1. Field of the Invention
The invention relates generally to the field of well logging. More specifically, the invention relates to techniques for processing ultrasonic signal data to evaluate subsurface properties and tool orientation.
2. Background Art
Ultrasonic tools or instruments or calipers are one of several types of measurement tools used, including while drilling, to measure the size of a borehole. An ultrasonic tool induces a transducer that emits an acoustic signal and then detects the echo signals that are reflected from the borehole wall. The time that it takes the acoustic signal to return to the tool is proportional to the distance that the signal traveled.
A “front face echo” results from reflection of part of the acoustic signal from an interface between an acoustic transducer or sensor external window (called the “front face” of the sensor) and a fluid in the borehole. The borehole fluid or “mud” is pumped through the drill string and used to lubricate the drill bit and to carry borehole cuttings or chips upwardly to the surface as known in the art. A “formation echo” is the reflection of the acoustic signal from the formation or borehole wall. Transit time is the time it takes the signal to travel from the front face of the sensor, to the borehole wall and back again. The transit time is proportional to the distance between the tool and the borehole wall. When used with the speed of the acoustic signal in the mud, the transit time can be used to calculate the distance between the ultrasonic tool and the borehole wall. This distance is called “standoff.”
U.S. Pat. No. 4,665,511 describes an acoustic calipering apparatus for while-drilling operations. U.S. Pat. Nos. 5,852,587, 5,387,767, and Re. 34,975 (all assigned to the present assignee) describe various ultrasonic measurement apparatus and additional transducer configurations. J. J. Orban et al., New Ultrasonic Caliper for MWD Operations, SPE/IADC D
Measurement practice known in the art includes dividing the azimuthal plane of the borehole into quadrants, each comprising about 90° of the azimuthal plane.
Measurement practice known in the art also includes measuring the front face echo during a setup procedure. Before the tool is used to measure formation echo signals, it is operated and the front face echo is measured. The measurement of the front face echo transit time is assumed to be constant during actual use for that particular tool geometry. The detection of acoustic signals begins after the predetermined front face echo transit time.
For each sector, three specific transit time values are computed in the statistical analysis. The first is the average transit time for the measurements in that sector. The average is the arithmetic mean of all transit times. The other two computed transit times are called the minimum and maximum transit times. These do not represent the longest and shortest times measured, but they are values that are statistically useful for evaluating the reliability of the measurements.
The average 301, maximum 303, and minimum 302 are converted to transit distances by multiplying by the speed of sound in the drilling fluid. The result represents the most likely standoff in the standoff range. Again, the closer the values are to each other, the more reliable the measurement.
Prior art detection methods include filtering noise out of the detected signal. Time is divided into separate periods, each with a respective amplitude threshold signal value. A signal is not used in calculating the histogram unless it is above the amplitude threshold value for the particular time period in which it is acquired. The amplitude threshold decreases in a stair-step manner.
Prior art methods use multiple standoff measurements, but the differences, representing tool movement in the borehole, are averaged out in the calculation. Further, the threshold filtering method of the prior art can mask background noise, but it does not take into account the effect of different acoustic matching between the PEEK material and the borehole fluid.
Thus there remains a need for improved subsurface acoustic measurement techniques.
The invention provides a method for evaluating a borehole traversing a subsurface formation. The method comprises transmitting an acoustic signal into the borehole at each of a plurality of azimuthal positions; determining a transit time for a formation echo signal for each of the plurality of acoustic signals; and determining a distribution of formation echo signal transit times in each of a plurality of azimuthal sectors.
The invention provides a method for evaluating a borehole traversing a subsurface formation. The method comprises transmitting an acoustic signal into the borehole at each of a plurality of azimuthal positions; determining an amplitude and a transit time for a front face echo signal for each of the plurality of acoustic signals; selecting a threshold curve for each of the plurality of acoustic signals based on the amplitude of the front face echo, a power output of a transducer, a tool geometry, and an electronic offset of the tool; and determining a formation echo signal for each of the plurality of acoustic signals as a signal with an amplitude that exceeds the threshold curve.
