Claims
- 1. A handpiece adapter for converting rotary motion of a powered surgical handpiece into reciprocating motion for reciprocatively driving a cutting member coupled to the handpiece adapter, said handpiece adapter comprising
an adapter housing; a front drive shaft having a proximal end reciprocatively mounted in said adapter housing and having a distal end disposed externally of said adapter housing, said distal end being capable of being removably coupled to a cutting member to be reciprocatively driven by said front drive shaft; a rear drive shaft having a distal end and having a proximal end capable of being removably coupled to a rotatable drive shaft of the powered surgical handpiece such that said rear drive shaft is rotated by the drive shaft of the powered surgical handpiece; a cam disposed at said distal end of said rear drive shaft and being rotatable therewith, said cam being rotatably disposed in said adapter housing; and a cam follower disposed at said proximal end of said front drive shaft in engagement with said cam whereby rotation of said rear drive shaft by the drive shaft of the powered surgical handpiece is converted into reciprocation of said front drive shaft to reciprocatively drive the cutting member coupled therewith.
- 2. A handpiece adapter as recited in claim 1 wherein said distal end of said front drive shaft includes a passage for receiving a proximal end of the cutting member.
- 3. A handpiece adapter as recited in claim 2 and further including an operating member carried on said front drive shaft for selectively opening said passage to receive the proximal end of the cutting member and for selectively closing said passage to secure the proximal end of the cutting member to said front drive shaft.
- 4. A handpiece adapter as recited in claim 3 wherein said operating member is movable longitudinally relative to and along said front drive shaft in a first longitudinal direction to selectively open said passage and is movable longitudinally relative to and along said front drive shaft in a second longitudinal direction to selectively close said passage.
- 5. A handpiece adapter as recited in claim 4 wherein said operating member includes a longitudinal passage extending entirely therethrough and said front drive shaft is disposed in said passage of said operating member to pass entirely through said operating member, said operating member being rotatable relative to said front drive shaft, said operating member being movable longitudinally in said first longitudinal direction in response to rotation of said operating member in a first rotational direction relative to said front drive shaft, said operating member being movable longitudinally in said second longitudinal direction in response to rotation of said operating member in a second rotational direction, opposite said first rotational direction, relative to said front drive shaft.
- 6. A handpiece adapter as recited in claim 5 wherein said distal end of said front drive shaft is formed as a collet defining a plurality of longitudinally extending legs, said legs being movable in a radially outward direction to receive the proximal end of the cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said legs begin moved in a radially inward direction to engage the proximal end of the cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 7. A handpiece adapter as recited in claim 5 wherein a locking member is disposed in an aperture formed in said front drive shaft and communicating with said passage of said front drive shaft, said locking member being movable in a radially outward direction to receive the proximal end of the cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said locking member being moved in a radially inward direction to protrude through said aperture into said passage of said front drive shaft so as to engage the proximal end of the cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 8. A handpiece adapter as recited in claim 7 wherein said locking member is spherical.
- 9. A handpiece adapter as recited in claim 7 and further including an insert disposed in said passage of said operating member and maintaining alignment of said locking member with said aperture.
- 10. A handpiece adapter as recited in claim 5 and further including a linear bearing disposed around said front drive shaft.
- 11. A handpiece adapter as recited in claim 10 wherein said housing includes a housing portion having a longitudinal passage therethrough, said front drive shaft extends entirely through said passage of said housing portion, said front drive shaft has a central longitudinal axis and a plurality of partial spherical, longitudinally extending grooves in an external surface thereof, said grooves being disposed in said passage of said housing portion, said housing portion has a plurality of partial spherical, longitudinally extending grooves in an internal surface thereof defining said passage of said housing portion, each of said grooves of said front drive shaft being aligned with one of said grooves of said housing portion in a radial direction about said central longitudinal axis of said front drive shaft to form an aligned pair of grooves, and said linear bearing includes a hollow cylindrical member through which said front drive shaft passes and a plurality of balls retained by said cylindrical member, said cylindrical member including a plurality of holes therein receiving said balls, respectively, each of said holes being radially aligned with one of said aligned pair of grooves such that each of said balls is partly disposed in each of said grooves of said one of said aligned pair of grooves and is longitudinally movable within at least one of said grooves of said one of said aligned pair of grooves as the front drive shaft is reciprocated in said housing.
