1. Field of the Invention
The instant disclosure relates to a suction catheter controller and a suction catheter assembly utilizing the same; more particularly, to a suction catheter controller and a suction catheter assembly having the same having improved sealing properties.
2. Description of Related Art
In medical care, patients in critical conditions are often unable to clear their own secretions in the respiratory tract. Doctors usually use suction catheters to help removing the fluids from such patients. The purpose of suctioning is to keep the airways clear of secretions. Since the suction catheter must be inserted into the respiratory tract or the artificial airway (e.g. tracheal tube), each suctioning procedure exposes the patient to the risk of infection. Other potential complications may include irregular heart beats, slow heart rates, and heart failures. As shown in
To address the above issues, the inventor proposes the following solutions.
The instant disclosure provides a controller for the suction catheter and a suction catheter assembly having the same. The controller has excellent air tightness and operation characteristics, along with being easy to assemble and environmental friendly.
According to one aspect of the instant disclosure, a controller for the suction catheter comprises: a housing having an inlet portion and an outlet portion, wherein the housing has a coaxial tubular inner housing portion passingly bridging the inlet and outlet portions; an elastic member disposed within the tubular wall, wherein one end of the elastic member abuts the inner surface of the housing; a hollow valve body, wherein the hollow valve body is movably disposed within the tubular inner housing portion at closed or open position, wherein at the closed position, fluid flow is cut off between the inlet and outlet portions, wherein at the open position, flow is allowed; a actuating piston that projects through the hollow valve body, wherein one end of the actuating piston abuts to the elastic member; a cap disposed on the housing, wherein an opening is formed on the cap to engage the actuating piston.
According to another aspect of the instant disclosure, a suction catheter assembly comprises: a manifold member having a tubular arm and a sleeve part, wherein the tubular arm is piped to the sleeve, and the sleeve receives a switch valve having a thru hole formed thereon, with the switch valve being rotatably disposed in between the open and closed positions, in which the thru hole is in line with the arm when the switch valve is at the open position, while the thru hole is normal to the arm at the closed position to block the flow; an engaging structure disposed at one end of the arm, wherein the engaging structure has at least one breathing tube connector piped to an injection port; a suction catheter disposed at opposite end of the arm; and a controller disposed at one end of the suction catheter opposite of the manifold member. The controller comprises a housing, an elastic member, a actuating piston, a hollow valve body, and a cap. The housing has an inlet portion and an outlet portion, wherein the housing also has a coaxial tubular inner housing portion passingly bridging the inlet and outlet portions. The elastic member is disposed within the tubular wall, wherein one end of the elastic member abuts the inner surface of the housing. The hollow valve body has a tubular body, which is movably disposed in the tubular wall at a closed or open position. At the closed position, the hollow valve body cuts off the flow between the inlet and the outlet portions. At the open position, fluid flow is allowed. The actuating piston is projected through the hollow valve body, wherein one end of the actuating piston abuts to the elastic member. The cap is disposed on the housing, wherein an opening is formed on the cap to engage the actuating piston.
The instant disclosure has the following advantages. The controller only requires the elastic member, the actuating piston, and the hollow valve body to be assembled into the housing, followed by disposing the cap. The assembling process is easy for efficient manufacturing. Also, the controller has a sealed portion opposite of the cap, which significantly reduces the potential of exposing to infections for protecting the care giver. Furthermore, the actuating piston, the hollow valve body, and the cap work together in providing directional control over the catheter assembly. In comparing to conventional design, the actuating piston and the elastic member have a greater contact area with each other. Thus, less human effort is spent to operate the controller.
In order to further appreciate the characteristics and technical contents of the instant disclosure, references are hereunder made to the detailed descriptions and appended drawings in connection with the instant disclosure. However, the appended drawings are merely shown for exemplary purposes, rather than being used to restrict the scope of the instant disclosure.
With reference to
A detailed description is given herein for the instant embodiment. Please refer to
The elastic member 102 can be tapered or shaped cylindrically for disposing inside the inner housing portion 101c. One end of the elastic member 102 abuts to the housing 101. The elastic member 102 can be a metallic or rubber coil spring. However, the shape and composition of the elastic member 102 is not restricted. For the instant embodiment, the elastic member 102 is a cylindrical metal spring. When the hollow valve body 103 is pressed downward, the elastic member 102, which is disposed in between the housing 101 and the cap 104, is actuated. In other words, the elastic member 102 provides the restoring energy for the hollow valve body 103.
