1. Field of the Invention
Embodiments of this invention are generally related to safety valves. More particularly, embodiments of this invention pertain to subsurface safety valves configured to control fluid flow through a production tubing string.
2. Description of the Related Art
Surface-controlled, subsurface safety valves (SCSSVs) are commonly used to shut in oil and gas wells. Such SCSSVs are typically fitted into a production tubing in a hydrocarbon producing well, and operate to block the flow of formation fluid upwardly through the production tubing should a failure or hazardous condition occur at the well surface.
SCSSVs are typically configured as rigidly connected to the production tubing (tubing retrievable), or may be installed and retrieved by wireline, without disturbing the production tubing (wireline retrievable). During normal production, the subsurface safety valve is maintained in an open position by the application of hydraulic fluid pressure transmitted to an actuating mechanism. The hydraulic pressure is commonly supplied to the SCSSV through a control line which resides within the annulus between the production tubing and a well casing. The SCSSV provides automatic shutoff of production flow in response to one or more well safety conditions that can be sensed and/or indicated at the surface. Examples of such conditions include a fire on the platform, a high/low flow line pressure condition, a high/low flow line temperature condition, and operator override. These and other conditions produce a loss of hydraulic pressure in the control line, thereby causing the flapper to close so as to block the flow of production fluids up the tubing.
Most surface controlled subsurface safety valves are “normally closed” valves, i.e., the valves utilize a flapper type closure mechanism biased in its closed position. In many commercially available valve systems, the bias is overcome by longitudinal movement of a hydraulic actuator. In some cases the actuator of the SCSSV includes a concentric annular piston. Most commonly, the actuator includes a small diameter rod piston, located in a housing wall of the SCSSV.
During well production, the flapper is maintained in the open position by a flow tube down hole to the actuator. From a reservoir, a pump at the surface delivers regulated hydraulic fluid under pressure to the actuator through a control conduit, or control line. Hydraulic fluid is pumped into a variable volume pressure chamber (or cylinder) and acts against a seal area on the piston. The piston, in turn, acts against the flow tube to selectively open the flapper member in the valve. Any loss of hydraulic pressure in the control line causes the piston and actuated flow tube to retract, which causes the SCSSV to return to its normally closed position by a return means. The return means serves as the biasing member, and typically defines a powerful spring and/or gas charge. The flapper is then rotated about a hinge pin to the valve closed position by the return means, i.e., a torsion spring, and in response to upwardly flowing formation fluid.
In recent completion techniques, an SCSSV may be run with the production tubing into the hole prior to a cementing operation. Once the cement is cured, the desired formations are perforated through the tubing. Using this technique, however, exposes the SCSSV to the cement during the cementing operation, which may cause the SCSSV to fail prematurely.
Therefore, a need exists for an apparatus and method for protecting the SCSSV from cement infiltrating the SCSSV during the cementing operation.
Various embodiments of the present invention are generally directed to a subsurface safety valve assembly for controlling fluid flow in a welibore. In one embodiment, the subsurface safety valve assembly includes a tubular member having a longitudinal bore extending therethrough and a flapper removably connected to the tubular member. The flapper is configured to pivot against the tubular member between an open position and a closed position. The subsurface safety valve assembly further includes a flow tube disposed inside the tubular member and a shear sleeve having an upper end and a lower end. The upper end of the shear sleeve is positioned against a lower end of the flow tube to form a first seal between the upper end of the shear sleeve and the lower end of the flow tube.
Various embodiments of the present invention are also directed to a system for protecting well completion equipment from at least one of cement or fluids during a cementing operation. In one embodiment, the system includes a sleeve removably disposed inside the well completion equipment and a dart configured to pull the sleeve away from the well completion equipment after the cementing operation is complete.