- 12. A handpiece adapter as recited in claim 1 wherein said cam includes a cam head having an angled track therein and said cam follower is disposed in said track.
- 13. A handpiece adapter as recited in claim 12 wherein said proximal end of said front drive shaft has a recess therein and said cam head is rotatably disposed in said recess.
- 14. A handpiece adapter as recited in claim 13 wherein said cam has a central longitudinal axis and said cam head includes forward and rearward cam head sections between which said track is disposed, said rearward cam head section having a maximum length and a minimum length disposed at a 180° spaced location from said maximum length about said central longitudinal axis of said cam, said cam follower includes a protrusion on said front drive shaft disposed in said track, said distal end of said front drive shaft being in a maximum longitudinal position beyond said housing when said maximum length is in longitudinal alignment with said protrusion and being in a minimum longitudinal position beyond said housing when said minimum length is in longitudinal alignment with said protrusion.
- 15. A handpiece adapter as recited in claim 14 wherein said cam head has an overall length and said recess has a length greater than said overall length of said cam head allowing said front drive shaft to reciprocate relative to said rear drive shaft.
- 16. A handpiece adapter as recited in claim 15 wherein said proximal end of said rear drive shaft is configured for mechanical coupling with the drive shaft of the powered surgical handpiece.
- 17. A handpiece adapter as recited in claim 16 wherein said proximal end of said rear drive shaft includes a slot for receiving a drive pin on the drive shaft of the powered surgical handpiece.
- 18. A handpiece adapter as recited in claim 1 wherein said handpiece adapter is reusable.
- 19. A powered surgical handpiece assembly comprising
a powered surgical handpiece having a rotatable drive shaft; a handpiece adapter including a rear drive shaft having a proximal end removably coupled with said drive shaft of said handpiece and having a distal end, a front drive shaft having a distal end and a proximal end, and a motion converting mechanism mechanically coupling said proximal end of said front drive shaft with said distal end of said rear drive shaft, said motion converting mechanism including a cam at said distal end of said rear drive shaft and a cam follower at said proximal end of said front drive shaft, said rear drive shaft being rotatable with said drive shaft of said handpiece, said cam being rotatable with said rear drive shaft, said cam follower being reciprocatively moved by said cam to reciprocate said front drive shaft in response to rotation of said cam by said rear drive shaft; and a cutting member having a proximal end removably coupled with said distal end of said front drive shaft and having a distal end for cutting anatomical tissue, said cutting member being reciprocatively driven by said front drive shaft of said adapter when said front drive shaft is reciprocated, via said motion converting mechanism, in response to rotation of said drive shaft of said handpiece.
- 20. A powered surgical handpiece assembly as recited in claim 19 wherein said cutting member is a rasp.
- 21. A powered surgical handpiece assembly as recited in claim 19 wherein said cutting member is an osteotome.
- 22. A powered surgical handpiece assembly as recited in claim 19 wherein said handpiece is an XPS™ StraightShot handpiece.
- 23. A powered surgical handpiece assembly as recited in claim 22 wherein said cutting member is a rasp.
- 24. A powered surgical handpiece assembly as recited in claim 22 wherein said cutting member is an osteotome.
- 25. A powered surgical handpiece assembly as recited in claim 19 wherein said handpiece and said adapter are reusable and said cutting member is disposable.
- 26. A powered surgical handpiece assembly as recited in claim 19 wherein said front drive shaft includes an alignment member and said proximal end of said cutting member is adapted to engage said alignment member when said distal end of said cutting member is in a specific orientation for use of said powered surgical handpiece assembly.
- 27. A powered surgical handpiece assembly as recited in claim 26 wherein said alignment member includes a post and said proximal end of said cutting member has a slot therein for receiving said post when said distal end of said cutting member is in said specific orientation.
- 28. A powered surgical handpiece assembly as recited in claim 27 wherein said drive shaft of said handpiece includes a pin and said proximal end of said rear drive shaft includes a slot for receiving said pin when said distal end of said cutting member is in said specific orientation.
- 29. A powered surgical handpiece assembly as recited in claim 27 wherein said proximal end of said rear drive shaft includes spaced prongs and said drive shaft of said handpiece includes a pin for being received between said prongs when said distal end of said cutting member is in said specific orientation.
