1. Field of the Invention
The present invention relates generally to modeling subterranean features and more particularly to analysis of seismic data using probabilistic comparisons between the data and modeled seismic data.
2. Description of the Related Art
Seismic data acquisition is the most common means to get information about subsurface features. Commonly, acoustic signals are successively generated at a set of regular grid points and reflected signals, resulting from interfaces between subterranean features having different elastic properties are recorded via detectors positioned at or below the surface. Typically, the detectors are similarly arranged in a regular grid, which may coincide with the grid of source locations. The signal recorded by a detector is called a seismic trace. The seismic traces are then sorted into gathers, possibly after some preliminary processing, such that traces in a specific gather represent reflections from about the same subsurface reflection point. Hence, each trace in such a Common Reflection Point gather has a different source and has been recorded by a different receiver. It is usually identified by the geographic location of the reflection point and by the distance (offset) between the source and the detector. Because reflection amplitudes depend on the angle at which a signal impinges on an interface, and because this angle depends on the source-detector offset, the reflection amplitudes are offset-dependent. The offset (or angle-of-incidence) dependence can be exploited to determine properties of rocks in the subsurface region.
Aspects of embodiments of the present invention provide a method of predicting subsurface properties of a geologic formation including acquiring seismic data for a subsurface region including the geologic formation, computing seismic attributes from the acquired seismic data, physically constraining modeled data representing hypothetical physical properties for at least a portion of the geologic formation, computing synthetic seismic data from the physically constrained modeled data, computing synthetic seismic attributes based on the computed synthetic seismic data and applying Bayesian analysis using the computed synthetic seismic attributes, to predict a probability of a particular subsurface property given the measured seismic attributes.
Aspects of embodiments of the invention provide a system for predicting subsurface properties of a geologic formation including a memory configured to store data including seismic data acquired from a subsurface region including the geologic formation, a processor, configured and arranged to compute seismic attributes from the acquired seismic data and to compute synthetic seismic data from modeled data and to compute seismic attributes corresponding to the computed synthetic seismic data, and to apply Bayesian analysis to the computed seismic attributes from the acquired seismic data using the computed seismic attributes corresponding to the computed synthetic seismic data.
Aspects of embodiments of the invention may include a computer-readable medium encoded with computer-executable instructions for performing the foregoing method or for controlling the foregoing device.
Aspects of embodiments of the invention may include a system incorporating the foregoing device and configured and arranged to provide control of the device in accordance with the foregoing method. Such a system may incorporate, for example, a computer programmed to allow a user to control the device in accordance with the method, or other methods.
These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various FIGS. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
As noted above, amplitude variation versus offset (“AVO”) measurements may be used as a direct hydrocarbon indicator, identifying subsurface regions where drilling may be expected to find hydrocarbon resources. In practice, it may be difficult to differentiate between a region containing oil, gas or brine. It may likewise be possible that a signal that seems on its face to identify oil or gas merely indicates a non-resource bearing rock feature. As a result, the inventors have determined that it may be useful to provide additional tools for interpreting AVO data to reduce risk associated with expensive drilling activities.
The reflected energy (arrows) returns to the surface and is detected by an array of detectors (hydrophones in this case) 18 that may be towed from the ship or from a separate ship. Each detector may be said to have a particular offset from the source. Those detectors with the smallest offset (the right-hand detectors 18 in the FIG.) are referred to as “near” while those with the largest offset are referred to as “far”. Because the travel time for a reflected signal increases with increasing offset, a time correction is applied so that the reflected signal is displayed at the same time on each trace, regardless of the offset.
To extract information from the complex seismic signals it is common to compute attributes of various kinds. These attributes can relate to individual traces of the gather, for example, a trace's maximum reflection amplitude. Or they may relate to the gather as a whole, for example, the average amplitude (stack), the slope of the amplitude change with offset (gradient), or the second derivative of the amplitude change with offset (curvature). Likewise, attributes including, intercept and intercepting gradient, among others, may find application in embodiments of the present invention.
Data collected at the detectors 18 may be collected and stored, for example, in a data storage device 20 as schematically illustrated in
As illustrated in the flow chart of
Hypothetical physical properties for at least a portion of the formation under investigation are generated or loaded (104). In a particular approach, a number of pseudo-wells, for example, hundreds or thousands of pseudo-wells, are generated.
