This disclosure relates generally to the field of guides for sucker rod strings and, more particularly, to a rod guide with a polygonal body and a plurality of blades.
Rod guides for centralizing sucker rods within production tubing are well known in the art. As shown in
The sucker rod must extend from the pumping unit all the way down to the reciprocating pump, which may be several thousand feet below the surface. Consequently, the sucker rod is subjected to a variety of stresses: compression, tension, torsion, and bending. The rod is prevented from moving sideways or wobbling by the installation of periodic rod guides 12, 14 on the rod 10 thereby controlling rod and tubing wear. The rod guides typically have a number of vanes, fins or blades which extend radially and centralize the rod within the cylindrical tubing. This prevents the rod from wearing or from other damage. Any wear will, thus, occur to the rod guide fins.
The rod guides may be fabricated from various materials, such as synthetic materials which are oil-resistant and resistant to abrasion.
It is desirable to maximize the material available for wear to maximize the life of the rod guides. Thus, the cross-sectional area of the fins/blades/vanes may be maximized for maximum wear life.
Many prior art sucker rod guides (see U.S. Pat. Nos. 5,115,863; 5,358,041; and 6,152,223) include a body that is molded in intimate contact with the sucker rod. The body has simultaneously molded therewith a plurality of “fins”, “blades” or “vanes” that extend radially from the body. Cross-sections of some prior art rod guides 12 and 14 are illustrated in
The present disclosure describes and illustrates a polymeric rod guide 26 for a sucker rod 10. The polymeric rod guide includes: a body 28 surrounding and coaxial with the sucker rod, said body having a polygonal cross-section molded in fixed contact with the sucker rod. The guide further includes a plurality of blades 30 longitudinally disposed and extending from the body 28, each blade having a pair of planar longitudinal side walls 40 and an exterior longitudinal edge 24, each of said blades having a first blade face 22 disposed between a first terminal end 23 of the blade and the exterior longitudinal edge 24 and a second blade face 22 disposed between a second terminal end 25 of the blade and the exterior longitudinal edge 24, and an area of the body between the longitudinal side wall 40 of a first blade and the longitudinal side wall 40 of an adjacent second blade defines a trough 32 having a plurality of planar surfaces 32a, 32b, 32c.
In some implementations the rod guide 26 further includes a first curved lead section 34 molded integral with the body 28. The lead section being disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and being disposed at a second end in integral contact with the body 28. The lead section having a curved surface 35 with a radius of curvature of between 20 and 22 mm. In some implementations, the first curved lead section 34 has an outer curved surface 35 that extends from the rod to the body. The curved surface defined by a tangent to the mid-point of the curved surface having an angle of between 5 and 20 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface 35 of the lead section 34.
In the preferred embodiment, the rod guide 26 includes 4 blades circumferentially disposed 90 degrees about the guide body 28.
In some embodiments, the exterior longitudinal edge 24 of the rod guide 26 has a convex curved surface with a radius of curvature being a same radius of curvature as an inner surface of a tube (T) into which the rod and rod guide is to be used.
In the first embodiment, the trough 32 between the longitudinal side walls includes: a first planar surface 32a that tapers away from the first terminal end 23 of the blade face 22 at an angle (a1) measured between a line parallel to the longitudinal axis of the rod and the first planar surface (a), a second planar surface 32b disposed adjacent to the first planar surface (a), and a third planar surface 32c disposed adjacent to the second planar surface, said third planar surface tapers away from the second terminal end 25 of the blade face 22 at an angle (c1) measured between a line parallel to the longitudinal axis of the rod and the third planar surface 32c. The angle (a1) is generally less than or equal to 15 degrees, and the second planar surface is generally parallel to the axis of the rod, and the angle (c1) is less than or equal to 15 degrees. In the preferred embodiment, the angle (a1) is less than or equal to 4 degrees, the second planar surface is generally parallel to the axis of the rod, and the angle (c1) is less than or equal to 4 degrees.
In the first embodiment, the blade face 22 comprises a curved surface that extends from the first terminal end 23 of the blade to the exterior longitudinal edge 24, said curved surface defined by a tangent to the mid-point of the curved surface having an angle of in the range of 10 to 40 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface of the blade face 22. The blade face 22 includes a curved surface that extends from the first terminal end 23 to the exterior longitudinal edge 24, said curved surface having a radius of curvature of in the range of 20 to 22 mm.
