Suction and discharge lines for a dual hydraulic fracturing unit

Information

  • Patent Grant
  • 11959371
  • Patent Number
    11,959,371
  • Date Filed
    Tuesday, May 3, 2016
    8 years ago
  • Date Issued
    Tuesday, April 16, 2024
    a month ago
Abstract
An electrically powered hydraulic fracturing system includes pumps for pressurizing fracturing fluid, piping for carrying fracturing fluid, and field connections in obliquely oriented segments of the piping. The connections are between lead lines that couple directly to the pumps and lines carrying fluid to and from the pump; and are assembled and disassembled in the field. Operations personnel can more easily manipulate connections that are obliquely oriented than those that are horizontal or vertical.
Description
BACKGROUND OF THE INVENTION
1. Field of Invention

The present disclosure relates to hydraulic fracturing of subterranean formations. In particular, the present disclosure relates to orienting piping connected to a fracturing pump so that connections in the piping are provided where the piping is oblique to a horizontal axis of the pump.


2. Description of Prior Art

Hydraulic fracturing is a technique used to stimulate production from some hydrocarbon producing wells. The technique usually involves injecting fluid into a wellbore at a pressure sufficient to generate fissures in the formation surrounding the wellbore. Typically the pressurized fluid is injected into a portion of the wellbore that is pressure isolated from the remaining length of the wellbore so that fracturing is limited to a designated portion of the formation. The fracturing fluid slurry, whose primary component is usually water, includes proppant (such as sand or ceramic) that migrate into the fractures with the fracturing fluid slurry and remain to prop open the fractures after pressure is no longer applied to the wellbore. A primary fluid for the slurry other than water, such as nitrogen, carbon dioxide, foam, diesel, or other fluids may be used as the primary component instead of water. A typical hydraulic fracturing fleet may include an data van unit, blender unit, hydration unit, chemical additive unit, hydraulic fracturing pump unit, sand equipment, wireline, and other equipment.


Traditionally, the fracturing fluid slurry has been pressurized on surface by high pressure pumps powered by diesel engines. To produce the pressures required for hydraulic fracturing, the pumps and associated engines have substantial volume and mass. Heavy duty trailers, skids, or trucks are required for transporting the large and heavy pumps and engines to sites where wellbores are being fractured. Each hydraulic fracturing pump usually includes power and end fluid ends, as well as seats, valves, springs, and keepers internally. Each pump is usually equipped with a water manifold (referred to as a fluid end) which contains seats, valves, and keepers internally. These parts allow the pump to draw in low pressure fluid (approximately 100 psi) and discharge the same fluid at high pressures (up to 15,000 psi or more). Traditional diesel powered hydraulic fracturing pump units only have one diesel engine, one transmission, and one hydraulic fracturing pump per unit. Recently electrical motors have been introduced to replace the diesel motors, which greatly reduces the emissions and noise generated by the equipment during operation. Because the pumps are generally transported on trailers, connections between segments of pump suction and discharge piping are generally made up in the field. Moreover, the segments having these connections extend horizontally or vertically, and which are difficult connections for operations personnel to handle. Prior turbine powered hydraulic fracturing units with two hydraulic pumps on each unit had one supply line that fed both pumps. Also the discharge lines from both hydraulic fracturing pumps were combined into one discharge line while the unit.