The invention provides a method for evaluating a borehole traversing a subsurface formation. The method comprises selecting a plurality of azimuthal sectors in the borehole so that each of the plurality of azimuthal sector forms an opposing sector pair with an opposing sector; transmitting an acoustic signal into the borehole in each of the plurality of azimuthal sectors; determining an amplitude and a transit time for a front face echo for each acoustic signal; selecting a threshold curve for each acoustic signal based on the amplitude of the front face echo, a power output of a transducer, a tool geometry, and an electronic offset of the tool; determining a formation echo signal for each acoustic signal as a signal with an amplitude that exceeds the threshold curve; determining a transit time for the front face echo signal for each acoustic signal; determining a farther-mode transit time and a closer-mode transit time for a distribution of formation echo signal transit times in each of the plurality of azimuthal sectors; determining a farther standoff for each of the plurality of azimuthal sectors as a distance corresponding to the farther-mode transit time by using a speed of the acoustic signals in a borehole fluid; determining a closer standoff for each of the plurality of azimuthal sectors as a distance corresponding to the closer-mode transit time by using the speed of the acoustic signals in the borehole fluid; determining a distance differential in each of the plurality of azimuthal sectors as a difference between the farther standoff and the closer standoff; and calculating the sum of the closer standoffs of each sector in each opposing sector, a tool size, and an average of the distance differentials of each sector in each opposing sector pair.
The invention provides a method for evaluating a preferential position of a tool disposed in a borehole traversing a subsurface formation. The method comprises selecting a plurality of azimuthal sectors in the borehole so that each of the plurality of azimuthal sector forms an opposing sector pair with an opposing sector; transmitting an acoustic signal into the borehole in each of the plurality of azimuthal sectors; determining an amplitude and a transit time for a front face echo for each acoustic signal; selecting a threshold curve for each acoustic signal based on the amplitude of the front face echo, a power output of a transducer, a tool geometry, and an electronic offset of the tool; determining a formation echo signal for each acoustic signal as a signal with an amplitude that exceeds the threshold curve; determining a transit time for the front face echo signal for each acoustic signal; determining a farther-mode transit time and a closer-mode transit time for a distribution of formation echo signal transit times in each of the plurality of azimuthal sectors; determining a farther standoff for each of the plurality of azimuthal sectors as a distance corresponding to the farther-mode transit time by using a speed of the acoustic signals in a borehole fluid; determining a closer standoff for each of the plurality of azimuthal sectors as a distance corresponding to the closer-mode transit time by using the speed of the acoustic signals in the borehole fluid; in each of the plurality of sectors, determining if either or both of the farther standoff and the closer standoff is a preferential position of the tool; and determining radial movements of the tool in the borehole from the preferential positions of the plurality of azimuthal sectors.
Other aspects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
The method according to the invention enables measuring the shape of a borehole.
It also enables determining the tool's preferential position in the borehole, allowing for better interpretation of other well logging data.
Each sector 601-608 has an opposing sector located about 180° around the azimuthal plane 100. In the example of
This invention is not intended to be limited to eight sectors with four diameters. As a practical matter, there should be enough sectors to perform the statistical calculations. Otherwise, any number of sectors is acceptable so that the method provides a borehole shape that meets the desired needs. Preferably, an even number of sectors is used, so that each sector has an opposing sector for computing a diameter. For example, the azimuthal plane could be divided into 16 sectors, to determine 16 radii and eight diameters. The number of sectors can be selected to meet the needs of a particular drilling or measurement situation.
In one embodiment, the operation of the transducer in the tool is synchronized with the rotation of the tool or drill-string. By synchronizing the operation of the transducer, it will emit an acoustic burst every time the tool rotates into a new sector. A burst consists of one or more acoustic pulses. Thus, as the tool rotates, it will emit a new set of acoustic signals into every sector. By using a rapid burst, lasting 5 milliseconds, for example, the tool can be considered not to have moved during the firing interval, even for rotational speeds as high as 250 RPM. Advantageously, this allows for a substantially equal number of measurements in each sector and ensures that for each measurement in a particular sector, a corresponding measurement will be made in the opposing sector during the rotation of the tool.
For each transmitted acoustic signal, the tool will measure the time after firing of detection of any signal with an amplitude that exceeds the threshold value, and the sensor will record the sector in which the measurement was made. If the threshold is properly selected, the only acoustic signals with an amplitude that exceeds the threshold will be the front face echo and the formation echo. As will be explained below, in some embodiments, the amplitude of the front face echo is preferably measured after each firing.