- 30. A powered surgical handpiece assembly as recited in claim 19 wherein said adapter includes a housing, said proximal end of said front drive shaft is reciprocatively mounted in said housing and said distal end of said front drive shaft is disposed externally of said housing, said cam has a central longitudinal axis and includes a cam head disposed in said housing, said cam has an angled track therein within which said cam follower is disposed, said cam head includes forward and rearward cam head sections between which said track is disposed, said rearward cam head section having a maximum length and a minimum length disposed at a 180° spaced location from said maximum length about said central longitudinal axis of said cam, said cam follower includes a protrusion on said front drive shaft disposed in said track, said distal end of said front drive shaft being in a maximum longitudinal position beyond said housing when said maximum length is in longitudinal alignment with said protrusion.
- 31. A powered surgical handpiece assembly as recited in claim 30 wherein said proximal end of said front drive shaft has a recess therein and said cam head is rotatably disposed in said recess, said cam head has an overall length and said recess has a length greater than said overall length of said cam head allowing said front drive shaft to reciprocate relative to said rear drive shaft.
- 32. A powered surgical handpiece assembly as recited in claim 19 wherein said distal end of said front drive shaft includes a passage receiving said proximal end of said cutting member, said adapter includes an operating member carried on said front drive shaft for selectively opening said passage to receive said proximal end of said cutting member and for selectively closing said passage to secure said proximal end of said cutting member to said front drive shaft, said operating member includes a longitudinal passage extending entirely therethrough and said front drive shaft is disposed in said passage of said operating member to pass entirely therethrough, said operating member is rotatable relative to said front drive shaft, said operating member is movable longitudinally in a first longitudinal direction in response to rotation of said operating member in a first rotational direction relative to said front drive shaft, said operating member is movable longitudinally in a second longitudinal direction in response to rotation of said operating member in a second rotational direction, opposite said first rotational direction, relative to said front drive shaft.
- 33. A powered surgical handpiece assembly as recited in claim 32 wherein said distal end of said front drive shaft is formed as a collet defining a plurality of longitudinally extending legs, said legs being movable in a radially outward direction to receive said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said legs being moved in a radially inward direction to engage said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 34. A powered surgical handpiece assembly as recited in claim 32 wherein a locking member is disposed in an aperture formed in said front drive shaft and communicating with said passage of said front drive shaft, said locking member being movable in a radially outward direction to receive said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said locking member being moved in a radially inward direction to protrude through said aperture into said passage of said front drive shaft so as to engage said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 35. A powered surgical handpiece assembly as recited in claim 34 wherein said locking member is configured as a ball.
- 36. A powered surgical handpiece assembly as recited in claim 34 wherein said proximal end of said cutting member has an external annular groove and said locking member is received in said groove when said operating member is moved in said second longitudinal direction to lock said cutting member to said front drive shaft.
- 37. A handpiece adapter assembly for a powered surgical handpiece comprising
a handpiece adapter including a rear drive shaft having a proximal end for being removably coupled with a rotatable drive shaft of a powered surgical handpiece and having a distal end, a front drive shaft having a distal end and a proximal end and a motion converting mechanism by which said proximal end of said front drive shaft is in driving engagement with said distal end of said rear drive shaft, said rear drive shaft being rotatable with the drive shaft of the handpiece when said rear drive shaft is coupled therewith, said motion converting mechanism including a cam rotatable with said rear drive shaft and a cam follower reciprocatively moved by said cam in response to rotation of said cam with said rear drive shaft, said front drive shaft being movable with said cam follower whereby said front drive shaft is reciprocated relative to said rear drive shaft when said rear drive shaft is rotated by the drive shaft of the handpiece; and a cutting member having a proximal end removably coupled with said distal end of said front drive shaft and having a distal end for cutting anatomical tissue, said cutting member being reciprocatively driven by said front drive shaft of said adapter when said front drive shaft is reciprocated in response to rotation of said rear drive shaft by the drive shaft of the handpiece.
- 38. A handpiece adapter assembly as recited in claim 37 wherein said adapter includes an alignment member and said proximal end of said cutting member is configured to drivingly engage said alignment member when said distal end of said cutting member is in a predetermined orientation relative to said adapter.
- 39. A handpiece adapter assembly as recited in claim 38 wherein said front drive shaft includes a longitudinal passage receiving said proximal end of said cutting member, said alignment member includes a post extending transversely within said passage and said proximal end of said cutting member includes a slot receiving said post.