In the first embodiment, the second planar surface 32b has a first predetermined longitudinal length (Lb) parallel to the axis of the rod, the first planar surface 32a and the third planar surface 32c each have a longitudinal length (La, Lc) greater than the longitudinal length (Lb) of planar surface (b).
In some embodiments, the longitudinal length of the first planar surface 32a and third planar surface 32c is between 55 to 75 mm and the second planar surface 32b has a longitudinal length of between 0 and 30 mm.
In a preferred embodiment, the longitudinal length (Lb) of the second planar surface 32b can be at least twice a width of the second planar surface 32b.
In a second embodiment, a polymeric rod guide 126 for a sucker rod 110 includes a body 128 surrounding and coaxial with the sucker rod. The body has a polygonal cross-section molded in fixed contact with the sucker rod; a plurality of blades 130 longitudinally disposed and extending from the body 128; each blade having a pair of longitudinal side walls 140, each of said longitudinal side walls having a first planar surface 140a that tapers away from the first terminal end 123 of the blade face 122 at an angle (a′) measured between a line parallel to the longitudinal axis of the rod and the first planar surface, a second planar surface 140b disposed adjacent to the first planar surface, and a third planar surface 140c disposed adjacent to the second planar surface, said third planar surface 140c tapering away from the second terminal end 125 of the blade face 122 at an angle (c′) measured between a line parallel to the longitudinal axis of the rod and the third planar surface 140c. Each blade has an exterior longitudinal edge 124 and each of the blades has a first blade face 122 disposed between a first terminal end 123 of the blade and the exterior longitudinal edge 124, and a second blade face 122 disposed between a second terminal end 125 of the blade and the exterior longitudinal edge 124. The area of the body between the longitudinal side wall of a first blade and the longitudinal side wall of an adjacent second blade defines a trough 132 having a plurality of planar surfaces 132a, 132b, 132c.
In some embodiments, the angle (a′) is less than 15 degrees, the second planar surface is generally perpendicular to the axis of the rod, and the angle (c′) is less than 15 degrees.
In the preferred embodiment, the angle (a′) is less than or equal to 4 degrees, the second planar surface is generally perpendicular to the axis of the rod, and the angle (c′) is less than or equal to 4 degrees.
In the rod guide 126 the second planar surface 140b has a first predetermined longitudinal length (Lb′) parallel to the axis of the rod, the first planar surface 140a and the third planar surface 140c each have a longitudinal length (La′, Lc′) greater than the longitudinal length (Lb′) of planar surface 140b.
The longitudinal length of the first planar surface 140a and third planar surface 140c is between 55 to 75 mm and the second planar surface 140b has a longitudinal length of between 0 and 30 mm.
In a preferred embodiment, the longitudinal length (Lb′) of the second planar section 140b is at least twice a width of the second planar section 140b.
The rod guide 126 further includes a first curved lead section 134 molded integral with the body 128. The lead section is disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and disposed at a second end in integral contact with the body 128. The lead section has a curved surface 135 with a radius of curvature of between 20 and 22 mm.
The curved surface defined by a tangent to the mid-point of the curved surface having an angle of between 5 and 20 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface 135 of the lead section 34.
In the preferred embodiment, the rod guide 126 includes 4 blades circumferentially disposed 90 degrees about the guide body 128.
In some implementations, the exterior longitudinal edge 124 of the rod guide 126 has a convex curved surface with a radius of curvature being a same radius of curvature as an inner surface of a tube (T) into which the rod and rod guide is to be used.
In the second embodiment, the trough 132 between the longitudinal side walls includes: a first planar surface 132a that tapers away from the first terminal end 123 of the blade face 122 at an angle (a1) measured between a line parallel to the longitudinal axis of the rod and the first planar surface 132a, a second planar surface 132b disposed adjacent to the first planar surface 132a, a third planar surface 132c disposed adjacent to the second planar surface 132b, said third planar surface 132c tapers away from the second terminal end 125 of the blade face 122 at an angle (c1) measured between a line parallel to the longitudinal axis of the rod and the third planar surface 132c. The angle (a1) is less than or equal to 4 degrees, the second planar surface is generally parallel to the axis of the rod, and the angle (c1) is less than or equal to 4 degrees.
