Suction and irrigation sealing grasper

Information

  • Patent Grant
  • 10959771
  • Patent Number
    10,959,771
  • Date Filed
    Wednesday, October 12, 2016
    8 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
Abstract
Aspects of the present disclosure are presented for a single surgical instrument configured for grasping tissue, performing sealing procedures using electrosurgical or ultrasonic energy, suctioning fluid, and providing irrigation. An end effector of the surgical instrument may include multiple members arranged in various configurations to collectively perform the aforementioned functions. The suction and irrigation elements may comprise one or more fluid paths configured to deliver fluid to or evacuate fluid from a surgical field. In this way, a user, such as a clinician or surgeon, may rely on a single surgical instrument to perform these tasks typical in surgery while having an extra hand available and so as to not need to divert his or her concentration away from the surgical site in order to access multiple devices. Further, the timing for performing each of the functions may be made quicker, due to not needing to switch using multiple devices.
Description
TECHNICAL FIELD

The present disclosure is related generally to medical devices with various mechanisms for grasping and sealing tissue. In particular, the present disclosure is related to medical devices with grasping instruments that perform sealing procedures and also include suction and irrigation functionality in the same device.


BACKGROUND

In many surgeries, multiple devices are used to perform grasping of tissue, sealing of said tissue (e.g., using electrosurgical energy or in other cases ultrasonic energy), suctioning of nearby fluids and irrigation for flushing the surgical area. A surgeon may hold at least one device for performing at least one of these functions in the offhand. Assistance is typically needed to enable the surgeon to perform these multiple functions without losing concentration on the surgical site. It may desirable to provide a single surgical instrument configured to perform these multiple functions to aide the surgeon and increase performance, accuracy and safety during the surgery.


While several devices have been made and used, it is believed that no one prior to the inventors has made or used the device described in the appended claims.


BRIEF SUMMARY

In some aspects, a surgical instrument is provided.


1. In one example, the surgical instrument may include: a handle assembly, a shaft coupled to a distal end of the handle assembly, and an end effector coupled to a distal end of the shaft. The end effector may include: a first jaw, a second jaw, wherein the first jaw and the second jaw cooperate to capture tissue therebetween; wherein at least one of the first and second jaws is configured to transmit electrosurgical energy to seal the tissue, a suction mechanism configured to suction fluid, and an irrigation mechanism configured to transmit fluid.


2. In another example of the surgical instrument, the first jaw comprises the suction mechanism and the irrigation mechanism, and the second jaw comprises a surface configured to transmit the electrosurgical energy upon contact with the tissue.


3. In another example of the surgical instrument, the first jaw comprises a tube running a longitudinal length of the first jaw, a distal end of the tube defining a suction and irrigation outlet on a distal end of the first jaw whereby fluid passes in or out of the first jaw.


4. In another example of the surgical instrument, the tube comprises at least one irrigation and suction outlet positioned on a lateral side of the first jaw.


5. In another example of the surgical instrument, the first jaw is configured to transmit electrosurgical energy at a first polarity and the second jaw is configured to transmit electrosurgical energy at a second polarity.


6. In another example of the surgical instrument, the first jaw or the second jaw comprises at least one insulating pin protruding on an inner side of said first or second jaw facing the other second or first jaw such that the at least one insulating pin is configured to touch the other second or first jaw upon closure of the first and second jaws and prevent direct contact between the first and second jaws, the at least one insulating pin configured to prevent energy transfer between the first and second jaws.


7. In another example of the surgical instrument, the end effector further comprises an insulated member positioned between the first and second jaws and is configured to isolate energy transfer between the first and second jaws.


8. In another example of the surgical instrument, the insulated member comprises a suction and irrigation channel configured to suction fluid entering the end effector and transmit fluid into the end effector.


9. In another example of the surgical instrument, the first and second jaws define an elongated fluid channel therebetween upon closure of the first and second jaws, wherein: a distal end of the elongated channel defines a suction and irrigation outlet on a distal end of the first and second jaws whereby fluid passes in or out of the first and second jaws, and a proximal end of the elongated channel is fluidically coupled to the suction and irrigation channel of the insulated member.


10. In another example of the surgical instrument, the suction mechanism and the irrigation mechanism are defined in part by the elongated fluid channel upon closure of the first and second jaws.


11. In another example of the surgical instrument, the insulated member is configured to be translatable along a longitudinal axis of the shaft.


12. In another example of the surgical instrument, translation of the insulated member in a distal direction along the longitudinal axis is configured to cause the first and second jaws to open, and translation of the insulated member in a proximal direction along the longitudinal axis is configured to cause the first and second jaw to close.


13. In another example of the surgical instrument, the electrosurgical energy is monopolar.


14. In another example of the surgical instrument, the electrosurgical energy is bipolar.


15. In another example of the surgical instrument, the first jaw comprises a backside positioned on a far side from the second jaw, the backside comprising an electrosurgical pad configured to transmit electrosurgical energy for coagulating tissue upon contact with the tissue.


16. In another example, a surgical instrument is presented. The surgical instrument may include: a handle assembly, a shaft coupled to a distal end of the handle assembly, and an end effector coupled to a distal end of the shaft. The end effector may include: an ultrasonic grasping member configured to contact tissue at a surgical site and transmit ultrasonic energy to the tissue upon contact, a suction mechanism configured to suction fluid, and an irrigation mechanism configured to transmit fluid.


17. In another example of the surgical instrument, the end effector further comprises a suction and irrigation tube, the suction and irrigation tube partially defining the suction mechanism and the irrigation mechanism.


18. In another example of the surgical instrument, at least one of the ultrasonic grasping member, the suction mechanism and the irrigation mechanism is configured to retract into the shaft.


19. In another example, a surgical instrument is presented. The surgical instrument may include: a handle assembly, a shaft coupled to a distal end of the handle assembly, and an end effector coupled to a distal end of the shaft. The end effector may comprise: an outer tube coupled to the shaft, an inner tube positioned within the outer tube and coupled to an inner tube of the shaft; the inner tube comprising a grasping and sealing mechanism configured to grasp tissue and transmit energy to seal the tissue upon contact, the end effector further comprising a suction and irrigation mechanism defined in part by a space in between the inner tube and the outer tube. The suction and irrigation mechanism is configured to: suction fluid from a distal end of the end effector through the space in between the inner tube and the outer tube, and transmit fluid through the distal end of the effector from the space in between the inner tube and the outer tube.


20. In another example of the surgical instrument, the outer tube is configured to retract to dispose the grasping and sealing mechanism during a grasping or sealing procedure, and the outer tube is further configured to extend during a suction or irrigation procedure.


21. In some examples, a non-transitory computer readable medium is presented. The computer readable medium may include instructions that, when executed by a processor, cause the processor to perform operations comprising any of the operations described in examples 1-20.


22. In some examples, a method for sealing tissue is presented. The method may include any of the procedures described in examples 1-21.


The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, examples, and features described above, further aspects, examples, and features will become apparent by reference to the drawings and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the aspects described herein are set forth with particularity in the appended claims. The aspects, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1A shows a medical device, configurable with a fluid control system according to various aspects.



FIG. 1B shows a more detailed description of the end effector of the medical device in FIG. 1A.



FIG. 1C shows a schematic of one aspect of a fluid control system.



FIG. 1D shows an example of further details of the suction and irrigation mechanisms of the medical device.



FIG. 1E shows a perspective view of the semi transparent view in FIG. 1D.



FIG. 1F shows further example details of the interconnection between the fluid tube and the grasping jaws at the end effector.



FIG. 1G shows an example illustration of suction and irrigation tubes, as well as a power cable connected to the surgical device.



FIG. 2 shows one example design of an end effector including jaw members for grasping and applying sealing energy and according to some aspects, including first and second jaw members and a suction and irrigation path included in one of the first and second jaw members.



FIG. 3 shows the end effector of FIG. 2 in an open position.