- 40. A handpiece adapter assembly as recited in claim 38 wherein said front drive shaft includes a longitudinal passage receiving said proximal end of said cutting member, said alignment member includes a post extending transversely within said passage and said proximal end of said cutting member includes spaced prongs receiving said post therebetween.
- 41. A handpiece adapter assembly as recited in claim 37 wherein said proximal end of said rear drive shaft has a configuration to drivingly engage the drive shaft of the handpiece when said distal end of said cutting member is in said predetermined orientation relative to the handpiece.
- 42. A handpiece adapter assembly as recited in claim 37 wherein said cutting member is a rasp.
- 43. A handpiece adapter assembly as recited in claim 37 wherein said cutting member is an osteotome.
- 44. A handpiece adapter assembly as recited in claim 37 wherein said adapter is reusable and said cutting member is disposable.
- 45. A handpiece adapter assembly as recited in claim 37 wherein said adapter includes a housing, said proximal end of said front drive shaft is reciprocatively mounted in said housing and said distal end of said front drive shaft is disposed externally of said housing, said cam head has a central longitudinal axis and includes a cam disposed in said housing, said cam has an angled track therein within which said cam follower is disposed, said cam head includes forward and rearward cam head sections between which said track is disposed, said rearward cam head section having a maximum length and a minimum length disposed at a 180° spaced location from said maximum length about said central longitudinal axis of said cam, said cam follower includes a protrusion on said front drive shaft disposed in said track, said distal end of said front drive shaft being in a maximum longitudinal position beyond said housing when said maximum length is in longitudinal alignment with said protrusion and being in a minimum longitudinal position beyond said housing when said minimum length is in longitudinal alignment with said protrusion.
- 46. A handpiece adapter assembly as recited in claim 45 wherein said proximal end of said front drive shaft has a recess therein and said cam head is rotatably disposed in said recess, said cam head has an overall length and said recess has a length greater than said overall length of said cam head allowing said front drive shaft to reciprocate relative to said rear drive shaft.
- 47. A handpiece adapter assembly as recited in claim 37 wherein said distal end of said front drive shaft includes a passage receiving said proximal end of said cutting member, said adapter includes an operating member carried on said front drive shaft for selectively opening said passage to receive said proximal end of said cutting member and for selectively closing said passage to secure said proximal end of said cutting member to said front drive shaft, said operating member includes a longitudinal passage extending entirely therethrough and said front drive shaft is disposed in said passage of said operating member to pass entirely therethrough, said operating member is rotatable relative to said front drive shaft, said operating member is movable longitudinally in a first longitudinal direction in response to rotation of said operating member in a first rotational direction relative to said front drive shaft, said operating member is movable longitudinally in a second longitudinal direction in response to rotation of said operating member in a second rotational direction, opposite said first rotational direction, relative to said front drive shaft.
- 48. A handpiece adapter assembly as recited in claim 47 wherein said distal end of said front drive shaft is formed as a collet defining a plurality of longitudinally extending legs, said legs being movable in a radially outward direction to receive said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said legs begin moved in a radially inward direction to engage said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 49. A handpiece adapter assembly as recited in claim 47 wherein a locking member is disposed in an aperture formed in said front drive shaft and communicating with said passage of said front drive shaft, said locking member being movable in a radially outward direction to receive said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said first longitudinal direction, said locking member being moved in a radially inward direction to protrude through said aperture into said passage of said front drive shaft so as to engage said proximal end of said cutting member in said passage of said front drive shaft when said operating member is moved in said second longitudinal direction.
- 50. A handpiece adapter assembly as recited in claim 49 wherein said locking member is spherical.
- 51. A handpiece adapter assembly as recited in claim 49 wherein said proximal end of said cutting member has an external annular groove and said locking member is received in said groove when said operating member is moved in said second longitudinal direction to lock said cutting member to said front drive shaft.
- 52. A surgical suction rasp for being reciprocatively driven by a reciprocating driver to shape anatomical tissue at an operative site in a patient's body comprising
an elongate member having a proximal end for being removably coupled to a reciprocating driver and having a distal end for being disposed at an operative site, a tissue cutting surface at said distal end and a suction passage having an inlet along said tissue cutting surface and having an outlet disposed proximally of said inlet, said tissue cutting surface being configured to abrade and thusly cut anatomical tissue at the operative site when said tissue cutting surface is positioned in contact with the anatomical tissue while said elongate member is reciprocated by the reciprocating driver, said outlet of said suction passage being adapted for connection to a source of suction whereby anatomical debris is removed from the operative site through said suction passage for withdrawal from the patient's body.