In one embodiment, the acoustic burst data may be sent to the surface by while-drilling telemetry as known in the art. Once received at the surface, the data can be recorded, processed, or computed in accord with the techniques of the invention. Alternatively, some or all of the processing can be performed downhole and the data can be recorded uphole, downhole, or both using electronics housed in the tool 502 as known in the art. In another embodiment, the data is conveyed to the surface in real time via an electric cable attached to the wireline tool (not shown) as known in the art. It will be understood that alternative means can be employed for communicating the acquired data to the surface as the precise form of communication is immaterial to the implementation of the invention.
It will also be apparent to those skilled in the art that the invention may be implemented by programming one or more suitable general-purpose computers having appropriate hardware. The programming may be accomplished through the use of one or more program storage devices readable by the computer processor and encoding one or more programs of instructions executable by the computer for performing the operations described above. The program storage device may take the form of, e.g., one or more floppy disks; a CD ROM or other optical disk; a magnetic tape; a read-only memory chip (ROM); and other forms of the kind well known in the art or subsequently developed. The program of instructions may be “object code,” i.e., in binary form that is executable more-or-less directly by the computer; in “source code” that requires compilation or interpretation before execution; or in some intermediate form such as partially compiled code. The precise forms of the program storage device and of the encoding of instructions are immaterial here.
The detection mode according to one aspect of the present invention compares the acoustic signal received at the tool that follows a firing of the tool with a threshold that is in the form of a curve. When the amplitude of the received signal is greater than the threshold curve, the signal is acknowledged. The threshold curve is given by the expression:
TDC=(A×e−B(t−C))+D (1)
where A is the amplitude of the front face echo, B is a function of the transducer power output (fixed at manufacturing), C is a function of the sensor's window geometry (fixed during the run), D is the electronic offset at zero signal (fixed at manufacturing), and t is the time since firing.
The amplitude of the front face echo, A in Equation 1, can be obtained several ways. First, the amplitude could be measured during the tool setup and assumed to be constant during actual use. Because the power output of the transducer in the tool varies with each firing, and the acoustic impedance contrast at the interface of the tool and the drilling fluid affects the front face echo amplitude, the actual amplitude of the front face echo can vary with each firing. In some embodiments, the amplitude of the front face echo is measured in-situ. This means measuring the front face echo in the borehole substantially every time the tool is fired. Advantageously, repeatedly measuring the front face echo amplitude to calculate the threshold curve accounts for these factors with each firing.
The tool's on-board computer (not shown) may accumulate data over a large time interval, for example 60 seconds. Based on the distribution of transit times from within the data accumulation interval, modes of the tool position are calculated for each sector. If the tool does not move with respect to the radius of a particular sector, the data for that sector will indicate a uni-modal distribution. In sectors where the tool does move with respect to the radius, at least a bi-modal distribution is identified. For a bi-modal distribution, the mode at the shorter transit time is called the closer-mode transit time, and the mode at the longer transit time is called the farther-mode transit time. There will be one farther-mode transit time and one closer-mode transit time for each sector. For a sector with a uni-modal distribution, the farther and closer-mode transit times will occur at the same transit time.
A time differential for each sector is calculated as the difference between the farther and closer-mode transit times for that sector. Thus:
ΔtX=FMX−CMX (2)
where ΔtX is the differential for sector X, FMX is the farther-mode transit time for sector X, and CMX is the closer-mode transit time for sector X. Again, for a sector with a uni-modal distribution, the differential will be zero (Δt=0).
The farther and closer-mode transit times can be used to calculate a farther and a closer standoff, respectively. The result of multiplying the transit times by the speed of the acoustic signal in the borehole fluid is standoff distance. This calculation can be made for both the farther and closer-mode transit times. Similarly, the speed of the acoustic signal can be used to convert the time differential to a distance differential, representing the distance between the tool's preferential positions at the farther and closer standoffs.
The techniques of the invention include computing the diameter of the borehole. The farther standoff and the closer standoff for sector 1 are respectively shown at 911 and 912 in FIG. 9. The farther standoff 911 represents preferential position 902 with the largest standoff with respect to sector 1, and the closer standoff 912 represents the preferential position 901 with the smallest standoff with respect to sector 1. Conversely, the farther standoff 951 represents preferential position 901 with the largest standoff with respect to sector 5, and the closer standoff 952 represents the preferential position 902 with the smallest standoff with respect to sector 5. Note, that opposing sector may not have symmetrical preferential positions, although this example shows that.