FIG. 4 shows the end effector of FIG. 2 with a semi transparent view, in order to show some further details of performing opening and closing of the jaws, according to some aspects.



FIG. 5 shows a longitudinal cross-sectional view of the end effector in FIG. 2 to provide illustration of additional detail, according to some aspects.



FIGS. 6-8 show the end effector of FIG. 2 in various exploded views to isolate the individual parts.



FIG. 9 shows another example implementation for an end effector, this time including two jaws forming a lumen when in a closed position and including an insulated member to separate the two jaws, according to some aspects.



FIG. 10 shows the end effector of FIG. 10 in a closed position, according to some aspects.



FIG. 11 shows a semi transparent view of the end effector of FIG. 9 to provide additional details of its operation.



FIG. 12 shows another semi transparent view of the end effector of FIG. 9, this time demonstrating further details for opening the jaws.



FIG. 13 shows a close-up and semi transparent view of the distal end of the insulated member of FIG. 9 to provide closer detail of how the closure wheel interacts with the jaw members.



FIG. 14 shows a longitudinal cross-sectional view of the end effector in FIG. 9, according to some aspects.



FIG. 15 shows an illustration of utilizing the suctioning functionality through closure of the jaws in FIG. 9.



FIG. 16 shows an exploded view of the end effector according to FIG. 9.



FIG. 17 shows another example of an end effector having grasping and sealing functionality, as well as suction and irrigation functionality, this time including ridges or teeth, according to some aspects.



FIG. 18 provides an illustration of the jaws in FIG. 17 in an open formation.



FIG. 19 illustrates a closed position of the jaws in FIG. 17.



FIG. 20 shows another variation of an end effector with jaws having ridges or teeth, this time showing one of the jaws as part of a rigid member with the rest of the shaft, according to some aspects.



FIG. 21 shows a semitransparent profile view of the end effector of FIG. 20, including outlines of how some components may be configured within the shaft to achieve the various functions of this end effector.



FIG. 22 provides another variant of an end effector configured to grasp and seal tissue, along with providing sealing and functionality, according to some aspects, this time with the jaws configured to supply electrosurgical energy on either or both between the jaws or on the outsides of the jaws.



FIG. 23 shows the end effector of FIG. 22 to have the jaws separated from the bottom jaw in a perspective view.



FIGS. 24 and 25 provide yet another variation for the end effector, this time including the suction and irrigation tube in between two movable jaws, according to some aspects.



FIG. 26 shows yet another variation for an end effector having both suction and irrigation functionality along with grasping and sealing functionality, this time showing how the irrigation and suction channels may be encased around the grasping member.



FIGS. 27-28 provide perspective views of the retractable grasping member of FIG. 26.



FIG. 29 provides a schematic of yet another variation for an end effector, this time including grasping members protruding beyond the distal end of a tube configured to grasp tissue at the distal ends, and may also be configured to supply sealing energy through ultrasonic vibrations.



FIG. 30 shows another example design of grasping members protruding beyond the distal end of a tube where an upper member includes an energized backside that may be configured to supply electrosurgical energy.



FIG. 31 is a block diagram describing further details of power supply elements of a surgical system comprising a motor-driven grasping and sealing instrument with suction and irrigation mechanisms, the surgical instrument coupled to a generator, according to some aspects.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols and reference characters typically identify similar components throughout the several views, unless context dictates otherwise. The illustrative examples described in the detailed description, drawings, and claims are not meant to be limiting. Other examples may be utilized, and other changes may be made, without departing from the scope of the subject matter presented here.


The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, examples, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


It is further understood that any one or more of the teachings, expressions, aspects, examples, etc., described herein may be combined with any one or more of the other teachings, expressions, aspects, examples, etc., that are described herein. The following-described teachings, expressions, aspects, examples, etc., should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom, and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various aspects will be described in more detail with reference to the drawings. Throughout this disclosure, the term “proximal” is used to describe the side of a component, e.g., a shaft, a handle assembly, etc., closer to a user operating the surgical instrument, e.g., a surgeon, and the term “distal” is used to describe the side of the component further from the user operating the surgical instrument.


Aspects of the present disclosure are presented for a single surgical instrument configured for grasping tissue, performing sealing procedures using electrosurgical or ultrasonic energy, suctioning, and providing irrigation. An end effector of the surgical instrument may include multiple members arranged in various configurations to collectively perform the aforementioned functions. The suction and irrigation elements may comprise one or more fluid paths configured to deliver fluid to or evacuate fluid from a surgical field. In certain aspects, the fluid may comprise any fluid, including a gas, liquid, combination of the two, as well as fluids that may further include particulates, e.g., electrosurgical smoke. In this way, a user, such as a clinician or surgeon, may rely on a single surgical instrument to perform these tasks typical in surgery while having an extra hand available and so as to not need to divert his or her concentration away from the surgical site in order to access multiple devices. Further, the timing for performing each of the functions may be made quicker due to not needing to switch using multiple devices.


In some aspects, an end effector of a surgical instrument includes a pair of jaws for grasping and applying electrosurgical (e.g., radio frequency (“RF”)) energy to tissue at a surgical site. A first jaw may also include a suction and irrigation path. An insulating layer or over mold may be included in between the two jaws to allow for one jaw to supply energy at a first pole and the other jaw to supply energy at a second pole. In some aspects, the jaw including the suction and irrigation path may also include small holes on the sides or top to allow for suction through the sides or top. These features may allow for spot sealing and suctioning.


In some aspects, an end effector of a surgical instrument includes a pair of jaws for grasping and applying electrosurgical energy to tissue at the surgical site. The pair of jaws may also form a suction and irrigation path when the jaws are closed. An insulated member may be included in between the pair of jaws and may also include an irrigation and suction path within. In some aspects, the insulated member may be shaped like a wedge such that translation of the insulated member in a longitudinal direction parallel to the shaft coupled to the end effector may cause the jaws to open and close.


In some aspects, an end effector of a surgical instrument includes an ultrasonic member and an irrigation and suction tube. The ultrasonic member may be implemented in various different shapes, such as a shape configured to grab or grasp tissue. The ultrasonic member may be configured to deliver ultrasonic energy through being vibrated at an ultrasonic frequency. The irrigation and suction tube may be located near to the ultrasonic member at the end effector. In some aspects, one or both of the ultrasonic member and the irrigation and suction tube may be retracted into a closure tube to allow for focused use of one or the other members. In other cases, the irrigation and suction tube may be built into the ultrasonic member, such as by having a hole carved out of part of the ultrasonic member and a tube connected therefrom.


Other various features may include cameras or lights coupled to one or more of the members of the end effector, and monopolar or bipolar options for the electrosurgical devices.


Various features described herein may be incorporated in electrosurgical devices for applying electrical energy to tissue in order to treat and/or destroy the tissue are also finding increasingly widespread applications in surgical procedures. An electrosurgical device typically includes a hand piece, an instrument having a distally-mounted end effector (e.g., one or more electrodes). The end effector can be positioned against the tissue such that electrical current is introduced into the tissue. Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flowing through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device may also include a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.


Electrical energy applied by an electrosurgical device can be transmitted to the instrument by a generator in communication with the hand piece. The electrical energy may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 200 kilohertz (kHz) to 1 megahertz (MHz). In application, an electrosurgical device can transmit low frequency RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary is created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy is useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.


Referring to FIG. 1A, a medical device 2 is illustrated, configurable with a fluid control system 3 according to various aspects. The medical device 2 comprises an elongate member 4, such as a shaft, having a proximal portion 9 coupled to a handle assembly 7. A distal portion 12 of the elongate member 4 comprises an end effector 14 (see FIG. 1B) coupled to a distal end 14 of the shaft 10. In some aspects, the end effector 14 comprises a first jaw 15a and a second jaw 15b, each having an outer portion or surface 16a, 16b. At least one of the first jaw 15a and the second jaw 15b is rotatably movable relative to the other along a path shown by arrow J to transition the jaws 15a, 15b between open and closed positions. In operation, the jaws 15a, 15b may be transitioned from the open position to a closed position to capture tissue therebetween. Captured tissue may contact one or more working portions of the jaw set, indicated generally as 17a, 17b, configured to apply energy, e.g., bipolar energy, to treat target tissue. In some aspects, the first jaw 15a or the second jaw 15b may include an irrigation and suction path.