In the second implementation, the blade face 122 comprises a curved surface that extends from the first terminal end 123 of the blade to the exterior longitudinal edge 124. The curved surface defined by a tangent to the mid-point of the curved surface having an angle of in the range of 10 to 40 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface of the blade face 122. The blade face 122 includes a curved surface that extends from the first terminal end 123 to the exterior longitudinal edge 124.
In the second implementation, the second planar surface 132b has a first predetermined longitudinal length (Lb) parallel to the axis of the rod, the first planar surface 132a and the third planar surface 132c each have a longitudinal length (La, Lc) greater than the longitudinal length (Lb) of planar surface 132b. The longitudinal length of the first planar surface 132a and third planar surface 132c is in the range of 55 to 75 mm and the second planar surface 132b has a longitudinal length of in the range of 0 to 30 mm. In a preferred embodiment, the longitudinal length (Lb) of the second planar surface 132b is at least twice a width of the second planar surface 132b.
The rod guide 26 may be installed in a sucker rod in a method comprising: molding a unitary rod guide coaxial about and in fixed contact with the sucker rod, said guide comprising a body portion 28 surrounding and coaxial with the sucker rod, said body having a plurality of blades 30 longitudinally disposed and extending from the body 28, each blade having a pair of planar longitudinal side walls 40 and an exterior longitudinal edge 24, each of said blades having a first blade face 22 disposed between a first terminal end 23 of the blade and the exterior longitudinal edge 24 and a second blade face 22 disposed between a second terminal end 25 of the blade and the exterior longitudinal edge 24, and an area of the body between the longitudinal side wall 40 of a first blade and the longitudinal side wall 40 of an adjacent second blade defines a trough 32 having a plurality of planar surfaces 32a, 32b, 32c.
The method may further include concurrently molding a first lead section 34 integral with the body 28, said lead section disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and disposed at a second end in contact with the body 28, said lead section having a curved surface 35 with a radius of curvature of between 20 and 22 mm and said curved surface further defined by a tangent to the mid-point of the curved surface having an angle of between 5 and 20 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface 35 of the lead section 34.
The method may further include preparing a section of the rod 10 by placing an epoxy based glue on a predetermined portion of the rod 10 and placing particles having a diameter in the range of 0.71 to 1.18 mm onto the epoxy glue; and direct injection molding the rod guide 26, 126 about at least a portion of the prepared section of the rod.
The rod guide 126 may be installed on a sucker rod in a method comprising: molding a unitary rod guide coaxial about and in fixed contact with the sucker rod, said guide comprising a body portion 28 surrounding and coaxial with the sucker rod, said body having a plurality of blades 30 longitudinally disposed and extending from the body 28, each blade having a pair of longitudinal side walls 140, each of said longitudinal side walls having a first planar surface 140a that tapers away from the first terminal end 123 of the blade face 122 at an angle (a′) measured between a line parallel to the longitudinal axis of the rod and the first planar surface, a second planar surface 140b disposed adjacent to the first planar surface, and a third planar surface 140c disposed adjacent to the second planar surface, said third planar surface 140c tapers away from the second terminal end 125 of the blade face 122 at an angle (c′) measured between a line parallel to the longitudinal axis of the rod and the third planar surface 140c, each blade having an exterior longitudinal edge 124, each of said blades having a first blade face 122 disposed between a first terminal end 123 of the blade and the exterior longitudinal edge 124, and a second blade face 122 disposed between a second terminal end 125 of the blade and the exterior longitudinal edge 124, and an area of the body between the longitudinal side wall of a first blade and the longitudinal side wall of an adjacent second blade defines a trough 132 having a plurality of planar surfaces 132a, 132b, 132c.
The method of may further include concurrently molding a first curved lead section 34 integral with the body 28, said lead section disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and disposed at a second end in contact with the body 28, said lead section having a curved surface 35 with a radius of curvature of between 20 and 22 mm and said curved surface further defined by a tangent to the mid-point of the curved surface having an angle of between 5 and 20 degrees measured between a line parallel to the longitudinal axis of the rod and the tangent to the curved surface 35 of the lead section 34.
The method may further include: preparing a section of the rod 10 by placing an epoxy based glue on a predetermined portion of the rod 10 and placing particles having a diameter between 0.71 and 1.18 mm onto the epoxy glue; and direct injection molding the rod guide 26, 126 about at least a portion of the prepared section of the rod.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
As used herein, the term “blade” refers to the molded portion of the rod guide that extends from the body and may guidingly contact the interior surface of production tubing.