Referring further to
The hollow valve body 103 can be movably disposed inside the inner housing portion 101e. The actuating piston 105 projects through the hollow valve body 103, with one end of the actuating piston 105 abuts to the elastic member 102. The cap 104 is disposed on the housing 101. An opening 104a is formed on the cap 104 for engaging one end of the actuating piston 105 away from the elastic member 102. Structurally, the actuating piston 105 has a head portion 105a, a neck portion 105b, and a base portion 105c. At least one first ribbed portion 105d and at least one second ribbed portion 105e are disposed on the head portion 105a and the neck portion 105b respectively. Corresponding to the second ribbed portion 105e, at least one groove 103d is slotted axially on the inner surface of the hollow valve body 103. Likewise, the opening 104a of the cap 104 is formed for engaging the first ribbed portion 105d. To assemble the controller 10, as depicted in
As described in above, the first ribbed portion 105d and the second ribbed portion 105e of the actuating piston 105 are engaged to the opening 104a of the cap 104 and the groove 103d of the hollow valve body 103 respectively. Therefore, when the cap 104 is pressed and turned, the actuating piston 105 allows the hollow valve body 103 to move with the cap 104 in synchrony. The synchronized movement offsets potential slippage due to the silicon oil. Also, as already described earlier, one end of the actuating piston 105 is abutted to the elastic member 102. For the instant embodiment, the base portion 105c of the actuating piston 105 is disc-shaped. The elastic member 102 is a cylindrical coil spring. Thereby, the contact area between the base portion 105c and the elastic member 102 is greater. Versus conventional tapered spring, the controller 10 of the instant disclosure can better control the operation of the elastic member 102, and less effort is needed to actuate the elastic member 102. Furthermore, the cap 104 is not fixed to the housing 101. Thus, when the controller 10 is obsolete, only the sealing compound needs to be removed to disassemble the controller 10 for specialized medical waste disposal. Thereby, the potential risk of spreading the infection due to improper disassembling of the controller 10 can be greatly reduced.
Regarding the operation of the controller 10, a detailed explanation is given herein. Please refer to
Referring back to
When suctioning has been completed, the care giver can pull and turn the cap 104 in reverse (counter-clockwise direction), wherein the extension 104c would traverse circumferentially along the guide slot 101d, thereby returning the cap 104 to the original position. Accordingly, the hollow valve body 103 is returned to the closed position, wherein the stop plate 103c stops the flow from the inlet portion 101a to the outlet portion 101b for stopping the suction.
The instant disclosure also provides a suction catheter assembly 1, which is illustrated in
The engaging structure 30 is disposed at one end of the tubular arm 201. The engaging structure 30 comprises at least one connector 301 and at least one injection port 302. The connector 301 is for connecting an endotracheal tube (not shown), which can be inserted into the patient's airway. At least one engaging groove 303 is formed on the inner surface at one end of the engaging structure 30. In corresponding to the engaging groove 303, at least one tubular boss 201a is formed on the manifold member 20 and normal to the tubular arm 201. The tubular boss 201a can engage to the engaging groove 303 for connecting the engaging structure 30 at one end of the tubular arm 201. Furthermore, the connector 301 can be connected to a pulse oximeter (not shown) for monitoring a patient's oxygenation. A secretion container or remover (not shown) can also be disposed at the injecting port 302.
Notably, as shown in
The catheter 40 comprises an elongated flexible catheter tube 401, two flanged bushings 402, two circular seal members 403, and a scrub ring 404. The flanged bushings 402 slide over the discharge end of the tubular arm 201 and the feeding end of the controller 10 respectively. Thus, the catheter 40 can be connected in between the tubular arm 201 and the controller 10. The catheter tube 401 is a long and narrow tube, which extends longitudinally through the flanged bushings 402, the engaging structure 30, the manifold member 20, and the inlet portion 101a. For the catheter tube 401, at least one lateral port 401a is formed therein and spaced a short distance from a distal end thereof. The catheter tube 401 can extend out of the breathing tube (not shown) into the patient's airway to drain the secretions. For the instant embodiment, the seal members 403 are made of rubber material, which covers the catheter tube partially to protect the care giver from contacting the secretions. As illustrated in
Based on the above description, the advantages for the controller of the suction catheter and suction catheter assembly having the same of the instant disclosure are summarized below. First, when assembling the controller, only the elastic member, the actuating piston, and the hollow valve body need to be installed into the housing before disposing the cap. The assembling process is easy, which saves manufacturing time. Secondly, one end of the housing of the controller shrinks in forming a sealed end. The design is more cost effective and gives better air tightness. Thirdly, the controller, the actuating piston, the hollow valve body, and the cap give directional control in operating the controller. Plus, the actuating piston and the elastic member have greater contact area with each other versus conventional design. Thus, the elastic member can be controlled more effectively, with less effort required for pressing the controller. The cap and the housing of the controller are configured such that continuous suctioning is achieved, wherein the care giver does not need to hold down the controller continuously to perform the suctioning procedure. Thus, physical laboring and muscle fatigue can be reduced in operating the controller. The concern over accidental mishandling of the controller in causing drainage stoppage or patient discomfort is also eliminated. Furthermore, for the suction catheter assembly, the switch valve can be operated with one hand to facilitate the handling thereof.
The descriptions illustrated supra set forth simply the preferred embodiments of the instant disclosure; however, the characteristics of the instant disclosure are by no means restricted thereto. All changes, alternations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the instant disclosure delineated by the following claims.