The handle assembly 7 comprises a housing 18 defining a grip 19. In various aspects, the handle includes one or more control interfaces 20a-c, e.g., a button or switch 20a, rotation knob 20b rotatable along arrow R, and a trigger 20c movable relative to the grip 19 along arrow T, configured to provide operation instructions to the end effector 13. Multiple buttons, knobs, or triggers described may also be included as part of the housing 18 in order to manipulate one or more of the functioning members at the end effector 14. In some examples, the handle assembly 7 is further configured to electrically couple to an energy source 21 to supply the medical device 2 with energy. While the energy source 21 is illustrated as generally coupled to the handle assembly 7, e.g., with a cord, it is to be understood that in some examples the energy source 21 may be positioned within the elongate member 4. For example, in one aspect, the energy source 21 comprises one or more direct current batteries positioned in the handle 7, shaft 10, or a portion thereof.


As introduced above, the medical device 2 includes or is configurable with the fluid control system 3 to control fluid, e.g., smoke, steam, or other fluid. FIG. 1C shows a schematic of one aspect of a fluid control system 3. The fluid control system 3 includes a fluid path element 22 comprising one or more fluid paths 23. The one or more fluid paths 23 may be fluidically coupled to one or more proximal fluid ports 24 and one or more distal fluid ports 25. With further reference to FIG. 1A, the one or more fluid paths 23 may extend along a portion of the shaft 10 and, in various aspects, may further extend along the handle 7, end effector 14, or only along a portion of the end effector 14 or shaft 10. In certain aspects, the fluid paths 23 may be defined by lumens, lines, channels, voids, ducts, cavities, or tubing which may be externally or internally positioned relative to the handle 7, shaft 10, or end effector 14 or may be integrally formed within such components of the medical device 2. For example, the fluid paths 23 may be integrated into the housing 18 of the handle 7, shaft 10, or end effector 14 or may comprise fluid paths configured as accessory features such as a cover, mold, attachment, sleeve, coating, or the like, that may be positioned on or associated with the handle 7, shaft 10, or end effector 14.


As introduced above, the fluid control system 3 may further comprise or be configured to fluidically couple to a fluid supply and transport element 28 comprising a supply component 30 and a transport component 31. The supply component 30 is configured to supply or receive fluid from the fluid path element 22 and may comprise a fluid source to supply fluid to a fluid path element 23 or a fluid reservoir, which may comprise an environment external to the fluid path element 23 to receive fluid from the fluid path element 22. The transport component 31 is configured to move fluid through the one or more fluid paths of the fluid path element 22. In various examples, the transport component 31 is configured to move fluid passively through the fluid path element 23 via gravity or diffusion, for example, and thus may not comprise a physical structure. In various examples, the transport component 31 comprises a pump or pressure differential configured to actively move or transport fluid through the fluid path element 22. For example, the transport component 31 may include a pressurized or compressed fluid supply or a pump to pressurize or compress the fluid supply. In one example, the fluid supply system 3 includes a valve positioned between the supply component 30 and the fluid path element 22. Fluid path through the valve may be controlled to control transport of fluid through the one or more fluid paths. For example, the transport component 31 may comprise or generate a pressure differential between two outlets of the valve such that fluid is motivated to flow through the valve when the valve is open.


As previously described, the one or more fluid paths 23 may be fluidically coupled to one or more proximal fluid ports 24 and one or more distal fluid ports 25. The proximal fluid ports 24 may be positioned along the elongate member 4, e.g., within or adjacent to the handle 7, shaft 10, or end effector 14. The distal fluid ports 25 may be configured and positioned to deliver or intake fluid from the surgical field or tissue treatment site adjacent the distal portion 12 of the elongate member 4, e.g., the distal end of the shaft 10, the end effector 14, or working portion thereof 17a, 17b.


In various examples, the fluid control system 3 includes or is configured to associate with an activation element 32. The activation element 32 may be operatively coupled to the fluid supply and transport element 28 to activate the transport component 31 to, for example, provide power to a pump or to open a valve or port. In some examples, the activation element 32 comprises a switch electrically coupled to the energy source 21. The switch may be associated with the elongate member 4, e.g., the handle 7, or may be operatively coupled to the elongate member 4, such as a foot switch, to selectively activate the fluid control system 3. In some examples, the activation element 32 comprises a movable mechanical component, such as a switch or actuator, configured to open a valve to allow fluid to be transported through the one or more fluid paths 23. For example, the activation element 32 may include a switch or actuator operatively coupled to a piston or plunger that may be driven within or against a supply component 30 or fluid path element 23. Pressure resulting from movement of the piston or plunger may induce fluid transport, thus, operating as a transport component 31 to push or pull fluid through the one or more fluid paths 23. In some examples, the handle 7 includes a switch or actuator, which may be associated with the switch 20a or trigger 20c, that is coupled to the energy source 21 or valve to activate transport of fluid through the one or more fluid paths 23. In various examples, the activation element 32 may be configured to open a proximal fluid port 24 or a distal fluid port 25. The power may be manual or electrical, e.g., activation of the energy source 21 to provide energy to the end effector 13 may further activate the fluid control system 3. In some aspects, the transport component 31 may, for example, comprise a bulb that may be squeezed to evacuate fluid from within the bulb or to expel or suction another fluid through one or more fluid paths 23. In various aspects, the activation element 32 may be coupled to a valve fluidically coupled to the supply component 30 or the fluid path element 23. The activation element 32 may be configured to selectively operate the valve via an electrical or manual switch such that the valve may be opened or closed to control movement of fluid between the outlets of the valve.


Referring to FIG. 1D, an example of further details of the suction and irrigation mechanisms of the medical device 2 is shown. The example fluid pathways and connections may be consistent with the block diagram descriptions in FIG. 1C. Here, an inner fluid tube 130 within the shaft 10 is coupled at the proximal end at direct connection 120 to a fluid manifold 50. The fluid manifold 50 may include a fluid extraction port 115 and a fluid intake port 125, although in this profile view only one of the ports are shown. The fluid extraction port 115 may allow for evacuation of fluids being suctioned out of a surgical site from the end effector at the distal end of the shaft 10, while the fluid intake port 125 may allow for transmission of fluids to be applied to the surgical site through the shaft 10 and to the end of the end effector at the distal end of the shaft 10. Also shown are a suction activation button 110 and an irrigation activation button 105. Again, only one button is shown due to the profile view of this figure. For reference, the grasping trigger 20c, the energy activation button 20a, and the rotation knob 20b are also shown, to provide an example of how the suction and irrigation mechanisms may interact with the additional features of the surgical device 2.


Referring to FIG. 1E, a perspective view of the semi transparent view in FIG. 1D is shown. In this view, both the fluid extraction port 115 and fluid intake port 125 are clearly illustrated. These ports may connect to hoses or other valves to supply and extract fluid through the surgical device 2. Also shown are the irrigation activation button 105 and the suction activation button 110. The buttons 105 and 110 may be spring biased and coupled to rotating valves within the fluid manifold 50. When un-pressed, the rotating valves within the fluid manifold 50 may be rotated to block passageway through the fluid manifold 50 between the shaft 10 and the ports 115 and 125. Then, when one of the buttons 105 or 110 are pressed, the rotating valves associated therewith may rotate 90° to complete fluid passage between the respective port 125 or 115 to the shaft 110. In some examples, a latching mechanism coupled between the buttons 105 and 110 and is the fluid manifold 50 may be configured to latch the buttons 105 and 110 into a stable or fixed position to allow continual irrigation or suction, respectively, during a surgical procedure. In this way, a user may press down on one of the buttons 105 or 110 to latch said button into place so as to not have to continually press on the button or to maintain the irrigation or suction functionality. To unlatch, in some examples, the user may then press down again on the latch to button, and the associated spring may then extend the button. Other example implementations for providing a latching and unlatching mechanism known to those with skill in the art are possible, and examples are not so limited.