Referring now to
A plurality of blades 30 are longitudinally disposed and extend from the body 28, each blade having a pair of planar longitudinal side walls 40 and an exterior longitudinal edge 24. Each of said blades has a first blade face 22 disposed between a first terminal end 23 of the blade and the exterior longitudinal edge 24 and a second blade face 22 disposed between a second terminal end 25 of the blade and the exterior longitudinal edge 24. An area of the body between the longitudinal side wall 40 of a first blade and the longitudinal side wall 40 of an adjacent second blade defines a trough 32 having a plurality of planar surfaces 32a, 32b, 32c.
The rod guide 26 further includes first generally curved lead section 34 molded integral with the body 28. The lead section is disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and at a second end at each of the first terminal ends 23, 25 of each blade and at a terminal end of each trough 32 between each blade 30. The lead section 34 has an outer surface 35 that extends from the rod to the body 28. The outer curved surface 35 has a small radius of curvature of between 20 and 22 mm. The taper of the curved surface 35 is defined by a tangent to the mid point of the curve having an angle of between 5 and 20 as measured between the tangent and a line parallel to the longitudinal axis of the rod and the curved surface of the lead section 34. In the preferred embodiment the angle of the tangent is 15 degrees.
In some embodiments the rod guide 26 includes four blades 30 circumferentially disposed 90 degrees about the guide body 28.
In some embodiments the exterior longitudinal edge 24 of the rod guide 26 has a convex curved surface with a radius of curvature being a same radius of curvature as an inner surface of a tube (T) into which the rod and rod guide is to be used.
As illustrated in particular in
Referring again to
The second planar surface 32b of the rod guide 26 has a first predetermined longitudinal length (Lb) parallel to the axis of the rod, the first planar surface 32a and the third planar surface 32c each have a longitudinal length (La, Lc) greater than the longitudinal length (Lb) of planar surface 32b. In some embodiments the longitudinal length of the first planar surface 32a and third planar surface 32c is between 55 to 75 mm (preferably 65 mm) and the second planar surface 32b has a longitudinal length of between 0 and 30 mm. In a preferred embodiment, to stabilize the fluid the longitudinal length (Lb) of the second planar surface 32b is at least twice a width of the second planar surface (32b).
Referring now to
Unlike the first embodiment, in this second embodiment the lateral surfaces 140 of each blade 130 are also formed by tapered surfaces, 140a, 140b and 140c. In this second embodiment, the rod guide 126 includes a plurality of blades 130 longitudinally disposed and extending from the body 128. Each blade having a pair of longitudinal side walls 140, each of said longitudinal side walls have a first planar surface 140a that tapers away from the first terminal end 123 of the blade face 122 at an angle (a′) measured between a line parallel to the longitudinal axis of the rod and the first planar surface, a second planar surface 140b disposed adjacent to the first planar surface, and a third planar surface 140c disposed adjacent to the second planar surface, said third planar surface 140c tapers away from the second terminal end 125 of the blade face 122 at an angle (c′) measured between a line parallel to the longitudinal axis of the rod and the third planar surface 140c. Each blade has an exterior longitudinal edge 124. Each blade has a first blade face 122 disposed between a first terminal end 123 of the blade and the exterior longitudinal edge 124, and a second blade face 122 disposed between a second terminal end 125 of the blade and the exterior longitudinal edge 124.
In some embodiments the angle (a′) is less than 15 degrees, the second planar surface is generally perpendicular to the axis of the rod, and the angle (c′) is less than 15 degrees. In a preferred embodiment the angle (a′) is less than or equal to 4 degrees, the second planar surface is generally perpendicular to the axis of the rod, and the angle (c′) is less than or equal to 4 degrees. In general the lateral face 140 includes three sections: Section (a): having an increasing taper (from the guide end to the center of the guide); Section (b): having a substantially cylindrical configuration; and Section (c): having a decreasing taper (from the center of the guide to the end of the guide).
