The present invention is directed toward surgical tools including surgical tools for cardiac surgery, and more particularly toward an epicardial stabilizer foot for cardiac surgery.
Off-Pump Coronary Artery Bypass (OPCAB) is coronary surgery that is carried out on the beating heart. Prior to the advent of OPCAB surgery the patient was placed on cardiopulmonary bypass, using a heart lung machine including a cardiotomy reservoir, oxygenator associated connecting tubing and more. Following the commencement of total cardiopulmonary bypass the heart was arrested. The surgeon was then able to operate on a still, and flaccid heart. The OPCAB technique has evolved over the past decade, and started to find increasing acceptance from around 1997 and onwards. Currently, it is estimated that approximately 20%-25% of all coronary bypass surgeries are using OPCAB techniques.
While a minority of surgeons use OPCAB exclusively, or nearly so, the majority of surgeons using OPCAB use the technique as an adjunct to conventional coronary artery bypass with cardio-pulmonary bypass support. The driving force that brought this operative change includes a reduction in post-operative complications due to embolism or micro-embolism; and the potential to shorten hospital and recovery time and hence reduce overall costs of the treatment procedure.
To more easily and accurately bypass a coronary artery on the beating heart, the immediate surface of the heart surrounding the anastomotic site must be rendered relatively akinetic. Stabilization of this local area may be achieved by placing a stabilizing foot, attached to a suitably rigid fixture (usually to a sternal retractor), on the surface of the heart partially surrounding the anastomotic site. An arm (articulated or otherwise) is firmly attached between the stabilization foot and the sternal retractor, thus fixing and immobilizing the stabilization foot relative to the general position of the heart. A more detailed description of a representative support arm and a procedure for stabilization can be found in Nguyen, U.S. Patent Application Publication No. US 2003-0158542 A1, the contents of which are expressly incorporated by reference herein.
Currently available stabilization feet include:
a) Rigid “U” shaped mechanical foot (Guidant ACROBAT™ mechanical off-pump system, Genesee BioMedical ANASTOSURE™ stabilizer, and similar mechanical friction feet from Estech, US Surgical and Genzyme). A foot having a high friction face is pushed onto the surface of the heart, and the friction forces generated between the foot and the surface of the heart renders the area of the heart within the area of the foot relatively akinetic.
b) Active vacuum, multi-port foot connected via a flexible tube to a controlled vacuum source (Medtronic Octopus® 4.3 Tissue Stabilizer, Guidant ACROBAT™ SUV Vacuum Off-Pump System). The foot is place onto the heart, the vacuum is turned on and the partial vacuum in the space between the surface of the heart and the vacuum port of the epicardial stabilizer causes the stabilizer to cling to the surface of the heart, generating the stabilization force. These devices have the disadvantage that they require an external vacuum source and vacuum regulator, vacuum tubing and blood trap, all which add to the complexity and cost of the procedure.
The majority of the devices currently marketed for myocardial stabilization are single patient use. Usually, the arm and the foot are disposable. One exception is the Genesee BioMedical LocNess® Tissue stabilizer system that utilizes a reusable arm and disposable Anastosure™ mechanical epicardial stabilizer feet, described in U.S. Publication No. US 2003-0158542 A1.
The stabilizer feet currently available rely solely upon friction forces or require connection to a vacuum source to secure the epicardial surface of a beating heart. Those dependent on friction require considerable downward force on the heart that can be difficult to maintain. Those requiring a vacuum source implicate tubes and equipment that can crowd an operating theater.
The present invention is intended to overcome one or more of the problems associated with the stabilizer feet discussed above.
A first aspect of the invention is an suction stabilizer foot comprising a frame configured to reside adjacent to a target portion of a beating heart and a number of self retaining flexible suction cups attached to the frame for adhering the frame to the surface of the beating heart adjacent the target portion. In one embodiment, the frame partially surrounds the target portion and the associated suction cups partially surround the target portion as well. In such an embodiment the frame may comprise two arms extending substantially in parallel joined at their proximal ends to a bridge extending therebetween. The suction cups are spaced lengthwise of each of the extending arms. The arms may be canted relative to each other along a lengthwise axis to define a substantially concave configuration therebetween or the arms may be coplanar. The frame may be malleable to allow a surgeon to conform the frame to the surface of the heart adjacent a target portion.
A second aspect of the invention is a method for stabilizing a target portion of a beating heart. A frame having at least two suction cups attached thereto is provided. The suction cups are pressed onto tissue adjacent the target portion of the beating heart to form a partial vacuum attachment therebetween. The position of the frame is fixed to prevent motion of the frame. The method may further include providing suture stays spaced along the frame and pressing the suction cups to partially surround a lengthwise portion of the target artery. Sutures are inserted around axially spaced lengthwise portions of the target artery to form a loop around each axially spaced lengthwise portion of the target artery. The sutures are tensioned to occlude the lengthwise portions of the target artery and attached to the suture stays. The frame may comprise two elongate arms extending substantially in parallel joined at proximal ends to a bridge extending therebetween, at least two of the plurality of suture stays and at least two suction cups being spaced along the length of each lengthwise arm.