SUMMARY OF THE INVENTION

Disclosed herein is an example of a hydraulic fracturing system for fracturing a subterranean formation, and which includes a trailer having wheels, an electrically powered fracturing pump mounted on the trailer, a supply line having fracturing fluid, and a hard piped suction lead line. In another embodiment, the trailer is replaced by any platform such as a skid or a truck. Suction lead line is made up of a main segment connected to a suction inlet on the electrically powered pump and a tip segment that is angled obliquely to a portion of the main segment proximate the tip segment, an end of the tip segment is connected to an end of the main segment distal from the suction inlet, and the tip segment further having an end distal from the main segment that is connected to an end of the supply line. In one example, the pump, supply line, suction lead line, main segment, and tip segment each respectively make up a first pump, a first supply line, a first suction lead, a first main segment, and a first tip segment, this example of the hydraulic fracturing system further includes a second pump, a second supply line, a second suction lead, a second main segment, and a second tip segment, and wherein the second tip segment is angled with respect to the first tip segment. In one example, the tip segment is angled from about 22 degrees to about 45 degrees with respect to a portion of the main segment proximate the tip segment; and can optionally be angled at about 22 degrees with respect to a portion of the main segment proximate the tip segment. In one alternative, the first tip segment is angled at about 22 degrees with respect to a portion of the first main segment proximate the first tip segment, and the second tip segment is angled at about 45 degrees with respect to a portion of the second main segment proximate the second tip segment. The supply line can be a flexible line made from an elastomeric material. In one alternate embodiment, the tip segment extends away from the main segment in a direction that projects towards a surface on which the trailer is supported. In one embodiment, the supply line for a first pump is separate and distinct from the supply line for a second pump while on the unit. Boost pressure for both the first and second hydraulic fracturing pumps may come from the same blender. The system can further include a hard piped discharge lead line which is made up of a main segment connected to a discharge on the electrically powered pump, and a tip segment that is angled obliquely to a portion of the main segment proximate the tip segment, and having an end connected to an end of the main segment distal from the discharge, and further having an end distal from the main segment that is connected to an end of a discharge line. In one embodiment, the tip segment for the discharge line is parallel with a horizontal plane and is not angled down. In an alternative where the pump, discharge line, discharge lead line, main segment, and tip segment each respectively are a first pump, a first discharge line, a first discharge lead, a first main segment, and a first tip segment, and the hydraulic fracturing system further includes a second pump, a second discharge line, a second discharge lead, a second main segment, and a second tip segment, the second tip segment is angled with respect to the first tip segment. In this example, the tip segment is angled from about 22 degrees to about 45 degrees with respect to a portion of the main segment proximate the tip segment. Optionally, the first tip segment is angled at about 22 degrees with respect to a portion of the first main segment proximate the first tip segment, and wherein the second tip segment is angled at about 45 degrees with respect to a portion of the second main segment proximate the second tip segment. In one embodiment, the tip segment for the discharge line for the first pump is parallel with a horizontal plane and is not angled down. The tip segment for the discharge line for the first pump is offset from the discharge line for the second pump.


Another example of a hydraulic fracturing system for fracturing a subterranean formation includes an electrically powered fracturing pump mounted on a mobile platform, a lead line in fluid communication with the pump and having a tip portion that is oriented along an axis that is oblique to a horizontal axis, and a flow line connected to the tip portion and that is in fluid communication with the lead line. In one example, the axis along which the tip portion is oriented is a first axis, and wherein an angle is defined between the first axis and the horizontal axis that ranges from around 22 degrees to around 45 degrees. The pump, lead line, axis, and flow line each respectively can be referred to as a first pump, a first lead line, a first tip portion, a first axis, and a first flow line, and in this example the hydraulic fracturing system further includes a second pump, a second lead line, a second tip portion, and a second flow line, and wherein the second tip portion extends along a second axis that is oblique with the first axis and the horizontal axis. In this example, the first axis can be an at angle of around 22 degrees with respect to the horizontal axis, and wherein the second axis can be at an angle of around 45 degrees with respect to the horizontal axis. The lead line can optionally be a suction lead line, and the flow line can be a supply line, in this example the hydraulic fracturing system further includes a discharge lead line having a tip portion and a discharge line, and wherein the tip portion of the discharge lead line extends along another axis that is oblique to the horizontal axis. In one embodiment, the discharge lead line and tip portion are parallel with the horizontal axis of the platform and are not angled. In this example, the supply line contains fracturing fluid from a blender, and wherein the discharge line contains fracturing fluid pressurized by the pump.


Another example of a hydraulic fracturing system for fracturing a subterranean formation includes a trailer, a first electrically powered pump mounted on the trailer and having a suction lead line with an end connected to a supply line and that is angled in a range of from around 22 degrees to around 45 degrees with respect to a horizontal axis, and having a discharge lead line with an end connected to a discharge line that is angled in a range of from around 22 degrees to around 45 degrees with respect to the horizontal axis, and a second electrically powered pump mounted on the trailer and having a suction lead line with an end connected to a supply line and that is angled in a range of from around 22 degrees to around 45 degrees with respect to the horizontal axis, and having a discharge lead line with an end connected to a discharge line that is angled in a range of from around 22 degrees to around 45 degrees with respect to the horizontal axis. In one embodiment, the discharge line is not angled and is parallel with the horizontal axis of the trailer.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic of an example of a hydraulic fracturing system.



