the casing-tubing annulus. These devices are undesirable due to the necessity to rig up for rotation.
Therefore, it is a desire to provide a subsurface annular safety barrier to provide control of the casing-tubing annulus proximate the top of the formation in the event of loss of casing integrity. It is a further desire to provide a subsurface annular safety barrier that permits annular injection and/or annular production when the casing integrity is intact.
In view of the foregoing and other considerations, the present invention relates to controlling fluid flow through the casing-tubing annulus in annular flow wells proximate the top of a formation top upon loss of casing integrity.
In one embodiment of the present invention an annular safety barrier system for selectively blocking fluid flow in an annular flow well includes a tubing positioned within the well forming an annulus between the tubing and a casing and a barrier positioned in the annulus in an open position permitting fluid flow across the barrier and actuatable to a closed position blocking annular fluid flow. Desirably, the barrier does not require mechanical manipulation of the tubing to be actuated to the closed position.
In some embodiments, an annular safety barrier for selectively blocking flow through the casing-tubing annulus in an annular flow well includes a packer and a valve permitting fluid flow across or through the packer. Desirably, the valve does not require mechanical manipulation to be actuated to the closed position. In some embodiments, the valve is actuated to the closed position, blocking flow across the packer, by releasing pressure from the valve.
An embodiment of a method of blocking fluid flow through a casing-tubing annulus in an annular flow well includes the steps of positioning a barrier in the annulus in an open position allowing fluid flow across the barrier, and actuating the barrier to the closed position, without mechanical manipulation of the tubing, to block fluid flow across the barrier. The barrier may be proximate a formation adjacent the well. The barrier may be actuated to the closed position upon mechanical failure of the casing.
The foregoing has outlined the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The foregoing and other features and aspects of the present invention will be best understood with reference to the following detailed description of a specific embodiment of the invention, when read in conjunction with the accompanying drawings, wherein:
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
As used herein, the terms “up” and “down”; “upper” and “lower”; and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements of the embodiments of the invention. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated as being the top point and the total depth of the well being the lowest point.
Subsurface annular safety barrier 10 is run into casing 18 allowing production of fluid from, or injection of fluid into, formation 16 when casing 18 is intact through casing-tubing annulus 20. Subsurface annular safety barrier 10, as shown in
The well shown in
Operation of subsurface annular safety barrier 10 of the present invention is described with reference to
If casing 18 fails, then annular barrier 12 may be activated to close casing-tubing annulus 20, separating the upper portion 24 of the annulus 20 from formation 16. By controlling the fluid flow in annulus 20 proximate formation 16 the well (formation 16) may then be killed through tubing 14 permitting more effective and less expensive repair of the well.
As shown in
Annular barrier 12 is positioned proximate formation top 16a or at another position downhole where it may be expected that casing 18 integrity will be lost. Packer 38 is set in wellbore 18 to limit fluid flow in casing-tubing annulus 20 between formation 16 and upper portion 24 of annulus 20 through valve 32. Valve 32 includes a conduit 40 and a port 34 for allowing fluid flow therethrough.
Port 34 is operational from an open position allowing annular fluid communication from formation 16 through annular barrier 12 into upper portion 24 of casing-tubing annulus 20 to a close position restricting annular flow through annular barrier 12. Port 34 is maintained in an open position via pressure applied through control line 30. Upon loss of integrity of casing 18, pressure my be bled off of valve 32 closing valve port 34 isolating upper portion 24 of casing-tubing annulus 20 from formation 16.
As has been shown by example in
Determination of when casing 18 integrity has been compromised may be conducted in numerous manners well known in the art. Examples of determining casing 18 failure include, but are not limited to, monitoring passive seismic wells, monitoring of casing and tubing flow characteristics in the production and/or injection lines and monitoring downhole conditions via utilization of downhole distributed fiber optic sensors, such as Schlumberger's Sensa DTS™ system, and other downhole monitoring systems. Automated monitoring and activation devices may be further utilized for monitoring of well characteristics and to operate subsurface annular safety barrier 10 from an open position allowing fluid communication through casing-tubing annulus 20 to a closed position isolating the formation 16 side of casing-tubing annulus 20 from the upper portion 24 of casing-tubing annulus 20. As indicated in reference to
With reference to
Upon realization that casing 18 integrity has been breached annular barrier 12 is motivated to the closed or set position to isolate formation 16 from upper portion 24 of casing-tubing annulus 20. This motivation of annular barrier 12 is performed utilizing pressure and not by mechanical manipulation, thus allowing for a quick response to the loss of integrity of casing 18.
From the foregoing detailed description of specific embodiments of the invention, it should be apparent that a subsurface annular safety barrier system for selectively closing a casing-tubing annulus upon loss of casing integrity that is novel has been disclosed. Although specific embodiments of the invention have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.
This application is a division of U.S. patent application Ser. No. 10/702,883, filed Nov. 6, 2003, which claims priority under 35 U.S.C. §119 of U.S. provisional patent application Ser. No. 60/424,417, filed Nov. 7, 2002, and entitled SUBSURFACE ANNULAR BARRIER.
Number | Name | Date | Kind |
---|---|---|---|
3288221 | Howard et al. | Nov 1966 | A |
3313349 | Page, Jr. | Apr 1967 | A |
3375874 | Cherry et al. | Apr 1968 | A |
3921720 | Wetzel | Nov 1975 | A |
4407363 | Akkerman | Oct 1983 | A |
4461353 | Vinzant et al. | Jul 1984 | A |
4519456 | Cochran | May 1985 | A |
RE32343 | Vinzant et al. | Feb 1987 | E |
5040606 | Hopper | Aug 1991 | A |
5044443 | Churchman et al. | Sep 1991 | A |
5810083 | Kilgore | Sep 1998 | A |
6966386 | Ringgenberg et al. | Nov 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070034380 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60424417 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10702883 | Nov 2003 | US |
Child | 11533138 | US |