Ink-based printers sometimes use suction cups to move print media, such as paper, within the printer. Unfortunately, suction cups can leave marks on the printed media. Specifically, outlines of the suction cups, referred to in the industry as suction cup marks, may appear on printed images, thereby significantly reducing print quality.
The disclosed suction cups can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale.
As described above, suction cups used in ink-based printers can leave marks on printed media. As described below, the frequency and/or severity of such suction cup marks can be reduced using suction cups comprising a surface formed from a low surface energy material.
Referring to the figures, in which like numerals identify corresponding parts, illustrated in
The cup portion 12 comprises a generally circular outer periphery 16 and a contact surface 18 adapted to be placed in contact with print media within a printer. In the embodiment illustrated in
Formed in the center of the X-shaped channel 26 is a central opening 30 that extends through the neck portion 14. When the suction cup 10 is attached to a vacuum source, such as a pneumatic pump, the opening 30 can be used together with the channels 26, 28 to draw print media into firm contact with the contact surface 18.
As mentioned above, suction cups, such as those similar to the suction cup 10 of
Offset occurs when the ink, and more particularly the liquid carrier within the ink, “wets” the surface of the suction cup. As known in the physical sciences, “wetting” is a term that describes the extent to which a liquid spreads across a surface. That extent is often quantified by the contact angle, which is the angle the outer surface of a bead of liquid forms with a surface. The greater the contact angle, the less the liquid wets the surface. The amount of wetting that results for a liquid on a surface is related to intermolecular interactions between the liquid and the surface and, more particularly, the energies of the interface between the liquid and the surface.
As can be appreciated from the above, if the degree with which the ink wets the suction cup 10 is reduced, the tendency of the ink to stick to the suction cup can likewise be reduced. As described in the following, reduced wetting is achieved by using a low surface energy material to form the contact surface 18 of the suction cup 10. When such a material is used, the suction cup 10 repels the ink such that the contact angle is reduced and the ink will not easily spread across the contact surface 18. As used herein, the term “low surface energy material” is any material that has a surface energy less than approximately 25 milli-Newtons per meter (mN/m) as characterized by contact angle measurements employing one or multiple probe liquids, such as water, diiodo-methane, and glycerin. In some embodiments, the low surface energy material that is used to form the contact surface 18 of the suction cup 10 comprises a fluoroelastomer, fluorosilicone, or silicone.
In some cases, the entire suction cup 10 is constructed of the low surface energy material. For example, the cup portion 12 and neck portion 14 can be formed by injecting the selected low surface energy material into a mold. In other cases, the cup portion 12 comprises an outer layer of low surface energy material. In such a case, the cup portion 12 and neck portion 14 can be formed from a suitable elastomeric material, such as nitrile rubber, and the selected low surface energy material can then be applied to the cup portion using a suitable process, such as a spray coating or a clip coating process. Such an embodiment is depicted in
While use of a low surface energy material can significantly reduce wetting of a suction cup used in a printer, it can potentially result in sticking of unprinted print media to the suction cup. Specifically, low surface energy materials can cause unprinted paper to “wet” the suction cup such that the paper is less likely to release from the suction cup when desired. It has been determined that undesired adhesion of print media to suction cups can be achieved by increasing the roughness of the cup's contact surface. Notably, the increased roughness may, in some cases, further reduce suction cup mark visibility.
A rough contact surface can be created in several ways. In some embodiments, the roughness is created using a mold having an uneven inner surface that forms the contact surface of the suction cup. A first example of such injection molding is illustrated in
In other embodiments, the rough surface can be formed after the suction cup has been constructed. For example, as shown in
Although specific embodiments have been described above, it is to be understood that alternative embodiments are possible and are intended to fall within the scope of this disclosure. In some cases, one or more of the described embodiments can be combined. For example, the rough surface embodiments described in relation to
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/70283 | 7/17/2008 | WO | 00 | 1/13/2011 |