FIGS. 2 and 3 are side views of examples of piping for a fracturing pump having connections in obliquely oriented segments of the piping.



FIG. 4 is an end perspective view of an example of an example fracturing pumps on a trailer having separate and distinct suction and discharge piping.





While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF INVENTION

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.



FIG. 1 is a schematic example of a hydraulic fracturing system 10 that is used for pressurizing a wellbore 12 to create fractures 14 in a subterranean formation 16 that surrounds the wellbore 12. Included with the system 10 is a hydration unit 18 that receives fluid from a fluid source 20 via line 22, and also selectively receives additives from an additive source 24 via line 26. Additive source 24 can be separate from the hydration unit 18 as a stand-alone unit, or can be included as part of the same unit as the hydration unit 18. The fluid, which in one example is water, is mixed inside of the hydration unit 18 with the additives. In an embodiment, the fluid and additives are mixed over a period of time to allow for uniform distribution of the additives within the fluid. In the example of FIG. 1, the fluid and additive mixture is transferred to a blender unit 28 via line 30. A proppant source 32 contains proppant, which is delivered to the blender unit 28 as represented by line 34, where line 34 can be a conveyer. Inside the blender unit 28, the proppant and fluid/additive mixture are combined to form a fracturing slurry, which is then transferred to a fracturing pump system 36 via line 38; thus fluid in line 38 includes the discharge of blender unit 28 which is the suction (or boost) for the fracturing pump system 36. Blender unit 28 can have an onboard chemical additive system, such as with chemical pumps and augers. Optionally, additive source 24 can provide chemicals to blender unit 28; or a separate and standalone chemical additive system (not shown) can be provided for delivering chemicals to the blender unit 28. In an example, the pressure of the slurry in line 38 ranges from around 80 psi to around 100 psi. The pressure of the slurry can be increased up to around 15,000 psi by pump system 36. A motor 39, which connects to pump system 36 via connection 40, drives pump system 36 so that it can pressurize the slurry. In one example, the motor 39 is controlled by a variable frequency drive (“VFD”). In one embodiment, a motor 39 may connect to a first pump system 36 via connection 40 and to a second pump system 36 via a second connection 40. After being discharged from pump system 36, slurry is pumped into a wellhead assembly 41; discharge piping 42 connects discharge of pump system 36 with wellhead assembly 41 and provides a conduit for the slurry between the pump system 36 and the wellhead assembly 41. In an alternative, hoses or other connections can be used to provide a conduit for the slurry between the pump system 36 and the wellhead assembly 41. Optionally, any type of fluid can be pressurized by the fracturing pump system 36 to form injection fracturing fluid that is then pumped into the wellbore 12 for fracturing the formation 14, and is not limited to fluids having chemicals or proppant.


An example of a turbine 44 is provided in the example of FIG. 1 and which receives a combustible fuel from a fuel source 46 via a feed line 48. In one example, the combustible fuel is natural gas, and the fuel source 46 can be a container of natural gas or a well (not shown) proximate the turbine 44. Combustion of the fuel in the turbine 44 in turn powers a generator 50 that produces electricity. Shaft 52 connects generator 50 to turbine 44. The combination of the turbine 44, generator 50, and shaft 52 define a turbine generator 53. In another example, gearing can also be used to connect the turbine 44 and generator 50. An example of a micro-grid 54 is further illustrated in FIG. 1, and which distributes electricity generated by the turbine generator 53. Included with the micro-grid 54 is a transformer 56 for stepping down voltage of the electricity generated by the generator 50 to a voltage more compatible for use by electrical powered devices in the hydraulic fracturing system 10. In another example, the power generated by the turbine generator and the power utilized by the electrical powered devices in the hydraulic fracturing system 10 are of the same voltage, such as 4160 V so that main power transformers are not needed. In one embodiment, multiple 3500 kVA dry cast coil transformers are utilized. Electricity generated in generator 50 is conveyed to transformer 56 via line 58. In one example, transformer 56 steps the voltage down from 13.8 kV to around 600 V. Other step down voltages can include 4,160 V, 480 V, or other voltages. The output or low voltage side of the transformer 56 connects to a power bus 60, lines 62, 64, 66, 68, 70, and 72 connect to power bus 60 and deliver electricity to electrically powered end users in the system 10. More specifically, line 62 connects fluid source 20 to bus 60, line 64 connects additive source 24 to bus 60, line 66 connects hydration unit 18 to bus 60, line 68 connects proppant source 32 to bus 60, line 70 connects blender unit 28 to bus 60, and line 72 connects motor 39 to bus 60. In an example, additive source 24 contains ten or more chemical pumps for supplementing the existing chemical pumps on the hydration unit 18 and blender unit 28. Chemicals from the additive source 24 can be delivered via lines 26 to either the hydration unit 18 and/or the blender unit 28. In one embodiment, the elements of the system 10 are mobile and can be readily transported to a wellsite adjacent the wellbore 12, such as on trailers or other platforms equipped with wheels or tracks.