The pseudo-wells may be generated using a partially random approach. Rather than using a simple stochastic approach, in which any particular physical model is equally likely, the generation of the pseudo-wells may be constrained by physical constraints (106). The constraining may take place prior to the generating, or alternately, purely stochastic pseudo-wells may be later constrained (e.g., by eliminating wells having characteristics outside the constraints). As will be appreciated, it is likely to be more efficient to first constrain, then generate, the wells, but either approach should be considered to be within the scope of the present invention.
Rather than generating pseudo-wells, pseudo-well data may be collected from previously existing data sets. In this approach, it may be useful to additionally process the data so that they better model the actual characteristics of the area of interest. For example, a data set may include pseudo-wells at a given depth, shallower than the depth of interest. In this case, the pseudo-well data may be transformed using known techniques so that they are appropriate to the depth of interest.
In the case of generated pseudo-wells, existing data, or transformed data, there may be data that correspond to non-physical conditions (for example, a negative Poisson's ratio). Application of physical constraints may be used to remove such non-physical data.
Furthermore, it may be useful to include geological constraints which may include, for example, the situation in which there is advance knowledge of the deposition environment of the material. In this case, that knowledge may allow the modeler to determine information regarding what types of materials are likely to be present as well as what relationship various layers are likely to have. By way of example, an eolian deposition environment would tend to include sandstones that are relatively free of clay and relatively well-sorted. In contrast, deltaic sandstones would tend to be higher in clay content. In order to render the hypothetical physical properties more relevant to the analysis of the acquired seismic data, the types of sandstone generated would depend, at least in part, on whether the region under investigation includes wind-deposited or river delta deposited material and could be further differentiated based on specifics of the deposition environment. This type of constraint may be applied to the generation of data or to sorting operations that may be performed on data sets to ensure that the data tend to reflect the geological reality.
In particular examples, as shown in
In an alternate approach, where there is local information available (e.g., from cores or wireline data from nearby wells), that information may be used as a basis for geophysical constraint of the model. Likewise, combinations of local information and depositional environment information may be used where available.
Once the geophysically constrained physical properties have been generated, forward modeling is used to compute synthetic seismic data (108), i.e., synthetic seismograms. That is, the models are used to calculate sets of seismic data that would correspond to measured data for the pseudo-wells. As part of this process, the calculations to determine the synthetic data may use a variety of wavelets as models for the seismic waves. Wavelets may be, for example, calculated from the measured seismic data. Alternately, they can be computed based on theoretical considerations.
One example of an appropriate wavelet is a 40 Hz Ricker wavelet. As will be appreciated, wavelet parameters may be varied, for example, the wavelet length may vary between about 40-200 ms, and the wavelet bandwidth may be between about 10 and about 50 Hz. In a particular implementation, the inventors have found that a 60 ms, 40 Hz wavelet may provide useful results.
The sets of synthetic seismic data corresponding to the pseudo-wells are used to compute seismic attributes (110) in a process analogous to the initial computation of seismic attributes (102). That is, the synthetic data may be processed as if they were actually acquired by standard seismic exploration techniques to determine slope, intercept, and/or other relevant attributes. In particular, the synthetic data may be processed to determine the same attributes as the actual data, which would tend to aid in direct comparisons between the two.
Once the synthetic attributes are available, Bayesian analysis is applied (112) to the computed seismic attributes from the acquired seismic data using the computed seismic attributes corresponding to the computed synthetic seismic data. One example of such a Bayesian analysis is shown below in Eqn. 1:
P(l1,t|s,g)=P(s,g|l1,t)*P(l1,t)/P(s,g) Eqn. 1
Where P(l1, t) is the probability of a layer of type one (e.g., a gas sand layer) and thickness t, while s and g denote stack and gradient attributes. That is, the equation states that the probability of finding a gas sand layer of thickness t given a particular pair of stack and gradient values is equal to the probability of measuring a particular stack and gradient given a gas sand layer of thickness t, times the probability of finding a gas sand layer of thickness t, divided by the probability of measuring the particular stack and gradient.
Though the above equation relates to the likelihood of finding a layer of a particular type and a particular thickness, it applies in principle to any particular geological property. That is, the presence of hydrocarbons (i.e., likelihood of gas vs. oil vs. brine vs. background as discussed below in relation to
An embodiment includes a graphical user interface that can allow for visual comparisons along with the quantitative calculated comparisons. As shown in
Similar ellipses may be generated for any of the characteristics of interest as described above. For example, thickness, porosity, net-to-gross can be produced in a manner analogous as that used for fluid type identification. Furthermore, a similar methodology can be used to compare different geological models and probabilistic maps can be generated. For example a probabilistic fluid map may be generated based on stack and amplitude data while net thickness maps may be generated based on a variety of seismic attributes.