The second planar surface 140b has a first predetermined longitudinal length (Lb′) parallel to the axis of the rod, the first planar surface 140a and the third planar surface 140c each have a longitudinal length (La′, Lc′) greater than the longitudinal length (Lb′) of planar surface (b). In some embodiments the longitudinal length of the first planar surface 140a and third planar surface 140c is between 55 to 75 mm (preferably 65 mm) and the second planar surface 140b has a longitudinal length of between 0 and 30 mm. In a preferred embodiment the longitudinal length (Lb′) of the second planar section 140b is at least twice a width of the second planar section 140b to stabilize the fluid.
As illustrated in
The guide further includes a first generally curved lead section 134 molded integral with the body 128. The lead section 134 is disposed longitudinally about the rod and terminating at a first end on an outer surface of the rod and at a second end at the body 128. The lead section 134 has a generally outer curved surface 135 that extends from the rod to the body 28. The outer surface 135 has a small radius of curvature of between 20 and 22 mm. The taper of the curved surface 135 is defined by a tangent to the mid point of the curve having an angle of between 5 and 20 as measured between the tangent and a line parallel to the longitudinal axis of the rod and the curved surface of the lead section 34. In the preferred embodiment the angle of the tangent is 15 degrees.
In a preferred embodiment the plurality of blades 130 includes 4 blades circumferentially disposed 90 degrees about the guide body 128. In some embodiments the exterior longitudinal edge 124 has a convex curved surface with a radius of curvature being a same radius of curvature as an inner surface of a tube (T) into which the rod and rod guide is to be used.
Similar to the first embodiment, in this second embodiment an area of the body 128 between the longitudinal side wall 140 of a first blade and the longitudinal side wall of an adjacent second blade defines a trough 132 having a plurality of planar surfaces 132a, 132b, 132c. In a preferred embodiment the trough 132 between the longitudinal side walls includes: a first planar surface 132a that tapers away from the first terminal end 123 of the blade face 122 at an angle (a1) measured between a line parallel to the longitudinal axis of the rod and the first planar surface (a), a second planar surface 132b disposed adjacent to the first planar surface 132a, a third planar surface 132c disposed adjacent to the second planar surface 132b, said third planar surface 132c tapers away from the second terminal end 125 of the blade face 122 at an angle (c1) measured between a line parallel to the longitudinal axis of the rod and the third planar surface (c). The angle (a1) is less than or equal to 4 degrees, the second planar surface is generally parallel to the axis of the rod, and the angle (c1) is less than or equal to 4 degrees. In a preferred embodiment angle a1=angle a2. In general the trough 132 includes three sections: Section (a): having an increasing taper (from the guide end to the center of the guide; Section (b): having a substantially cylindrical configuration; and Section (c): having a decreasing taper (from the center of the guide to the end of the guide). As illustrated in
Referring again to
The second planar surface (b) has a first predetermined longitudinal length (Lb) parallel to the axis of the rod, the first planar surface (a) and the third planar surface (c) each have a longitudinal length (La, Lc) greater than the longitudinal length (Lb) of planar surface (b). In some embodiments, the longitudinal length of the first planar surface (a) and third planar surface (c) is between 55 to 75 mm (preferably 65 mm) and the second planar surface (b) has a longitudinal length of between 0 and 30 mm. In a preferred embodiment to stabilize the fluid, the longitudinal length (Lb) of the second planar section 132b is at least twice a width of the second planar section 132b.
The unitary rod guide 26, 126 of the present disclosure is molded coaxial about and in fixed contact with the sucker rod 10. The lead section 34, 134 is unitary with and molded concurrently with the body 28, 128.
It is known in the art that when plastic rod guides 12, 14 are molded directly onto the rod, that the contraction effect of the solidifying polymeric material over the steel rod body provides an adherence force. In deviated wellbores, the adherence force provided by the contraction of the polymeric material on the rod may be insufficient to prevent the rod guide from de-boding with the rod. It has been found that the breakaway force necessary to dislodge the polymeric rod guide may be enhanced by increasing the interference between the polymeric rod guide 26, 126 and the rod 10. It has been found that the interference may be enhanced by increasing the friction coefficient between the rod 10 and the rod guide 26, 126. In one embodiment, epoxy based glue (stable to 150 degrees C.) may be placed on the rod 10 and particles having a diameter of between 0.71 and 1.18 mm (preferably 0.8 mm) (sand or synthetic spheres) placed onto the epoxy glue along each section of the rod before the polymeric rod guide 26, 126 is direct injection molded thereon. In some embodiments it has been found that if a 120 mm section of the rod is prepared as heretofore described, the breakaway force provided by the enhanced friction coefficient may be equivalent to the force obtained with direct injection over a rod that has not had such surface preparation.