FIG. 2 shows in a side view a schematic example of a portion of the hydraulic fracturing system 10 of FIG. 1 and which includes a pair of pumps 80, 82 mounted on a trailer 84. In another embodiment, the platform 84 may be a truck or one or more skids. The pumps 80, 82 and trailer 84 make up one example of a fracturing pump system 36 and which is used for pressurizing fracturing fluid that is then transmitted to the wellhead assembly 41 of FIG. 1. Trailer 84 is shown mounted on a surface 85, which can be any surface proximate wellhead assembly 41 (FIG. 1), such as a paved or unpaved road, a pad (formed from concrete or a mat), gravel, or the Earth's surface. As shown, surface 85 is generally parallel with a horizontal axis AX which provides one example of a reference axis for comparing relative angles thereto. Further included with the fracturing pump system 36 of FIG. 2 is a suction lead line 86 which is substantially supported on top of trailer 84. In the illustrated example, lead line 86 is hard piped, e.g., formed from metal or other generally non-pliable material. Suction lead line 86 provides a conduit for fracturing fluids supplied from the blender unit 28 and to the suction inlets 87 provided on pump 80. While three suction inlets 87 are shown on pump 80, any number of inlets may be provided depending on the design and application of pump 80. Another suction lead line 88 is provided on trailer 84 which connects to suction inlets 89 formed on pump 82, suction lead line 88 is also hard piped. Suction lead lines 86, 88 respectively couple to supply lines 90, 92, both of which carry fracturing fluid from blender unit 28 and across the distance between blender unit 28 and fracturing pump system 36. In one example supply lines 90, 92 are generally flexible and include elastomeric material. Connections 94, 96 provide a coupling between the suction lead lines 86, 88 and supply lines 90, 92. Connections 94, 96 can be flanged or threaded and may include any different number of connections that are appropriate for use in a field application, such as compression fittings, threaded unions, hammer lug unions, and the like. Fracturing fluid 97 is shown stored within tub 98 which is part of the blender unit 28 and as described above provides a place for preparing fracturing fluid to be used in a fracturing environment. Fracturing fluid 97 is directed from tub 98 through piping 99 to a discharge pump 100 which pressurizes or boosts fracturing fluid 97 for transmitting the fracturing fluid 97 to the fracturing pump system 36. Piping 101 attached to a discharge end of pump 100 directs the pressurized fracturing fluid to a manifold 102. Connections 1031-n formed on manifold 102 attach to supply lines 1041-n, which are similar to supply lines 90, 92 and that direct the fracturing fluid to pumps (not shown). Pumps connected to supply lines 1041-n are similar to pumps 80, 82, and are also part of the fracturing pump system 36.


Suction lead lines 86, 88 of FIG. 2 each include main segments 105, 106; which make up portions of the suction lead lines 86, 88 on the trailer 84 and distal from the supply lines 90, 92. Suction lead lines 86, 88 also include tip segments 108, 110, which include portions of the suction lead lines 86, 88 that connect to ends of main segments 105, 106 respectively, and that are proximate to and connect with the supply lines 90, 92. As shown, tip segments 108, 110 are shown extending along axes AX1, AX2 that are oblique with respect to horizontal axis AX. By obliquely angling the tip segments 108, 110, operations personnel experience significantly less difficulty in connecting the supply lines 90, 92 to the suction lead lines 86, 88. When connecting/disconnecting a supply line 90, 92 from an obliquely angled tip segment 108, 110 allows operations personnel to hold the portion of the supply lines 90, 92 spaced away from the suction leads 86, 88 vertically lower than the end at the connection 94, 96; which is a more natural and less cumbersome orientation for operations personnel. The angled connections also generate less stress on the supply lines 90, 92 which may lengthen their life and minimize failures The angled holding of the supply lines 90, 92 is in contrast to the generally horizontal or vertical orientations of ends of traditional suction lead lines, which requires that the rearward portions of the supply lines 90, 92 at the same vertical level as the ends at the connections 94, 96.