Referring to FIG. 1F, further example details of the interconnection between the fluid tube and the grasping jaws at the end effector 14 are shown. In some examples, a fluid tube 130 is positioned within the shaft 10 and on the inner side of actuation tubes that connect to one or more of the jaws 15a and/or 15b. While it is mentioned that the end effector 14 may be configured to rotate upon rotation of the knob 20b, the inner fluid tube 130 may be configured to not rotate at the same time. For example, the inner fluid tube 130 may be spaced within the shaft 10 and away from the actuation tubes guiding the jaws 15a and/or 15b so as to not touch during rotation. In other cases, the fluid inner tube 130 may comprise a low friction insulation, film, or other material to allow smooth rotation around it and to minimize disruption of the inner tube 130 during said rotation. In other cases, a rotating valve may be included around the fluid inner tube 130 and coupled to the fluid manifold 50, for example, to allow rotation of the inner tube 130 during rotation of the rest of the shaft 10. Also shown are electrical shorts 135 to help electrically isolate the jaws 15a and 15b.


Referring to FIG. 1G, an example illustration of suction and irrigation tubes 150 and 155, as well as a power cable 160, is shown. The ports described in the previous figures provide examples of how the illustrated tubes and cables may be coupled to the surgical instrument 2. The example power cable 160 may supply wire to power to the surgical instrument 2, while in other cases, the surgical instrument 2 may be powered internally, such as through the use of batteries. Example power systems coupled to the power cable 160 are described in FIG. 49, for example. The suction and irrigation tubes 150 and 155 may be configured to be connected to other extension cables or valves.


The following descriptions and related figures provide examples of more detailed designs of the end effector 14, including one or more members for grasping and applying sealing energy, and one or more members with a fluid path for suction and irrigation. The following are merely examples, and it may be apparent to those with skill in the art how the various examples may be combined or interchanged to be included in various other aspects, and examples are not so limited.


Referring to FIG. 2, illustration 200 shows one example design of an end effector including jaw members for grasping and applying sealing energy and according to some aspects. Here, a bottom jaw 205 may interact with a top jaw 220 to grasp tissue. The bottom jaw 205 also may include a suction and irrigation path that opens or ends principally from the distal end 210 of the bottom jaw 205 and runs through a tubing system through the shaft 10, not shown. In some aspects, the bottom jaw 205 also may include one or more suction and irrigation holes 215 located on the lateral sides of the bottom jaw 205. The holes 215 may allow for additional suction and irrigation to occur on the sides of the end effector.


In some aspects, the top jaw 220 and the bottom jaw 205 may be configured to supply electrosurgical energy, such as RF energy, to tissue at a surgical site. The end effector may be configured to supply monopolar electrosurgical energy, in that both jaws 220 and 205 supply energy at a first pole. In other cases, the end effector may be configured in a bipolar arrangement, such that the jaw 205 may supply RF energy at a first pole, while the other jaw 220 may be configured to supply RF energy at a second pole.


As shown, the end effector also may include a closure saddle 235, a closure tube 225, and a shrink tube 230 and may be used for insulation. In illustration 200, the jaws 205 and 220 are shown in a closed position, which may be achieved by translation of the closure saddle 235 moved back in the proximal direction, as indicated by the arrow PD.


Referring to FIG. 3, the end effector of the example illustration 200 is now shown in an open position, where the closure saddle has been translated in the distal direction toward the end of the end effector, as indicated by the arrow DD. Also shown are insulated pins 305, in this case coupled to the top jaw 220. The insulated pins 305 may provide separation and insulation between the top jaw 220 and the bottom jaw 205, such that only the insulated pins 305 touch the bottom jaw 205 when the jaws are in a closed position. In this way, the top jaw 220 and the bottom jaw 205 may be configured to supply RF energy at different polarities, due to the insulated pins 305 physically separating the jaws 205 and 220 even in the closed position. Also shown is movement by the top jaw 220 at the pivot pin 310.


Referring to FIG. 4, the example end effector of illustration 200 is shown with a semi transparent view, in order to show some further details of performing opening and closing of the jaws, according to some aspects. As shown, while the top jaw 220 pivots based on the pivot pin 310, movement is driven by a cam 405 connected to the closure saddle 235 and movable within closure slot 410. That is, while the closure saddle 235 is translated along the shaft 10 in the distal direction DD, the cam 405 slides within the closure slot 410 to the distal end of the closure slot 410. Due to the lower position of the cam 405 relative to the pivot pin 310, this motion causes the top jaw 222 pivot upward to the open position. Conversely, as the closure saddle 235 is translated along the shaft 210 and the proximal direction PD, the cam 405 slides back within the closure slot 410 to cause movement of the top jaw 220 to rotate to the closed position.


Referring to FIG. 5, a longitudinal cross-sectional view of the end effector in illustration 200 is shown to provide illustration of additional detail, according to some aspects. For example, a longitudinal cross-sectional cutout of the bottom jaw 205 is shown to reveal the irrigation path 505 running the length of the bottom jaw 205, including the suction and irrigation holes 215 and ending at the distal end 210. The proximal end of the irrigation path 505 connects to an irrigation ground tube 515. Also shown is the top jaw 220 with the insulated pins 305 substantially embedded into the top jaw 220. Various layers of insulation are also shown, such as insulating layer 510, an insulating tube 520 insulating the irrigation ground tube 515, and the shrink tube 230 providing insulation over the entire contents of the shaft 10. Also shown are the closure tube 225 and the closure saddle 235.


Referring to FIGS. 6-8, the end effector of illustration 200 is shown in various exploded views to isolate the individual parts. In FIG. 6, the top jaw 220 is shown with the insulated pins 305 and the pivot pin 310 being separated. In FIG. 7, examples are shown of the shrink tube 230 and the insulating tube 520. In FIG. 8, example components are shown of the bottom jaw 205, the closure saddle 235, the closure tube 225, and the irrigation ground tube 525. It may be apparent to those with skill in the art how the various components in these exploded views may be assembled to complete the end effector of the example illustration 200.


Referring to FIG. 9, illustration 900 shows another example implementation for an end effector having grasping and sealing functionality, as well as suction and irrigation functionality, according to some aspects. In the example of illustration 900, the end effector is shown to have two jaws, a top jaw 905 and a bottom jaw 910, both movable along independent pivot points 920 and 925, respectively. As in the previous example, the jaws 905 and 910 may be configured to supply electrosurgical energy to tissue at a surgical site when the jaws are in a closed and grasping position. In addition, the end effector may be arranged in a monopolar design or bipolar design. For example, one or more insulated pins also may be embedded into one or more of the jaws 905 or 910 two physically separate connection of the jaws 905 and 910 even when closed, similar to the previous example.


In this example, movement of the jaws 905 and 910 may be guided by an insulated member 915 that also includes an irrigation and suction path in the middle, as shown. The insulated member 915 may include a connection to an insulated closure wheel or pin, not shown, that rolls within a closure slot to open the jaws 905 and 910 when the insulated member 915 is translated longitudinally in the distal direction DD. The insulated member 915 also provides insulation between the jaws 905 and 910 to physically isolate any electrical connections between the jaws 905 and 910. In this way, the end effector of illustration 900 may have electrosurgical bipolar properties. Also, the jaws 905 and 910 may be pivotally coupled to an insulated clevis 930, which is also configured to allow the insulated member 915 to slide back and forth in between.


Referring to FIG. 10, the end effector in illustration 900 is now shown in a closed position, according to some aspects. In addition to the jaws 905 and 910 being configured to supply electrosurgical energy upon touching tissue, the jaws 905 and 910 may both be shaped in a half cylinder like configuration, such that when the jaws 905 and 910 close, a lumen 1005 is formed within the jaws 905 and 910. Therefore, when closed, an irrigation and suction path is formed along the length in between the jaws 905 and 910, connecting to the irrigation and suction path of the insulated member 915. The jaws 905 and 910 may be closed upon translation of the insulated member 915 in the proximal direction PD.