The support arm 10 is described in detail in U.S. Patent Application Publication No. US 2003-0158542 A1. The support arm 10 is intended for connection to a sternal retractor 12 as illustrated in
A first embodiment of the suction cup stabilizer foot 16 is shown in perspective view in
Spaced lengthwise along the first and second arms 20, 22 are a number of holes 28 (see
As illustrated in
In another alternate embodiment, the suction cups 32 have a gimbaled attachment to the first and second legs of the frame 18. The gimbaled attachment facilitates stabilization of non-uniform epicardial and other tissue surfaces. Such a gimbaled attachment can also obviate the need for canted first and second legs 20, 22 as illustrated with respect to the first embodiment in
Also shown in
A third embodiment of a suction cup stabilizer 100 in accordance with the present invention is shown in perspective view in
In use, the third embodiment of the suction cup stabilizer foot 100 is oriented with the arms 20, 22 extending lengthwise of a portion of a target artery. One or more vascular loops 110 are formed into loops 112 around axially spaced lengthwise portions of the target artery. The frame 18 is pressed onto the heart to create a partial vacuum between the epicardial tissue and the suction cups, attaching the suction cups to the heart. The vascular loop 110 is then tensioned to occlude the lengthwise portions of the target artery. Ends of the suture are secured within the pinch cleat 104 to maintain the tension in the vascular loop. The act of looping the vascular loop around the target artery not only occludes the target artery, it also serves to elevate the target artery relatively to the epicardium to improve access and to further secure the suction cup stabilizer foot to the surface of the heart.
The frame, including the arms, may be made of a malleable material to enable a surgeon to bend and conform the frame to approximate the profile of a target portion of the heart. Such a frame material may be included in all embodiments disclosed herein and within the scope of the claims. One sample material is 304 stainless steel having a thickness of 0.034 inch.
In use, the suction cups are adhered to a tissue surface by placing the mouth of each cup 34 into contact with the tissue surface and exerting a normal force on the frame that causes the cups 34 to distort as illustrated in
The first, second, third, fourth and fifth embodiments 16, 60, 100, 200, 300 as described herein have parallel arms 20, 22 (and 20′, 22′) which, as illustrated in
Performance of a suction cup stabilizer substantially as illustrated in
Tests were conducted on fresh pig hearts (weighing approximately 380 gm). Perfused pig hearts had a perfusion catheter placed in the left coronary ostia and retained in place by an external suture. The left coronary tree was perfused with room temperature tap water at a pressure of about 75-80 mm Hg, which inflated the left ventricle of the heart. The surface of the heart was moistened.
In those tests using the suction cup stabilizer, the suction cup stabilizer was firmly pressed down onto the left ventricular epicardium causing it to attach and the downward pressure was released.
In those tests using the compromised suction cup stabilizer the procedure was the same, only the suction cups did not attach.
In those tests using the ANASTOSURE™ stabilizer, the method was similar only no weight or the indicated weights were applied vertically to the stabilizer.
Table 1 sets forth a vertical adhesion force produced by the suction cup stabilizer on a perfused pig heart. Table 2 sets forth a vertical adhesion force produced by the suction cup stabilizer on a flaccid pig heart.
Table 3 sets forth a shear force produced by the suction cub stabilizer on a perfused pig heart. The shear force was applied substantially parallel to the legs of the stabilizer in all tests. Table 4 sets forth the shear force produced by a compromised suction cup stabilizer on a perfused pig heart. Table 5 shows a shear force produced by the ANASTOSURE™ stabilizer under a zero and a four ounce applied vertical load.
Tables 3-5 demonstrate significantly improved shear force of the suction cup stabilizer when employed on a perfused pig heart over the compromised suction cup stabilizer and the ANASTOSURE™ stabilizer even under an applied load of 4 ounces.
Table 6 sets forth a shear force of the suction cup stabilizer on a flaccid pig heart under loads of zero and four ounces. Table 7 sets forth a shear force of the compromised suction cup stabilizer on the flaccid pig heart under no load. Table 8 sets forth a shear force of an ANASTOSURE™ stabilizer under vertical loads of zero, four and eight ounces.
While under an applied vertical load of eight ounces, the ANASTOSURE™ stabilizer produced the highest shear force on a flaccid heart, the suction cup stabilizer produced superior shear forces under zero or four ounce loads. Data for shear force of the suction cup stabilizer under a vertical load of eight ounces was not collected.
The suction cup stabilizer of the present invention provides an inexpensive means for stabilizing an epicardial surface without requiring connection to a vacuum source as contemplated in prior art vacuum stabilizers. The suction cup stabilizer provides a suction grip providing a higher degree of stabilization than is possible from friction based devices under minimal vertical loads, such as those devices described and illustrated in Publication No. US 2003-0158542 A1, the Guidant Acrobat Mechanical Off Pump System and comparable systems of U.S. Surgical, Genzyme, Genesee Biomedical and Estech. The suction cup stabilizer can be inexpensively manufactured, thus facilitating its use and the many inherent advantages.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/13383 | 4/20/2005 | WO | 00 | 10/17/2006 |
Number | Date | Country | |
---|---|---|---|
60563680 | Apr 2004 | US |