In one non-limiting example, axis AX1 is at an angle θ1 of around 22° with respect to horizontal axis AX. Optionally, axis AX2 is at an angle θ2 of around 45° with respect to horizontal axis AX. An additional advantage is realized by offsetting the angles of the adjacent tip segments 108, 110 as not only can personnel realize the advantage of the non-horizontal orientation of these tip segments 108, 110 when attaching or moving the supply lines 90, 92, but angularly offsetting the adjacent tip segments 108, 110 reduces interference of operation between these two tip segments 108, 110. It should be pointed out, however, that the axes AX1, AX2 along which the tip segments 108, 110 are oriented can range between around 22° and up to around 45° from the horizontal axis AX. Additionally, the offset angles between axes AX1, AX2 and horizontal axis AX can be less than 22°. In FIG. 2, tip segments 108, 110 are shown projecting along a path that intersects with surface 85. However, embodiments exist wherein one or both of tip segments 108, 110 extend along a path that projects away from surface 85.


Further shown in FIG. 2 is a discharge lead line 112 which is shown connecting to a discharge 113 mounted on a high pressure side of pump 80. A discharge line 114 is shown connecting to a discharge 115 mounted on the high pressure side of pump 82. Referring now to the example of FIG. 3, shown is that discharge lead lines 112, 114 each include main segments 116, 118 and which are primarily mounted on trailer 84. The ends of the discharge lead lines 102, 114 distal from pumps 80, 82 are angled to define tip segments 120, 122 which as shown are oriented respectively along axes AX3, AX4. Like axes AX1, AX2 of FIG. 2, axes AX3, AX4 of FIG. 3 project at angles with respect to horizontal axis AX that are oblique. More specifically, AX3 is shown at an angle of θ3 with respect to horizontal axis AX, and axis AX4 is at an angle of θ4 with respect to horizontal axis AX. Similar to the tip segments 108, 110 of FIG. 2, obliquely angling of the tip segments 120, 122 provides an easier connection and disconnection of discharge lines 124, 126 shown respectively coupled to the ends of the tip segments 120, 122. Connections 128, 130 are illustrated that provide connection between the discharge lines 124, 126 and tip segments 120, 122. In one optional embodiment, tip segments 108, 110, 120, 122 extend across the outer periphery of the upper surface of trailer 84. Example connections 128, 130 include flange connections, threaded connections, unions, hammer unions, quick disconnect connections, and the like. In one embodiment, the ends of the two discharge lead lines for the first pump and the second pump are parallel to the horizontal plane and are offset from each other.


Further shown in the example of FIG. 4 are hydraulic fracturing pumps 80, 82 mounted on trailer 84. In the illustrated embodiment, suction line 88 and the discharge line 114 fluidly connected to pump 80 and are routed underneath the fluid end of pump 82. Further in this example, the discharge tip segments 120, 122 are offset from one another, but are oriented along paths that are generally parallel with the trailer 84 and surface 85 on which trailer 84 is supported. As shown, the discharge lead lines 112, 114 and respective tip segments 120, 122 remain separate from one another so that pressurized slurry from the pumps 80, 82 remains in separate conduits while on and adjacent trailer 84. Lines 86, 88 and associated tip segments 108, 110 are also kept apart from one another while on and adjacent trailer 84 As indicated above, separating these fluid flow lines, especially proximate the pumps 80, 82 reduces vibration in the hardware coupled with the pumps 80, 82, and flow lines carrying slurry to and from the pumps 80, 82.