Referring to FIG. 11, a semi transparent view of the end effector of illustration 900 is shown to provide additional details of its operation. For example, the lumen path 1105 formed by the closure of the jaws 905 and 910 is more clearly shown. In addition, insulated pins may be available to be placed within the slots 1115. In addition, a translation cavity 1110 is shown to be formed within the proximal ends of the jaws 905 and 910 when the jaws 905 and 910 are closed. The cavity 1110 allows for the insulated member 915 to translate more freely to perform any suction and irrigation functions.


Referring to FIG. 12, another semi transparent view of the end effector of illustration 900 is shown, this time demonstrating further details for opening the jaws 905 and 910. A semi transparent view of the jaws 905 and 910 show the exposure of an insulated closure pin/wheel 1205 slidably connected to the bottom jaw 910 within a closure slot 1210. The wheel 1205 may be connected to the insulated member 915, such that translation of the insulated member 915 in the longitudinal direction of the shaft 10 causes the wheel 1205 to roll within the closure slot 1210. Because the insulated member 915 translates only in a horizontal direction, the angled nature of the closure slot 1210 causes the bottom jaw 910 to open.


While not shown, similar mechanical principles may be applied to cause the top jaw 905 to open in a similar manner. That is, for example, on the opposite side of the end effector in illustration 900, another closure pin/wheel connected to the insulated member 915 may be slidably connected to the top jaw 905 within a similar closure slot like the closure slot 1210 but formed at a different angle. Thus, translation of the insulated member 915 will slidably move the closure wheels within their respective closure slots to cause the jaws 905 and 910 to open.


Referring to FIG. 13, a close-up and semi transparent view of the distal end of the insulated member 915 is shown to provide closer detail of how the closure wheel 1205 interacts with the jaw members. Also shown are the pivot points 920 and 925 of the jaws 905 and 910, respectively. As previously discussed, the angled nature of the closure slot 1210 causes the bottom jaw 910 to pivot open around the pivot 925 when the closure wheel 1205 is translated due to movement by the insulated member 915.


Referring to FIG. 14, a longitudinal cross-sectional view of the end effector in illustration 900 is shown to provide illustration of additional detail, according to some examples. For example, a longitudinal cross-sectional cutout of the jaws 905 and 910 are shown to reveal the irrigation and suction path 1105 running the length of the jaws 905 and 910. The proximal end of the irrigation and suction path 1105 connects to irrigation and suction channel 1425 of the insulated member 915. Also shown are the jaws 905 and 910 connected to the insulated clevis 1405 pivotally coupled at the pivot points 920 and 925, respectively. Within the shrink tube 920 portion of the shaft 10 are additional components. For example, a suction adapter 1410 is stably connected to a closure tube 415 and provides airtight suction at the distal end of the closure tube 415. The suction adapter 1410 also is stably connected to the proximal end of the insulated member 915. As shown, a suction and irrigation path is thereby formed all the way through the closure tube 415 to the distal end of the jaws 905 and 910. An insulating tube 1420 may be housed within the outer insulating shrink tubing 920 and may house the closure tube 1415, the suction adapter 1410, a proximal portion of the insulated clevis 1405, and a proximal portion of the insulating member 915. A space 1430 allows movement of the closure tube 1415 and the insulated member 915.


Referring to FIG. 15, in some examples, closure of the jaws 905 and 910 may not form a complete airtight closure on the lateral sides. As such, suction through a small slit 1505 may be possible, which may allow for suction to be achieved on the lateral sides that are useful during certain surgical procedures.


Referring to FIG. 16, an exploded view of the end effector according to illustration 900 is shown. The various components include the upper jaw 905, the insulated member 915 and an example of a closure ring 1605 news to slide within the closure slots of the jaws 905 or 910. Also shown is the outer insulating shrink tubing 920, the suction adapter 1410, and the closure tube 1415. A layer around those components includes the insulated clevis 1405 and the insulating tube 1420. Finally, other components include the lower jaw 910 and in some cases, an outer tube 1605 that may be wrapped around the insulating shrink tubing or just within it.


Referring to FIG. 17, illustration 1700 shows another example of an end effector having grasping and sealing functionality, as well as suction and irrigation functionality, according to some aspects. Similar to previous examples, the example in illustration 1700 includes two jaws 1705 and 1710. The jaws may be configured to supply electrosurgical energy to tissue when grasping the tissue at a surgical site. In this case, the jaw 1705 and 1710 include ridges or teeth, which may be used to more securely grasp tissue and to more securely connect the two jaws when closing. In this example, both the jaws 1705 and 1710 may be configured to open and close. FIG. 18 provides an illustration of the jaw 1705 and 1710 in an open formation. In contrast, FIG. 19 illustrates a closed position, which also allows for the jaws to form an opening and lumen 1905 when utilizing the suction and irrigation functionality. Due to the shape and alignment of the ridges or teeth of the jaws 1705 and 1710, the closure of the jaws and 1705 and 1710 may help ensure closure between the ridges or the teeth with a small gap to allow suction (e.g., 0.002 to 0.02 inches). This may allow for suction on the lateral sides of the jaws to provide versatility to the user for where to apply suction. Methods for opening and closing the jaw 1705 and 1710 may be consistent with the descriptions in previous examples.


Referring to FIG. 20, illustration 2000 shows another variation of an end effector with jaws having ridges or teeth, this time showing one of the jaws as part of a rigid member 2010 with the rest of the shaft, according to some examples. Thus, a single articulable jaw 2005 may be used to open and close the end effector.


Referring to FIG. 21, a semitransparent profile view of this example end effector of illustration 2000 is shown, including outlines of how to being may be configured within the shaft 10 to achieve the various functions of this end effector. For example, an outer mechanical tube 2010 may encase various other tubes. The outer mechanical tube 2010 also includes the rigid bottom jaw and therefore may act as an electrical grounding surface. Within the mechanical tube 2010 is an actuation tube 2105 that is pivotally coupled to a pivot hinge 2120. The upper jaw 2005 may be pivotally coupled to the pivot hinge 2120 as well. The actuation tube 2105 may be translated longitudinally to move the upper jaw 2005 via the pivot hinge 2120, such that the upper jaw 2005 rotates about the fulcrum 2115. Within the actuation tube is a suction and irrigation tube or liner 2110. The suction and irrigation tube 2110 may provide a channel for fluid suction and irrigation up to the proximal end of the jaws, where the closure of the jaws the rest of the channel for the fluid to pass through.


Referring to FIG. 22, illustration 2400 provides another variant of an end effector configured to grasp and seal tissue, along with providing sealing and functionality, according to some examples. In this case, the jaws 2405 and 2415 may be configured to supply electrosurgical energy on either or both between the jaws or on the outsides of the jaws. The curved nature of the outside of the jaws 2405 and 2415 may allow for the end effector to be wiped or brushed along tissue at the surgical site. Thus, the top side of the upper jaw 2405 and the bottom side of the bottom jaw 2415 may be configured to supply sealing energy. Also shown is a suction and irrigation tube 2410, which projects outwards to the distal end of the jaws 2405 and 2415. In this configuration, the suction and irrigation functionality may be possible regardless of whether the jaws 2405 and 2415 are open or closed.


Referring to FIG. 23, the end effector of illustration 2400 is shown to have the jaws 2405 separated from the bottom jaw 2415 in a perspective view. Shown more clearly here is the suction and irrigation tube 2410. In addition, in some aspects, a suction and irrigation cavity 2405 may be included into one or more of the jaws 2405 and 2415 to allow more space for the suction irrigation tube 2410 to be applied to the surgical site. Also, in some aspects, an insulating lip or pad 2510 may be included in between the jaws 2405 and 2415 to allow for bipolar electrosurgical output of the jaws.