- 53. A surgical suction rasp as recited in claim 52 wherein said tissue cutting surface comprises a planar surface having a plurality of sharp ridges for abrading bone.
- 54. A surgical suction rasp as recited in claim 53 wherein said ridges are formed by a plurality of diamond shaped protuberances on said planar surface.
- 55. A surgical suction rasp as recited in claim 52 wherein said elongate member has a central longitudinal axis and said tissue cutting surface is laterally offset from said central longitudinal axis.
- 56. A surgical suction rasp as recited in claim 55 wherein said central longitudinal axis is longitudinally straight and said tissue cutting surface is parallel to said central longitudinal axis.
- 57. A surgical suction rasp as recited in claim 55 wherein said central longitudinal axis has a longitudinal curvature.
- 58. A surgical suction rasp as recited in claim 57 wherein said longitudinal curvature corresponds to the natural curvature of a human frontal bone.
- 59. A surgical suction rasp as recited in claim 52 wherein said elongate member has a central longitudinal axis, said tissue cutting surface is disposed on a cutting element at said distal end of said elongate member and said suction passage extends entirely through said cutting element at an angle to said central longitudinal axis.
- 60. A surgical suction rasp as recited in claim 59 wherein said outlet is disposed proximally of said distal end of said elongate member.
- 61. A surgical suction rasp as recited in claim 60 wherein said suction passage includes a tube extending externally from said cutting element alongside said elongate member.
- 62. A surgical suction rasp as recited in claim 61 wherein said tube has a proximal end terminating at said outlet and said proximal said of the tube is angled outwardly from said elongate member.
- 63. A surgical suction rasp as recited in claim 62 wherein said tube has a distal end terminating at said tissue cutting surface.
- 64. A handpiece adapter assembly for a powered surgical handpiece comprising
a handpiece adapter for being removably coupled with a rotatable drive shaft of a powered surgical handpiece and having a front drive shaft and a motion converting mechanism by which rotary motion of the drive shaft of the handpiece is converted to reciprocating motion of said front drive shaft; and a suction rasp removably coupled to said front drive shaft for being reciprocatively driven thereby and including an elongate member having a proximal end removably coupled to said front drive shaft, a distal end for being disposed at an operative site in a patient's body, a tissue cutting surface at said distal end and a suction passage having an inlet along said tissue cutting surface and having an outlet disposed proximally of said inlet, said tissue cutting surface having a configuration to abrade and thusly cut anatomical tissue at the operative site when said tissue cutting surface is positioned in contact with the anatomical tissue while said elongate member is reciprocated by said front drive shaft, said outlet of said suction passage being adapted for connection to a source of suction whereby anatomical debris is removed from the operative site through said suction passage for withdrawal from the patient's body.
- 65. A powered surgical handpiece assembly comprising
a powered surgical handpiece having a rotatable drive shaft; a handpiece adapter removably coupled with said rotatable drive shaft and having a front drive shaft and a motion converting mechanism by which rotary motion of said rotatable drive shaft is converted to reciprocating motion of said front drive shaft; and a suction rasp removably coupled to said front drive shaft for being reciprocatively driven thereby and including an elongate member having a proximal end removably coupled to said front drive shaft, a distal end for being disposed at an operative site in a patient's body, a tissue cutting surface at said distal end and a suction passage having an inlet along said tissue cutting surface and having an outlet disposed proximally of said inlet, said tissue cutting surface having a configuration to abrade and thusly cut anatomical tissue at the operative site when said tissue cutting surface is positioned in contact with the anatomical tissue while said elongate member is reciprocated by said front drive shaft, said outlet of said suction passage being adapted for connection to a source of suction whereby anatomical debris is removed from the operative site through said suction passage for withdrawal from the patient's body.