The borehole diameter can be calculated for each pair of opposing sectors. The diameter is equal to the sum of the closer standoff from one sector, for example 912, the closer standoff from the opposing sector for example 952, the tool size 904, and the average of the distance differentials 903 from both sectors. The distance differential for a particular sector is the distance between the farther and closer standoffs for that sector (910, 950). In
The borehole diameter can be calculated using the following expression:
where D1.5 is the diameter across sectors 1 and 5, CS1 is the closer standoff for sector 1, CS5 is the closer standoff of sector 5, Δd1 is the distance differential of sector 1, and Δd5 is the distance differential of sector 5. In essence, the borehole evaluation techniques of the invention entail an analysis of the anti-correlation effects encountered with the tool within the borehole. The histograms are processed as described herein in terms of farther and closer standoffs in an azimuthal sweep around the borehole.
Advantageously, embodiments of the invention can be used to determine the actual size of the borehole and the differential of each sector. Where the prior art methods averaged all of the travel times for each sector, a technique of the invention computes a differential for each sector. This allows the evaluation of the tool's preferential positions inside the borehole. The histogram plot for transit times per sector is analyzed during a given time interval. Such a plot results in
Embodiments of the invention use time distributions and the modes for each sector to find the preferential position of the tool in the borehole.
A method according to the invention is shown in FIG. 11. The method includes transmitting an acoustic signal into a borehole at a plurality of azimuthal positions 1101, and determining a transit time for a formation echo signal for each of the acoustic signals 1104. In some embodiment, the method includes determining the amplitudes of a front face echo signal 1102 and then determining a threshold curve 1103 based on the amplitude of the front face echo, a transducer power output, a sensor window geometry, and the electronic offset at zero signal.
In some embodiments, the method next includes determining a distribution of formation echo signals 1105 in each of the azimuthal sectors and determining a farther-mode transit time and a closer-mode transit time 1106 if the distribution is bi-modal. In another embodiment, the method includes determining a farther and closer standoff for each sector 1106 that correspond to the farther-mode transit time and the closer-mode transit time for that sector, and determining a differential distance in each sector 1107 that is the difference between the farther and closer standoff for that sector.
In one embodiment, the method includes determining a borehole diameter by adding the closer standoff from one sector, the closer standoff from the opposing sector, the tool size, and the average of the distance differentials from the sector and the opposing sector 1108. In another embodiment, the method includes determining if either or both of the farther and closer standoffs represent a preferred position of the tool 1109 and determining the radial movements of the tool in the borehole by plotting the preferential positions 1110.
For the purposes of this specification it will be clearly understood that the word “comprising” means “including but not limited to”, and that the word “comprises” has a corresponding meaning.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. For example, although embodiments of the invention have been disclosed focusing on while-drilling applications, the invention is clearly applicable to all types of subsurface operations involving acoustic measurements. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
3524162 | Zill | Aug 1970 | A |
4665511 | Rodney et al. | May 1987 | A |
4698793 | Wu | Oct 1987 | A |
4964085 | Coope et al. | Oct 1990 | A |
5058078 | Eyl et al. | Oct 1991 | A |
5077697 | Chang | Dec 1991 | A |
5130950 | Orban et al. | Jul 1992 | A |
5354956 | Orban et al. | Oct 1994 | A |
5387767 | Aron et al. | Feb 1995 | A |
RE34975 | Orban et al. | Jun 1995 | E |
5469736 | Moake | Nov 1995 | A |
5513528 | Holenka et al. | May 1996 | A |
5644550 | Priest | Jul 1997 | A |
5852587 | Kostek et al. | Dec 1998 | A |
6038513 | Varsamis et al. | Mar 2000 | A |
6041861 | Mandal et al. | Mar 2000 | A |
6188643 | Liang et al. | Feb 2001 | B1 |
6366531 | Varsamis et al. | Apr 2002 | B1 |
6584837 | Kurkoski | Jul 2003 | B2 |
6648083 | Evans et al. | Nov 2003 | B2 |
Number | Date | Country |
---|---|---|
0663511 | Jul 1995 | EP |
0671547 | Sep 1995 | EP |
Number | Date | Country | |
---|---|---|---|
20030235114 A1 | Dec 2003 | US |