Referring to FIG. 24, illustration 2800 provides yet another variation for the end effector, this time including the suction and irrigation tube 2815 in between two movable jaws 2805 and 2810, according to some aspects. This example may be similar to the examples provided in FIGS. 17-19, only in this case a retractable or translatable suction and irrigation tube 2815 also may be included. The mechanical motion of the jaws 2805 and 2810 may be synchronized with the retracted ability of the tube 2815. FIG. 25 provides an example of how far the suction irrigation tube 2815 may translate outward when the jaws 2805 and 2810 are closed.


Referring to FIG. 26, illustration 3000 shows yet another variation for an end effector having both suction and irrigation functionality along with grasping and sealing functionality. In this case, the grasping member 3005 also used to provide sealing functionality is contained on the inside of an outer tube 3020, while the suction and irrigation functionality is formed on the outside portion 3015 of the grasping member 3005, within the outer tube 3020. This example shows how the irrigation and suction channels may be encased around the grasping member, while previous examples have provided illustrations for the opposite. In some aspects, the grasping member 3005 may be retractable, such as being configured to translate along a distance of 3010. Also, bipolar ring electrodes 3030 may be included at the distal end of the outer tube. The bipolar ring electrodes 3030 may be coupled to opposite poles of a bipolar RF generator and can be used to seal tissue located between the bipolar ring electrode 3030 using electrosurgical energy.



FIGS. 27-28 provide perspective views of the retractable grasping member 3005 of illustration 3000. The inner grasping member may be translatable out just beyond the distal end of the outer tube 3020, as shown. When the suction and irrigation functionality is to be used, the grasping member 3005 may be retracted the distance 3010 to allow for suction and irrigation holes 3205 to come into effect as well. Therefore, in this case, the outer tube 3020 also acts as tubing for the suction and irrigation functionality.


Referring to FIG. 29, illustration 3400 provides a schematic of yet another variation for an end effector. Here, grasping members 3405 and 3410 protruding beyond the distal end of a tube 3420 may be configured to grasp tissue at the distal ends, and also may be configured to supply sealing energy through ultrasonic vibrations. For example, the grasping members 3405 and 3410 may be configured to vibrate across an overall span or fan space 3415, as shown. Various examples of a suction and irrigation two or member may be built into the outer tube 3420, consistent with any of the previous examples described herein, and aspects are not so limited.


Referring to FIG. 30, illustration 3500 shows another example design of grasping members 3505 and 3510 protruding beyond the distal end of a tube 3525. Here, upper member 3505 includes an energized backside 3515 that may be configured to supply electrosurgical energy and may be used for painting or wiping on the top side of the member 3505. In addition, the lower member 3510 can also include an energized portion 3520, which also may be included on the lower side of the top member 3505, not shown. Various examples of a suction and irrigation two or member may be built into the outer tube 3420, consistent with any of the previous examples described herein, and aspects are not so limited.



FIG. 31 is a block diagram of a surgical system 4900 comprising a motor-driven surgical grasping instrument 2 (FIG. 1) with suction and irrigation mechanisms, the surgical instrument coupled to a generator 4935 (4940), according to some aspects. The motor-driven surgical cutting and fastening instrument 2 described in the present disclosure may be coupled to a generator 4935 (4940) configured to supply power to the surgical instrument through external or internal means. While previous figures describe examples of how the irrigation and suction mechanisms may be implemented in the surgical instrument 2, FIG. 31 describes examples of the portions for how electrosurgical energy may be delivered to the end effector. In certain instances, the motor-driven surgical instrument 2 may include a microcontroller 4915 coupled to an external wired generator 4935 or internal generator 4940. Either the external generator 4935 or the internal generator 4940 may be coupled to A/C mains or may be battery operated or combinations thereof. The electrical and electronic circuit elements associated with the motor-driven surgical instrument 2 and/or the generator elements 4935, 4940 may be supported by a control circuit board assembly, for example. The microcontroller 4915 may generally comprise a memory 4910 and a microprocessor 4905 (“processor”) operationally coupled to the memory 4910. The processor 4905 may control a motor driver 4920 circuit generally utilized to control the position and velocity of the motor 4925. The motor 4925 may be configured to control transmission of energy to the electrodes at the end effector of the surgical instrument. In certain instances, the processor 4905 can signal the motor driver 4920 to stop and/or disable the motor 4925, as described in greater detail below. In certain instances, the processor 4905 may control a separate motor override circuit which may comprise a motor override switch that can stop and/or disable the motor 4925 during operation of the surgical instrument in response to an override signal from the processor 4905. It should be understood that the term processor as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.


In some cases, the processor 4905 may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In some cases, any of the surgical instruments of the present disclosures may comprise a safety processor such as, for example, a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation. In one instance, the safety processor may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.


In certain instances, the microcontroller 4915 may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory 4910 of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QED analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use in the motor-driven surgical instrument 2. Accordingly, the present disclosure should not be limited in this context.


Referring again to FIG. 31, the surgical system 4900 may include a wired generator 4935, for example. In certain instances, the wired generator 4935 may be configured to supply power through external means, such as through electrical wire coupled to an external generator. In some cases, the surgical system 4900 also may include or alternatively include an internal generator 4940. The internal generator 4940 may be configured to supply power through internal means, such as through battery power or other stored capacitive source. Further descriptions of the internal generator 4940 and the wired generator 4935 are described below.


In certain instances, the motor-driven surgical instrument 2 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. In certain instances, the motor-driven surgical instrument 2 may comprise various executable modules such as software, programs, data, drivers, and/or application program interfaces (APIs), for example.


In some cases, various examples may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more examples. In various examples, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The examples, however, are not limited in this context.


The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the examples disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some examples also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.


Additionally, it is to be appreciated that the aspects described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described aspects. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers, or other such information storage, transmission, or display devices.


It is worthy to note that some examples may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some aspects may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, and application program interface, exchanging messages, and so forth.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Although various examples have been described herein, many modifications, variations, substitutions, changes, and equivalents to those examples may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed examples. The following claims are intended to cover all such modification and variations.

Claims
  • 1. A surgical instrument comprising: a handle assembly;a shaft coupled to a distal end of the handle assembly; andan end effector coupled to a distal end of the shaft, the end effector comprising: a first jaw and a second jaw, the first jaw comprising: first and second lateral sides, the first and second lateral sides of the first jaw both comprising a first series of ridges oriented toward the second jaw;a first distal end defining a first opening; anda first longitudinal cavity formed between the first and second lateral sides and running longitudinally from the distal end of the shaft to the first opening of the first distal end of the first jaw; andthe second jaw comprising: third and fourth lateral sides, the third and fourth lateral sides of the second jaw both comprising a second series of ridges oriented toward the first jaw;a second distal end defining a second opening; anda second longitudinal cavity formed between the third and fourth lateral sides and running longitudinally from the distal end of the shaft to the second opening of the second distal end of the second jaw,wherein upon the first and second jaws closing: the first series of ridges and the second series of ridges are positioned to interlock together; andthe first longitudinal cavity and the second longitudinal cavity enjoin together to form a longitudinal channel running from the distal end of the shaft to the first and second distal ends that is configured to channel fluid;wherein the first jaw and the second jaw cooperate to capture tissue therebetween;wherein at least one of the first and second jaws is configured to transmit electrosurgical energy to seal the tissue;a suction mechanism configured to suction fluid through the longitudinal channel; andan irrigation mechanism configured to transmit fluid through the longitudinal channel; and wherein the end effector further comprises an insulated member configured to isolate energy transfer between the first and second jaws, and positioned between a proximal end of the first jaw and a proximal end of the second jaw and extending longitudinally within the distal end of the shaft, wherein a portion of the longitudinal channel passes through the insulated member, the suction mechanism is configured to draw fluid entering the end effector and into the insulated member through said portion of the longitudinal channel, and the irrigation mechanism is configured to transmit fluid into the end effector from the insulated member through said portion of the longitudinal channel.
  • 2. The surgical instrument of claim 1, wherein the first jaw is configured to transmit electrosurgical energy at a first polarity and the second jaw is configured to transmit electrosurgical energy at a second polarity.
  • 3. The surgical instrument of claim 2, wherein the first jaw or the second jaw comprises at least one insulating pin protruding on an inner side of said first or second jaw facing the other second or first jaw such that the at least one insulating pin is configured to touch the other second or first jaw upon closure of the first and second jaws and prevent direct contact between the first and second jaws, the at least one insulating pin configured to prevent energy transfer between the first and second jaws.
  • 4. The surgical instrument of claim 1, wherein the electrosurgical energy is monopolar.
  • 5. The surgical instrument of claim 1, wherein the electrosurgical energy is bipolar.
  • 6. The surgical instrument of claim 1, wherein upon closing of the first and second jaws, the first distal end and the second distal end are enjoined to define an opening formed by the first opening and the second opening, wherein the opening is configured to allow fluid to pass in and out of the longitudinal channel.
  • 7. The surgical instrument of claim 1, wherein the insulated member is configured to translate in a direction parallel to the shaft.
  • 8. The surgical instrument of claim 7, wherein the insulated member is configured to translate longitudinal to the shaft and toward the distal end of the end effector as the first and second jaws open, and toward the proximal end of the shaft as the first and second jaws close.
  • 9. The surgical instrument of claim 8, wherein the end effector further comprises an insulated wheel positioned within a closure slot in the distal end of the shaft and coupled to the insulated member and the first and second jaws.
  • 10. The surgical instrument of claim 9, wherein when the insulated member is translated toward the distal end of the end effector, the insulated wheel is configured to roll within the closure slot and causes the first and second jaws to open.
STATEMENT OF PRIORITY