- 66. A surgical osteotome for being reciprocatively driven by a powered surgical handpiece to cut anatomical tissue at an operative site in a patient's body comprising
an elongate shaft having a distal end and having a proximal end configured for coupling with a powered surgical handpiece by which said elongate shaft is reciprocated; and a cutting element at said distal end including a longitudinal axis and a distal length portion having a lower part and an upper part extending distally of said lower part, said upper part being defined by an upper surface of said cutting element and by lateral surfaces angled inwardly toward one another such that said upper part is of decreasing width in a distal direction, said lower part being defined by a lower surface of said cutting element and by lateral surfaces angled inwardly toward one another, at a greater angle than said lateral surfaces of said upper part, such that said lower part is of decreasing width in said distal direction with said lateral surfaces of said lower part disposed laterally inwardly of said lateral surfaces of said upper part, said lateral surfaces of said lower part merging at a transverse cutting edge, said lateral surfaces of said upper part merging at a blunt tip disposed distally of said cutting edge, said cutting edge being adapted to cut anatomical tissue when said cutting element is advanced distally along the tissue while being reciprocated, along with said shaft, by the powered surgical handpiece, said tip leading said cutting element as it is advanced distally along the anatomical tissue.
- 67. A surgical osteotome as recited in claim 66 wherein said cutting edge is transverse to said longitudinal axis.
- 68. A surgical osteotome as recited in claim 67 wherein said distal length portion is longitudinally straight.
- 69. A surgical osteotome as recited in claim 67 wherein said distal length portion is longitudinally angled in a lateral direction.
- 70. A surgical osteotome as recited in claim 69 wherein said distal length portion is longitudinally curved in said lateral direction.
- 71. A handpiece adapter assembly for a powered surgical handpiece comprising
a handpiece adapter for being removably coupled with a rotatable drive shaft of a powered surgical handpiece and having a front drive shaft and a motion converting mechanism by which rotary motion of the drive shaft of the handpiece is converted to reciprocating mot ion of said front drive shaft; and an osteotome removably coupled to said front drive shaft for being reciprocatively driven thereby and including an elongate shaft having a proximal end removably coupled to said front drive shaft and a cutting element at said distal end, said cutting element including a longitudinal axis and a distal length portion having a lower part and an upper part extending distally of said lower part, said upper part being defined by an upper surface of said cutting element and by lateral surfaces, said lower part being defined by a lower surface of said cutting element and by lateral surfaces disposed laterally inwardly of said lateral surfaces of said upper part, said lower part tapering in width in a distal direction such that said lateral surfaces of said lower part merge at a cutting edge disposed transverse to said axis, said cutting edge being adapted to cut anatomical tissue when said cutting element is advanced distally along the tissue while being reciprocated by said front drive shaft, said upper part terminating distally at a blunt tip disposed distally of said cutting edge, said tip leading said cutting element as it is advanced distally along the tissue.
- 72. A powered surgical handpiece assembly comprising
a powered surgical handpiece having a rotatable drive shaft; a handpiece adapter removably coupled with said rotatable drive shaft and having a front drive shaft and a motion converting mechanism by which rotary motion of said rotatable drive shaft is converted to reciprocating motion of said front drive shaft; and an osteotome removably coupled to said front drive shaft for being reciprocatively driven thereby and including an elongate shaft having a proximal end removably coupled to said front drive shaft and a cutting element at said distal end, said cutting element including a longitudinal axis and a distal length portion having a lower part and an upper part extending distally of said lower part, said upper part being defined by an upper surface of said cutting element and by lateral surfaces, said lower part being defined by a lower surface of said cutting element and by lateral surfaces disposed laterally inwardly of said lateral surfaces of said upper part, said lower part tapering in width in a distal direction such that said lateral surfaces of said lower part merge at a cutting edge disposed transverse to said axis, said cutting edge being adapted to cut anatomical tissue when said cutting element is advanced distally along the tissue while being reciprocated by said front drive shaft, said upper part terminating distally at a blunt tip disposed distally of said cutting edge, said tip leading said cutting element as it is advanced distally along the tissue.
- 73. A method of surgically reshaping the nasal bone of a patient comprising the steps of
introducing a distal end of a surgical suction rasp through an incision in the patient's nose; advancing the rasp along the nose to position the distal end at an operative site at which an area of the nasal bone is to be reshaped; positioning a tissue cutting surface at the distal end in contact with the area of the nasal bone that is to be reshaped; reciprocating the distal end of the rasp to abrade the nasal bone in contact with the tissue cutting surface; moving the distal end of the rasp, while it is being reciprocated, along the area of the nasal bone to abrade and thusly reshape the nasal bone; removing anatomical debris from the operative site through a suction passage of the rasp while the area of the nasal bone is being reshaped; and withdrawing the rasp from the nose upon completion of reshaping of the nasal bone.