Some Advantages of the Rod Guide of the Present Disclosure
Prior art designs of
When considering the effect of friction between the wall of the rod guide and the produced fluid, the speed profile Begins from 0 to an average value in the center of the rod guide. This effect defines what may be referred to as “the boundary layer”. As the flow velocity decreases, it results in a decrease in the Reynolds number, which results in generating a boundary layer having a lower energization level and therefore more prone to detachment from the surface of the rod guide and tubing. Detachment of the boundary layer produces turbulent areas causing greater inefficient movement of fluid and an increase of pressure drop.
The design of the present disclosure includes a variable fluid passage 44 and 144 (a nozzle like configuration) having decreasing cross-sections (from the beginning towards the larger middle section 32b, 132b of the rod guide 26, 126 (see
The end section 32a, 132a is a stabilization zone, directed to stabilize the speed profile of the fluid, in order to maximize efficiency of the guide. This stabilization zone is needed for a smooth change in the speed profile prior to entering into mid-zone in order to maintain the boundary layer attached to the surface of the rod guide 26, 126.
The end sections 32c, 132c area having a decreasing section allows fluid to slow down and reach the same condition as prior to entering into the flow path 44, 144 of the rod guide. The rod guide 26, 126 has a better efficiency regarding the fluid flow and regarding the general pumping system.
Additionally, with regard to embodiment 2, it is worth noting that the tapered surfaces 140a, 140b and 140c are designed to enhance the overall efficiency of the guide due to the “venturi” effect that takes place when the fluid passes through the fluid passage 144 formed between the production tubing (T), and longitudinally tapered surfaces 140a, 140b and 140c. In this embodiment, the lateral walls 140 of blades 130 become wider towards the center of the rod guide. For example referring to
In summary, the design of the rod guide 26 and 126 of the present disclosure has at least the following advantages:
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly other implementations are within the scope of the following claims:
Number | Name | Date | Kind |
---|---|---|---|
2153787 | Anderson | Apr 1939 | A |
2307688 | Larson | Jan 1943 | A |
3410613 | Kuus | Nov 1968 | A |
3963075 | Evans | Jun 1976 | A |
4275935 | Thompson et al. | Jun 1981 | A |
4984633 | Langer et al. | Jan 1991 | A |
5115863 | Olinger | May 1992 | A |
5191938 | Sable et al. | Mar 1993 | A |
5247990 | Sudol et al. | Sep 1993 | A |
5358041 | O'Hair | Oct 1994 | A |
5487426 | O'Hair | Jan 1996 | A |
5492174 | O'Hair | Feb 1996 | A |
5692562 | Squires | Dec 1997 | A |
5908072 | Hawkins | Jun 1999 | A |
5937948 | Robbins, III | Aug 1999 | A |
5941312 | Vermeeren | Aug 1999 | A |
6016866 | Kaltwasser | Jan 2000 | A |
6152223 | Abdo et al. | Nov 2000 | A |
6182754 | Vermeeren | Feb 2001 | B1 |
6435275 | Kirk et al. | Aug 2002 | B1 |
6739415 | Mitchell et al. | May 2004 | B2 |
7159668 | Herrera | Jan 2007 | B2 |
8096352 | Ernst et al. | Jan 2012 | B2 |
D663750 | Andrigo et al. | Jul 2012 | S |
D676464 | Hansen et al. | Feb 2013 | S |
8511377 | Casassa et al. | Aug 2013 | B2 |
20040011532 | White | Jan 2004 | A1 |
20080053653 | Abdo | Mar 2008 | A1 |
20120168149 | Kaltwasser | Jul 2012 | A1 |
20120193089 | Makelki et al. | Aug 2012 | A1 |
20120292021 | Kaltwasser | Nov 2012 | A1 |
20130098601 | Pereyra et al. | Apr 2013 | A1 |
Entry |
---|
New Era Rod Guides, R&M Energy Systems, Robbins Myers Fluid Management Group, 2010. |
Norris Sidewinder Sucker Rod Guides., Norris, A Dover Company. |
Number | Date | Country | |
---|---|---|---|
20130098601 A1 | Apr 2013 | US |