This application claims the benefit of U.S. Provisional Application Ser. No. 62/285,019, entitled “Suction and Irrigation Sealing Grasper,” which was filed on Oct. 16, 2015, the entirety of which is incorporated herein by reference and for all purposes.

US Referenced Citations (1687)
Number Name Date Kind
2366274 Luth et al. Jan 1945 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2736960 Armstrong Mar 1956 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
3015961 Roney Jan 1962 A
3043309 McCarthy Jul 1962 A
3166971 Stoecker Jan 1965 A
3358676 Frei et al. Dec 1967 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3580841 Cadotte et al. May 1971 A
3614484 Shoh Oct 1971 A
3636943 Balamuth Jan 1972 A
3703651 Blowers Nov 1972 A
3710399 Hurst Jan 1973 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3862630 Balamuth Jan 1975 A
3900823 Sokal et al. Aug 1975 A
3906217 Lackore Sep 1975 A
3918442 Nikolaev et al. Nov 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3988535 Hickman et al. Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4034762 Cosens et al. Jul 1977 A
4047136 Satto Sep 1977 A
4058126 Leveen Nov 1977 A
4063561 McKenna Dec 1977 A
4099192 Aizawa et al. Jul 1978 A
4156187 Murry et al. May 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4278077 Mizumoto Jul 1981 A
4281785 Brooks Aug 1981 A
4304987 van Konynenburg Dec 1981 A
4314559 Allen Feb 1982 A
4384584 Chen May 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4535773 Yoon Aug 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4582236 Hirose Apr 1986 A
4585282 Bosley Apr 1986 A
4597390 Mulhollan et al. Jul 1986 A
4617927 Manes Oct 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4655746 Daniels et al. Apr 1987 A
4671287 Fiddian-Green Jun 1987 A
4708127 Abdelghani Nov 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4797803 Carroll Jan 1989 A
4798588 Aillon Jan 1989 A
4802461 Cho Feb 1989 A
4803506 Diehl et al. Feb 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4838853 Parisi Jun 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4865159 Jamison Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4896009 Pawlowski Jan 1990 A
4910389 Sherman et al. Mar 1990 A
4910633 Quinn Mar 1990 A
4911148 Sosnowski et al. Mar 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4961738 Mackin Oct 1990 A
4967670 Morishita et al. Nov 1990 A
4981756 Rhandhawa Jan 1991 A
5007919 Silva et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5020514 Heckele Jun 1991 A
5026387 Thomas Jun 1991 A
5061269 Muller Oct 1991 A
5093754 Kawashima Mar 1992 A
5099216 Pelrine Mar 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5150102 Takashima Sep 1992 A
5150272 Danley et al. Sep 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167725 Clark et al. Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5217460 Knoepfler Jun 1993 A
5221282 Wuchinich Jun 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5253647 Takahashi et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5267091 Chen Nov 1993 A
5282800 Foshee et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5313306 Kuban et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5333624 Tovey Aug 1994 A
5339723 Huitema Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5352219 Reddy Oct 1994 A
5359992 Hori et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5370640 Kolff Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395331 O'Oneill et al. Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5413575 Haenggi May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5431640 Gabriel Jul 1995 A
5443463 Stern et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5477788 Morishita Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542938 Avellanet et al. Aug 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562657 Griffin Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573534 Stone Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
D381077 Hunt Jul 1997 S
5643175 Adair Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653713 Michelson Aug 1997 A
5657697 Murai Aug 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5700243 Narciso, Jr. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704900 Dobrovolny et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722326 Post Mar 1998 A
5722426 Kolff Mar 1998 A
5732636 Wang et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738652 Boyd et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5741305 Vincent et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810718 Akiba et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5836867 Speier et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883454 Hones et al. Mar 1999 A
5887018 Bayazitoglu et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5902239 Buurman May 1999 A
5904147 Conlan et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906625 Bito et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944298 Koike Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957849 Munro Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
D416089 Barton et al. Nov 1999 S
5984938 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007484 Thompson Dec 1999 A
6013052 Durman et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080152 Nardella et al. Jun 2000 A
6083151 Renner et al. Jul 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6099483 Palmer et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6123466 Persson et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6127757 Swinbanks Oct 2000 A
6132368 Cooper Oct 2000 A
6139320 Hahn Oct 2000 A
6144402 Norsworthy et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6219572 Young Apr 2001 B1
6221007 Green Apr 2001 B1
6228080 Gines May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6309400 Beaupre Oct 2001 B2
6315789 Cragg Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6340878 Oglesbee Jan 2002 B1
6352532 Kramer et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464703 Bartel Oct 2002 B2
6471172 Lemke et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475216 Mulier et al. Nov 2002 B2
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6520960 Blocher et al. Feb 2003 B2
6522909 Garibaldi et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6540693 Burbank et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6594517 Nevo Jul 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6616450 Mossle et al. Sep 2003 B2
6616600 Pauker Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620129 Stecker et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623501 Heller et al. Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6648817 Schara et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6669690 Okada Dec 2003 B1
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6695840 Schulze Feb 2004 B2
6696844 Wong et al. Feb 2004 B2
6716215 David et al. Apr 2004 B1
6719684 Kim et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776165 Jin Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6806317 Morishita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6860880 Treat et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6893435 Goble May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
D509589 Wells Sep 2005 S
6939347 Thompson Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6959852 Shelton, IV et al. Nov 2005 B2
6974462 Sater Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984220 Wuchinich Jan 2006 B2
6986738 Glukhovsky et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7029435 Nakao Apr 2006 B2
7039453 Mullick et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044937 Kirwan et al. May 2006 B1
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083579 Yokoi et al. Aug 2006 B2
7083617 Kortenbach et al. Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7096560 Oddsen, Jr. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7120498 Imran et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7153315 Miller Dec 2006 B2
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169104 Ueda et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7170823 Fabricius et al. Jan 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199545 Oleynikov et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7241294 Reschke Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7276065 Morley et al. Oct 2007 B2
7282773 Li et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297145 Woloszko et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367973 Manzo et al. May 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7422139 Shelton, IV et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7422592 Morley et al. Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7439732 LaPlaca Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7448993 Yokoi et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7450998 Zilberman et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520877 Lee, Jr. et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7611512 Ein-Gal Nov 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7640447 Qiu Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7678105 McGreevy et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7725214 Diolaiti May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789283 Shah Sep 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7850688 Hafner Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7896878 Johnson et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7942303 Shah May 2011 B2
7942868 Cooper May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988567 Kim et al. Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038612 Paz Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Orien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8062211 Duval et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070748 Hixson et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8092475 Cotter et al. Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128657 Shiono et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8177794 Cabrera et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8187166 Kuth et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8192433 Johnson et al. Jun 2012 B2
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197494 Jaggi et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8206212 Iddings et al. Jun 2012 B2
8221415 Francischelli Jul 2012 B2
8221416 Townsend Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8244368 Sherman Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257377 Wiener et al. Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267854 Asada et al. Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273085 Park et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298228 Buysse et al. Oct 2012 B2
8298232 Unger Oct 2012 B2
8303583 Hosier et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8377053 Orszulak Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382754 Odom et al. Feb 2013 B2
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394094 Edwards et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398633 Mueller Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409076 Pang et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439911 Mueller May 2013 B2