- 74. A method of surgically reshaping the nasal bone as recited in claim 73 wherein said step of reciprocating includes reciprocating the distal end of the rasp with a powered surgical handpiece.
- 75. A method of surgically reshaping the nasal bone as recited in claim 74 wherein said step of reciprocating includes converting rotary motion of a rotatable drive shaft of the powered surgical handpiece into reciprocating motion of the rasp.
- 76. A method of surgically reshaping the nasal bone as recited in claim 75 and further including, prior to said step of introducing, the steps of removably coupling a proximal end of the rasp to a front drive shaft of a handpiece adapter and removably coupling a rear drive shaft of the handpiece adapter to the drive shaft of the handpiece, and said step of converting includes the steps of rotating the drive shaft of the handpiece following said step of positioning, rotating the rear drive shaft of the handpiece adapter in response to rotation of the drive shaft of the handpiece, causing a cam of the rear drive shaft to reciprocate a cam follower of the front drive shaft as the rear drive shaft is rotated by the drive shaft of the handpiece such that the front drive shaft is reciprocated to reciprocatively drive the rasp.
- 77. A method of surgically reshaping the nasal bone as recited in claim 76 wherein said step of rotating the drive shaft of the handpiece includes rotating the drive shaft of the handpiece at a speed of 5,000 RPM.
- 78. A method of surgically reshaping the nasal bone as recited in claim 76 wherein said step of rotating the drive shaft of the handpiece includes rotating the rotatable drive shaft of the handpiece with an electric motor of the handpiece.
- 79. A method of surgically reshaping the nasal bone as recited in claim 78 wherein said step of moving includes manipulating the handpiece to move the tissue cutting surface longitudinally and lateral ly along the area of the nasal bone while the distal end is being reciprocated.
- 80. A method of surgically reshaping the nasal bone as recited in claim 73 wherein said step of removing includes drawing the anatomical debris into the suction passage through an inlet opening of the suction passage disposed on the tissue cutting surface.
- 81. A method of surgically reshaping the nasal bone as recited in claim 80 wherein said step of removing includes transporting the anatomical debris through an outlet opening of the suction passage disposed external of the patient's nose.
- 82. A method of surgically reshaping the nasal bone as recited in claim 73 and further including the step of confirming proper reshaping of the nasal bone.
- 83. A method of surgically reshaping the nasal bone as recited in claim 82 wherein said step of confirming includes palpating the patient's nose.
- 84. A method of surgically reshaping the nasal bone as recited in claim 73 wherein said step of reciprocating includes reciprocating the distal end of the rasp in a stroke of 3.0 mm.
- 85. A method of making a cut in the nasal bone of a patient in a rhinoplasty procedure comprising the steps of
removably coupling a proximal end of an osteotome to a powered surgical handpiece; introducing a distal end of the osteotome through an incision in the patient's nose; advancing the osteotome along the nose to position a cutting edge carried by the distal end at a location on the nasal bone at which a cut is to be made; reciprocating the distal end of the osteotome via the powered surgical handpiece; moving the distal end of the osteotome, while it is being reciprocated, forwardly along the nasal bone in a predetermined path with the cutting edge in contact with the nasal bone to make a cut of desired length in the nasal bone along the predetermined path; and withdrawing the osteotome from the nose upon completion of the cut being made.
- 86. A method of making a cut as recited in claim 85 wherein said step of reciprocating includes converting rotary motion of a rotatable drive shaft of the powered surgical handpiece into reciprocating motion of the osteotome.
- 87. A method of making a cut as recited in claim 86 wherein said step of removably coupling includes the steps of removably coupling the proximal end of the osteotome to a front drive shaft of a handpiece adapter and removably coupling a rear drive shaft of the handpiece adapter to the drive shaft of the handpiece, and said step of converting includes the steps of rotating the drive shaft of the handpiece following said step of advancing, rotating the rear drive shaft of the handpiece adapter in response to rotation of the drive shaft of the handpiece, causing a cam of the rear drive shaft to reciprocate a cam follower of the front drive shaft as the rear drive shaft is rotated by the drive shaft of the handpiece such that the front drive shaft is reciprocated to reciprocatively drive the osteotome.