So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
A detailed description will now be provided. Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term, as reflected in printed publications and issued patents. In the description that follows, like parts are marked throughout the specification and drawings with the same reference numerals. The drawings may be, but are not necessarily, to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the invention. One of normal skill in the art of subsurface safety valves will appreciate that the various embodiments of the invention can and may be used in all types of subsurface safety valves, including but not limited to tubing retrievable, wireline retrievable, injection valves, or subsurface controlled valves.
As the safety valve assembly 10 is hydraulically actuated, the safety valve assembly 10 includes a hydraulic chamber housing 40 and a piston 42 therein, as shown in
In accordance with an embodiment of the invention, the safety valve assembly 10 further includes a shear sleeve 200. The shear sleeve 200 is configured to eliminate or reduce the amount of cement and/or fluids from entering the safety valve assembly 10.
In yet another embodiment, an upper end of the flow tube 44 may be positioned, e.g., pressed, against the hydraulic chamber housing 40, thereby forming seal 410, as shown in
In operation, the safety valve assembly 10 mounted on the production tubing 28 is run into the weilbore prior to the cementing operation. After the cementing operation is complete, the piston 42 is actuated to push the shear sleeve 200 through the retention sub 225 to the lower sub 38. The piston 42 is actuated by application of hydraulic pressure through a control line 16 coupled to a controller 14 (See
In operation, the safety valve assembly 610 mounted on the production tubing 28 along with the sleeve 650 are run into the weilbore prior to the cementing operation. During the cementing operation, the sleeve 650 protects the safety valve assembly 610 from the cement or other fluids contained inside the tubing. After the cementing operation is complete, the dart 660 is used to pull the sleeve 650 away from the safety valve assembly 610 to allow the safety valve assembly 610 to operate without any interference from the sleeve 650. In this manner, it is no longer necessary to retrieve the sleeve 650 following completion of the cementing operation. The dart 660 is may be pumped down through the production tubing 28 following the cement as the cementing operation is being completed. The dart 660 is generally actuated or driven by cement completion pumps (not shown). When the sleeve 650 is pulled away, the collar 710 collapses, thereby no longer holding the sleeve 650 inside the safety valve assembly 610. In one embodiment, the sleeve 650 may be pulled all the way down to a rat hole or the bottom of the well. After the sleeve 650 is positioned away from safety valve assembly 610, the safety valve assembly 610 is free to operate in a normal fashion. Following the completion of the cementing operation, the pressure (or energy) may be released from the piston 42, causing the power spring 46 to move the flow tube 44 longitudinally upward, thereby allowing the flapper mechanism 18 to close.
Although the invention has been described in part by making detailed reference to specific embodiments, such detail is intended to be and will be understood to be instructional rather than restrictive. It should be noted that while embodiments of the invention disclosed herein, particularly those embodiments described with reference to
Whereas the present invention has been described in relation to the drawings attached hereto, it should be understood that other and further modifications, apart from those shown or suggested herein, might be made within the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2998077 | Keithahn | Aug 1961 | A |
3749119 | Tausch et al. | Jul 1973 | A |
3763932 | Dinning | Oct 1973 | A |
4077473 | Watkins | Mar 1978 | A |
4160484 | Watkins | Jul 1979 | A |
4420041 | Patel | Dec 1983 | A |
4597445 | Knox | Jul 1986 | A |
4605070 | Morris | Aug 1986 | A |
4651827 | Helderle et al. | Mar 1987 | A |
4846281 | Clary et al. | Jul 1989 | A |
4890674 | Le | Jan 1990 | A |
5125457 | Meaders | Jun 1992 | A |
5145005 | Dollison | Sep 1992 | A |
5167284 | Leismer | Dec 1992 | A |
5249630 | Meaders et al. | Oct 1993 | A |
5343955 | Williams | Sep 1994 | A |
5358053 | Akkerman | Oct 1994 | A |
6263910 | Davis et al. | Jul 2001 | B1 |
20020000317 | Rayssigular et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
2213181 | Aug 1989 | GB |
WO 9914461 | Mar 1999 | WO |
WO 2004022906 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040154803 A1 | Aug 2004 | US |