The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation comprising: a plurality of electrically powered fracturing pumps mounted on a trailer, each of the plurality of electrically powered fracturing pumps attached to a corresponding first lead line and a corresponding second lead line;wherein each of the first lead lines and the second lead lines are separate and apart from one another while on the trailer, each of the first and second lead lines comprising a main segment attached to at least one of the plurality of electrically powered fracturing pumps, and a tip segment that is angled obliquely to a portion of the main segment proximate the tip segment, wherein the tip segment of each of the first lead lines is angled differently with respect to the main segment than the tip segment of the corresponding second lead line, and wherein the main segment and the tip segment comprise a unitary pipe segment; andflow lines in fluid communication with the lead lines.
  • 2. The hydraulic fracturing system of claim 1, wherein the tip segment of each lead line extends along an axis that angles away from a horizontal axis from around 22 degrees to around 45 degrees.
  • 3. The hydraulic fracturing system of claim 2, wherein the tip segment of the first lead line is oriented at an angle of around 22 degrees with respect to the horizontal axis, and segment of the second lead line is oriented at an angle of around 45 degrees with respect to the horizontal axis.
  • 4. The hydraulic fracturing system of claim 1, wherein the lead lines comprise suction lead lines, the system further comprising discharge lead lines that extend along paths that are generally parallel with the horizontal axis, and wherein the suction lead lines connect to a supply line that contains fracturing fluid from a blender, and the discharge line contains fracturing fluid pressurized by the pump.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to and the benefit of, U.S. Provisional Application Ser. No. 62/156,301, filed May 3, 2015 and is a continuation-in-part of, and claims priority to and the benefit of U.S. patent application Ser. No. 13/679,689, filed Nov. 16, 2012, the full disclosures of which are hereby incorporated by reference herein for all purposes.