8439939 Deville et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469956 McKenna et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8475361 Barlow et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
8512336 Couture Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8523889 Stulen et al. Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8542501 Kyono Sep 2013 B2
8553430 Melanson et al. Oct 2013 B2
8562516 Saadat et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8574187 Marion Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597182 Stein et al. Dec 2013 B2
8597297 Couture et al. Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8636648 Gazdzinski Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636761 Cunningham et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641712 Couture Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8685056 Evans et al. Apr 2014 B2
8696662 Eder et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8764747 Cummings et al. Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814865 Reschke Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8887373 Brandt et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8929888 Rao et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8939287 Markovitch Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8939975 Twomey et al. Jan 2015 B2
8944997 Fernandez et al. Feb 2015 B2
8945125 Schechter et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8978845 Kim Mar 2015 B2
8979838 Woloszko et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033983 Takashino et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050113 Bloom et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078664 Palmer et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9094006 Gravati et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107672 Tetzlaff et al. Aug 2015 B2
9113889 Reschke Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9119630 Townsend et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9138289 Conley et al. Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9155585 Bales, Jr. et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9187758 Cai et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198716 Masuda et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204919 Brandt et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265571 Twomey et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9271784 Evans et al. Mar 2016 B2
9274988 Hsu et al. Mar 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9308014 Fischer Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9344042 Mao May 2016 B2
9345481 Hall et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364225 Sniffin et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9381060 Artale et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9456876 Hagn Oct 2016 B2
9468490 Twomey et al. Oct 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9549663 Larkin Jan 2017 B2
9554845 Arts Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9585709 Krapohl Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9622810 Hart et al. Apr 2017 B2
9627120 Scott et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9642669 Takashino et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649144 Aluru et al. May 2017 B2
9649151 Goodman et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9687295 Joseph Jun 2017 B2
9700339 Nield Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713489 Woloszko et al. Jul 2017 B2
9713491 Roy et al. Jul 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9757128 Baber et al. Sep 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9782220 Mark et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9833239 Yates et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9848939 Mayer et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9877782 Voegele et al. Jan 2018 B2
9888958 Evans et al. Feb 2018 B2
9901390 Allen, IV et al. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9918773 Ishikawa et al. Mar 2018 B2
9931157 Strobl et al. Apr 2018 B2
9937001 Nakamura Apr 2018 B2
9943357 Cunningham et al. Apr 2018 B2
9949620 Duval et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9974539 Yates et al. May 2018 B2
9993289 Sobajima et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10034707 Papaioannou et al. Jul 2018 B2
10041822 Zemlok Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10058376 Horner et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080606 Kappus et al. Sep 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105174 Krapohl Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130414 Weiler et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10194911 Miller et al. Feb 2019 B2
10194972 Yates et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10211586 Adams et al. Feb 2019 B2
10231776 Artale et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10258404 Wang Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10307203 Wyatt Jun 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10342602 Strobl et al. Jul 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426873 Schultz Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10478243 Couture et al. Nov 2019 B2
10485607 Strobl et al. Nov 2019 B2
10524852 Cagle et al. Jan 2020 B1
10575868 Hall et al. Mar 2020 B2
10675082 Shelton, IV et al. Jun 2020 B2
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020133149 Bessette Sep 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030066938 Zimmerman Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093039 Schumert May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040102804 Chin May 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050090817 Phan Apr 2005 A1
20050096502 Khalili May 2005 A1
20050119640 Sverduk et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050187547 Sugi Aug 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050215858 Vail Sep 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050272972 Iddan Dec 2005 A1
20050273139 Krauss et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060211943 Beaupre Sep 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070008744 Heo et al. Jan 2007 A1
20070010709 Reinschke Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070020065 Kirby Jan 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070032785 Diederich et al. Feb 2007 A1
20070051766 Spencer Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070182842 Sonnenschein et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070270651 Gilad et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070276424 Mikkaichi et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080015413 Barlow et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080103495 Mihori et al. May 2008 A1
20080114355 Whayne et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080228179 Eder et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080300588 Groth et al. Dec 2008 A1
20080312502 Swain et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090248021 McKenna Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20100036370 Mirel et al. Feb 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204802 Wilson et al. Aug 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20110009857 Subramaniam et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110087224 Cadeddu et al. Apr 2011 A1
20110125151 Strauss et al. May 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120085358 Cadeddu et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140194864 Martin et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140350540 Kitagawa et al. Nov 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell Mar 2015 A1
20150250531 Dycus et al. Sep 2015 A1
20150257819 Dycus et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150327918 Sobajima et al. Nov 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160066980 Schall et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160143687 Hart et al. May 2016 A1
20160157923 Ding Jun 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199124 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20170056097 Monson et al. Mar 2017 A1
20170105787 Witt et al. Apr 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164972 Johnson et al. Jun 2017 A1
20170189102 Hibner et al. Jul 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325878 Messerly et al. Nov 2017 A1
20170367751 Ruddenklau et al. Dec 2017 A1
20180085156 Witt et al. Mar 2018 A1
20180125571 Witt et al. May 2018 A1
20180228530 Yates et al. Aug 2018 A1
20180263683 Renner et al. Sep 2018 A1
20180280075 Nott et al. Oct 2018 A1
20180368906 Yates et al. Dec 2018 A1
20190000468 Adams et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000555 Schings et al. Jan 2019 A1
20190059980 Shelton, IV et al. Feb 2019 A1
20190099209 Witt et al. Apr 2019 A1
20190099212 Davison et al. Apr 2019 A1
20190099213 Witt et al. Apr 2019 A1
20190099217 Witt et al. Apr 2019 A1
Foreign Referenced Citations (39)
Number Date Country
1634601 Jul 2005 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
10201569 Jul 2003 DE
102005032371 Jan 2007 DE
0171967 Feb 1986 EP
0705571 Apr 1996 EP
1862133 Dec 2007 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2419159 Aug 2013 ES
2032221 Apr 1980 GB
S537994 Jan 1978 JP
H08229050 Sep 1996 JP
2002186627 Jul 2002 JP
2009213878 Sep 2009 JP
2010057926 Mar 2010 JP
WO-8103272 Nov 1981 WO
WO-9314708 Aug 1993 WO
WO-9800069 Jan 1998 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0128444 Apr 2001 WO
WO-02080794 Oct 2002 WO
WO-2004078051 Sep 2004 WO
WO-2008130793 Oct 2008 WO
WO-2009067649 May 2009 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2013131823 Sep 2013 WO
Non-Patent Literature Citations (72)
Entry
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007.
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004.
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002.
Castellvi et al., “Completely transvaginal NOTES cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009.
Castellvi et al., “Hybrid transvaginal NOTES sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004.
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007.
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001.
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009.
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988.
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Scott et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007.
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006.
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007.
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007.
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1 h Annual Video Forum, 2007.
Scott et al., “Transvaginal single access ‘pure’ NOTES sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008.
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure’ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008.
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Related Publications (1)
Number Date Country
20170105789 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62285019 Oct 2015 US