As will be appreciated, the various functions of generating pseudo-wells, analysis of seismic data, forward modeling of synthetic seismic data, and Bayesian analysis, may be implemented as modules of a common software program or may be implemented as separate software programs. Where separate software programs are used, it may be useful to ensure a common data format, or to provide a data format translation module that converts data from one format to another.
In a variation that is applicable to the above embodiments, it is possible to apply a thresholding operation so that very low probabilities are ignored. Likewise, any of the above embodiments may include iterative steps whereby estimates of the prior information are corrected based on results of a previous iteration of the method. For example, where the probabilistic analysis indicates that the actual seismic data is very likely to be indicative of a particular geologic structure, that structure may form a geological constraint for use in generating a new set of pseudo-wells.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, though reference is made herein to a computer, this may include a general purpose computer, a purpose-built computer, an ASIC programmed to execute the methods, a computer array or network, or other appropriate computing device. As a further example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Number | Name | Date | Kind |
---|---|---|---|
2661523 | Houck et al. | Dec 1953 | A |
3220844 | Yudelson et al. | Nov 1965 | A |
3277233 | Ross et al. | Oct 1966 | A |
4052237 | Appleby et al. | Oct 1977 | A |
4108707 | Appleby et al. | Aug 1978 | A |
4447807 | Klein et al. | May 1984 | A |
4471520 | Houck et al. | Sep 1984 | A |
4509244 | Houck et al. | Apr 1985 | A |
4586234 | Choate et al. | May 1986 | A |
4600027 | Houck et al. | Jul 1986 | A |
4646912 | Houck et al. | Mar 1987 | A |
4773928 | Houck et al. | Sep 1988 | A |
4829573 | Gagnon et al. | May 1989 | A |
4893694 | Houck et al. | Jan 1990 | A |
5277401 | Butler et al. | Jan 1994 | A |
5488693 | Houck et al. | Jan 1996 | A |
5578098 | Gagliardi et al. | Nov 1996 | A |
5610329 | Yovichin et al. | Mar 1997 | A |
5642328 | Houck et al. | Jun 1997 | A |
5838634 | Jones et al. | Nov 1998 | A |
5915387 | Baggett et al. | Jun 1999 | A |
6148264 | Houck et al. | Nov 2000 | A |
6438493 | West et al. | Aug 2002 | B1 |
6442487 | Kim | Aug 2002 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6560540 | West et al. | May 2003 | B2 |
6603313 | Srnka | Aug 2003 | B1 |
6662112 | Eastwood et al. | Dec 2003 | B2 |
6744729 | Tinsley et al. | Jun 2004 | B2 |
6847682 | Liang | Jan 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6904367 | Cook et al. | Jun 2005 | B2 |
6950786 | Sonneland et al. | Sep 2005 | B1 |
6952649 | Cook et al. | Oct 2005 | B2 |
6999879 | Houck | Feb 2006 | B2 |
7082368 | Nickel | Jul 2006 | B2 |
7127041 | Houck | Oct 2006 | B1 |
7373251 | Hamman et al. | May 2008 | B2 |
20020042677 | West et al. | Apr 2002 | A1 |
20020096237 | Burhoe et al. | Jul 2002 | A1 |
20020183932 | West et al. | Dec 2002 | A1 |
20030041159 | Patton | Feb 2003 | A1 |
20030043815 | Tinsley et al. | Mar 2003 | A1 |
20030046006 | Eastwood et al. | Mar 2003 | A1 |
20030147466 | Liang | Aug 2003 | A1 |
20040143811 | Kaelicke et al. | Jul 2004 | A1 |
20040230379 | Houck | Nov 2004 | A1 |
20050090986 | Van Riel et al. | Apr 2005 | A1 |
20050182852 | Tinsley | Aug 2005 | A1 |
20050273266 | Nickel | Dec 2005 | A1 |
20060212225 | Bachrach et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2 432936 | Jun 2007 | GB |
Number | Date | Country | |
---|---|---|---|
20090192718 A1 | Jul 2009 | US |