US Referenced Citations (521)
Number Name Date Kind
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2248051 Armstrong Jul 1941 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
2976025 Pro Mar 1961 A
3055682 Bacher Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3878884 Raleigh Apr 1975 A
3881551 Terry May 1975 A
4037431 Sugimoto Jul 1977 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4411313 Johnson et al. Oct 1983 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4601629 Zimmerman Jul 1986 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4768884 Elkin Sep 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber Jun 1991 A
5050673 Baldridge Sep 1991 A
5114239 Allen May 1992 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5230366 Marandi Jul 1993 A
5334899 Skybyk Aug 1994 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5433243 Griswold Jul 1995 A
5439066 Gipson Aug 1995 A
5486047 Zimmerman Jan 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5798596 Lordo Aug 1998 A
5813455 Pratt et al. Sep 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
5950726 Roberts Sep 1999 A
6035265 Dister et al. Mar 2000 A
6097310 Harrell et al. Aug 2000 A
6121705 Hoong Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann et al. Aug 2001 B1
6315523 Mills Nov 2001 B1
6442942 Kopko Sep 2002 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6529135 Bowers et al. Mar 2003 B1
6585455 Petersen et al. Jul 2003 B1
6626646 Rajewski Sep 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida Aug 2004 B2
6788022 Sopko Sep 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
6985750 Vicknair et al. Jan 2006 B1
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7308933 Mayfield Dec 2007 B1
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7795830 Johnson Sep 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine Dec 2010 B2
7926562 Poitzsch Apr 2011 B2
7894757 Keast Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8083504 Williams Dec 2011 B2
8091928 Carrier Jan 2012 B2
8096354 Poitzsch Jan 2012 B2
8096891 Ochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8474521 Kajaria Jul 2013 B2
8506267 Gambier et al. Aug 2013 B2
8534235 Chandler Sep 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8760657 Pope Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak Jul 2014 B2
8789601 Broussard Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9062545 Roberts et al. Jun 2015 B2
9067182 Nichols Jun 2015 B2
9103193 Coli Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140105 Pattillo Sep 2015 B2
9140110 Coli Sep 2015 B2
9160168 Chapel Oct 2015 B2
9175554 Watson Nov 2015 B1
9206684 Parra Dec 2015 B2
9260253 Naizer Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer Apr 2016 B2
9340353 Oren May 2016 B2
9353593 Lu et al. May 2016 B1
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9458687 Hallundbaek Oct 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver Nov 2016 B2
9506333 Castillo et al. Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9790858 Kanebako Oct 2017 B2
9863228 Shampine et al. Jan 2018 B2
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9963961 Hardin May 2018 B2
9976351 Randall May 2018 B2
10008880 Vicknair Jun 2018 B2
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10221639 Romer et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard Jul 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10408030 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415332 Morris et al. Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
10627003 Dale et al. Apr 2020 B2
10648270 Brunty et al. May 2020 B2
10648311 Oehring et al. May 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla Jun 2020 B2
10686301 Oehring et al. Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
10731561 Oehring et al. Aug 2020 B2
10740730 Altamirano et al. Aug 2020 B2
10767561 Brady Sep 2020 B2
10781752 Kikkawa et al. Sep 2020 B2
10794165 Fischer et al. Oct 2020 B2
10988998 Fischer et al. Apr 2021 B2
20010000996 Grimland et al. May 2001 A1
20020169523 Ross Nov 2002 A1
20030056514 Lohn Mar 2003 A1
20030079875 Weng May 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr Mar 2004 A1
20040045703 Hooper et al. Mar 2004 A1
20040102109 Cratty May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050201197 Duell et al. Sep 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060109141 Huang May 2006 A1
20060260331 Andreychuk Nov 2006 A1
20070131410 Hill Jun 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080095644 Mantei et al. Apr 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080164023 Dykstra et al. Jul 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080257449 Weinstein et al. Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264640 Eslinger Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080277120 Hickie Nov 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090072645 Quere Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090090504 Weightman Apr 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre Jan 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100101785 Khvoshchev Apr 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100200224 Nguete Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100293973 Erickson Nov 2010 A1
20100303655 Scekic Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110052423 Gambier Mar 2011 A1
20110061855 Case et al. Mar 2011 A1
20110081268 Ochoa et al. Apr 2011 A1
20110085924 Shampine Apr 2011 A1
20110110793 Leugemores et al. May 2011 A1
20110166046 Weaver Jul 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120060929 Kendrick Mar 2012 A1
20120063936 Baxter et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120112757 Vrankovic et al. May 2012 A1
20120127635 Grindeland May 2012 A1
20120150455 Franklin et al. Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130051971 Wyse et al. Feb 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Olarte Caro Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130299167 Fordyce Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140138079 Broussard May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach Aug 2014 A1
20140246211 Guidry Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140379300 Devine Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150147194 Foote May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150233530 Sandidge Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160006311 Li Jan 2016 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160230660 Zeitoun et al. Aug 2016 A1
20160258267 Payne Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang et al. Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326853 Fred et al. Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170082033 Wu et al. Mar 2017 A1
20170096885 Oehring Apr 2017 A1
20170096889 Blanckaert et al. Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170204852 Barnett Jul 2017 A1
20170212535 Shelman et al. Jul 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring et al. Aug 2017 A1
20170222409 Oehring et al. Aug 2017 A1
20170226838 Ciezobka Aug 2017 A1
20170226842 Omont Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20170370639 Barden et al. Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180045331 Lopez Feb 2018 A1
20180090914 Johnson et al. Mar 2018 A1