- 88. A method of making a cut as recited in claim 87 wherein said step of rotating the drive shaft of the handpiece includes rotating the drive shaft of the handpiece at a speed of 6,000 RPM.
- 89. A method of making a cut as recited in claim 87 wherein said step of rotating the drive shaft of the handpiece includes rotating the drive shaft of the handpiece with an electric motor of the handpiece.
- 90. A method of making a cut as recited in claim 85 wherein said step of moving includes manipulating the handpiece to move the distal end of the osteotome forwardly along the nasal bone in the predetermined path.
- 91. A method of making a cut as recited in claim 90 wherein said step of moving includes moving the distal end of the osteotome forwardly along the nasal bone in a straight predetermined path to form a longitudinally straight cut in the nasal bone.
- 92. A method of making a cut as recited in claim 90 wherein said step of moving includes moving the distal end of the osteotome forwardly along the nasal bone in a curved predetermined path to form a longitudinally curved cut in the nasal bone.
- 93. A method of making a cut as recited in claim 85 wherein said step of removably coupling includes removably coupling the proximal end of a first osteotome having a longitudinally straight distal length portion to the powered surgical handpiece and said step of moving includes moving the distal end of the first osteotome longitudinally along the nasal bone in a straight predetermined path to make a straight medial cut in the nasal bone.
- 94. A method of making a cut as recited in claim 93 and further including, subsequent to said step of withdrawing, the step of removably coupling the proximal end of a second osteotome having a laterally curved distal length portion to the powered surgical handpiece, introducing the distal end of the second osteotome through the incision, advancing the second osteotome along the nose to position a cutting edge carried by the distal end of the second osteotome at a location on the nasal bone at which a curved lateral cut is to be made, reciprocating the distal end of the second osteotome via the powered surgical handpiece, moving the distal end of the second osteotome, while it is being reciprocated, forwardly along the nasal bone in a predetermined curved path, laterally spaced from the medial cut, with the cutting edge of the second osteotome in contact with the nasal bone to make a curved lateral cut of desired length in the nasal bone along the predetermined curved path and withdrawing the second osteotome from the nose upon completion of the lateral cut being made.
- 95. A method of making a cut as recited in claim 94 and further including, prior to said steps of introducing, the step of marking the skin of the patient's nose overlying the nasal bone to indicate the locations and the predetermined paths for the medial and lateral cuts, respectively.
- 96. A method of making a cut as recited in claim 85 and further including the step of confirming proper formation of the cut.
- 97. A method of making a cut as recited in claim 96 wherein said step of confirming includes palpating the patient's nose.
- 98. A method of making a cut as recited in claim 85 wherein said step of reciprocating includes reciprocating the distal end of the osteotome in a stroke of 2.0 mm.
- 99. A method of making a cut as recited in claim 85 and further including, subsequent to said step of withdrawing, the steps of introducing a distal end of a surgical suction rasp through the incision, advancing the rasp along the nose to position the distal end of the rasp at an operative site at which an area of the nasal bone is to be contoured positioning a tissue cutting surface at the distal end of the rasp in contact with the area of the nasal bone that is to be contoured, reciprocating the distal end of the rasp to abrade the nasal bone with the tissue cutting surface whereby the nasal bone is contoured, removing anatomical debris from the operative site through a suction passage of the rasp while the area of the nasal bone is being contoured and withdrawing the rasp from the nose upon completion of the contouring of the nasal bone.
CROSS REFERENCE TO RELATED PATENT APPLICATIONS
[0001] This application is related to prior patent application Ser. No. 09/005,010, Ser. No. 09/005,012 and Ser. No. 09/005,014 filed Jan. 9, 1998, which are divisionals of prior application Ser. No. 08/775,147 filed Dec. 31, 1996 and now abandoned, and to Ser. No. 09/005,189 filed Jan. 9, 1998, which is a continuation of Ser. No. 08/775,147, which is a continuation-in-part of Ser. No. 08/719,130 filed Sep. 24, 1996 and now abandoned. The disclosures of all of the foregoing patent applications are incorporated herein by reference.
Divisions (1)
|
Number |
Date |
Country |
Parent |
09404460 |
Sep 1999 |
US |
Child |
09846221 |
May 2001 |
US |