20180181830 Luharuka et al. Jun 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180238147 Shahri Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180259080 Dale et al. Sep 2018 A1
20180266217 Funkhauser et al. Sep 2018 A1
20180266412 Stokkevag Sep 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180291713 Jeanson Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180312738 Rutsch et al. Nov 2018 A1
20180313677 Warren et al. Nov 2018 A1
20180320483 Zhang Nov 2018 A1
20180343125 Clish Nov 2018 A1
20180363437 Coli Dec 2018 A1
20180363640 Kajita et al. Dec 2018 A1
20180366950 Pedersen et al. Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190040727 Oehring et al. Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190119096 Haile Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190128104 Graham et al. May 2019 A1
20190145251 Johnson May 2019 A1
20190154020 Glass May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190249527 Kraynek Aug 2019 A1
20190257462 Rogers Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
20200040878 Morris Feb 2020 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Allion et al. Mar 2020 A1
20200232454 Chretien Jul 2020 A1
20200325760 Markham Oct 2020 A1
20200350790 Luft et al. Nov 2020 A1
Foreign Referenced Citations (38)
Number Date Country
2007340913 Jul 2008 AU
2406801 Nov 2001 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
3067854 Jan 2019 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
201687513 Dec 2010 CN
101977016 Feb 2011 CN
202023547 Nov 2011 CN
102602322 Jul 2012 CN
104117308 Oct 2014 CN
104196613 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
112196508 Jan 2021 CN
2004264589 Sep 2004 JP
2009046280 Apr 2009 WO
2014177346 Nov 2014 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
2018044307 Mar 2018 WO
2018213925 Nov 2018 WO
2019210417 Nov 2019 WO
Non-Patent Literature Citations (128)
Entry
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action dated Oct. 6, 2017 in related U.S. Appl. No. 14/881,535.
Non-Final Office Action dated Nov. 29, 2017 in related U.S. Appl. No. 15/145,414.
Non-Final Office Action dated Nov. 13, 2017 in related U.S. Appl. No. 15/644,487.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Canadian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Non-Final Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages.
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages.
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Non-Final Office Action issued in Corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
International Search Report and Written Opinion dated Jun. 2, 2020 in corresponding PCT Application No. PCT/US20/23809.
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912.
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017.
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359.
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861.
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444.
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968.
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436.
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273.
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727.
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263.
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083.
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, p. 1-10, 1967.
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974.
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-bumer) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters].
Water and Glycol Heating Systems⋅ (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
“Heat Exchanger” (https://en.wikipedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Dec. 18, 2019 Apr. 2019 (Apr. 18, 2019), entire document, especially para (0001].
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707.
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980.
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749.
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
Final Office Action dated Mar. 31, 2020 in related U.S. Appl. No. 15/356,436.
Non-Final Office Action dated Mar. 3, 2020 in related U.S. Appl. No. 16/152,695.
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020.
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020.
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020.
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines (Year 2015).
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
International Search Report and Written Opinion mailed in PCT/US20/67526 dated May 6, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67608 dated Mar. 30, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67528 dated Mar. 19, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67146 dated Mar. 29, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67523 dated Mar. 22, 2021.
International Search Report and Written Opinion mailed in PCT/US2020/066543 dated May 11, 2021.
Morris et al., U.S. Appl. No. 62/526,869; Hydration-Blender Transport and Electric Power Distribution for Fracturing Operation; Jun. 28, 2018; USPTO; see entire document.
Final Office Action dated Feb. 4, 2021 in U.S. Appl. No. 16/597,014.
International Search Report and Written Opinion dated Feb. 4, 2021 in PCT/US20/59834.
International Search Report and Written Opinion dated Feb. 2, 2021 in PCT/US20/58906.
International Search Report and Written Opinion dated Feb. 3, 2021 in PCT/US20/58899.
Non-Final Office Action dated Jan. 29, 2021 in U.S. Appl. No. 16/564,185.
Final Office Action dated Jan. 21, 2021 in U.S. Appl. No. 16/458,696.
Final Office Action dated Jan. 11, 2021 in U.S. Appl. No. 16/404,283.
Non-Final Office Action dated Jan. 4, 2021 in U.S. Appl. No. 16/522,043.
International Search Report and Written Opinion dated Dec. 14, 2020 in PCT/US2020/53980.
Non-Final Office Action issued in U.S. Appl. No. 16/871,928 dated Aug. 25, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,727 dated Aug. 3, 2021.
Non-Final Office Action issued in U.S. Appl. No. 14/881,525 dated Jul. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/404,283 dated Jul. 21, 2021.
Notice of Allowance and Notice of Allowability issued in U.S. Appl. No. 15/829,419 dated Jul. 26, 2021.
Woodbury et al., “Electrical Design Considerations for Drilling Rigs,” IEEE Transactions on Industry Applications, vol. 1A-12, No. 4, Jul./Aug. 1976, pp. 421-431.
Kroposki et al., Making Microgrids Work, 6 IEEE Power and Energy Mag. 40, 41 (2008).
Dan T. Ton & Merrill A. Smith, The U.S. Department of Energy's Microgrid Initiative, 25 The Electricity J. 84 (2012), pp. 84-94.
Non-Final Office Action issued in U.S. Appl. No. 16/871,328 dated Dec. 9, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,935 dated Oct. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/564,186, dated Oct. 15, 2021.
Final Office Action issued in U.S. Appl. No. 16/356,263 dated Oct. 7, 2021.
Non-Final Office Action issued in U.S. Appl. No. 17/060,647 dated Sep. 20, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/901,774 dated Sep. 14, 2021.
Canadian Office Action issued in Canadian Application No. 3,094,768 dated Oct. 28, 2021.
Related Publications (1)
Number Date Country
20160319650 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
62156301 May 2015 US
Continuation in Parts (1)
Number Date Country
Parent 13679689 Nov 2012 US
Child 15145443 US