SUCTION ROLL FOR DEWATERING A FIBROUS WEB

Information

  • Patent Application
  • 20130213879
  • Publication Number
    20130213879
  • Date Filed
    October 13, 2011
    13 years ago
  • Date Published
    August 22, 2013
    11 years ago
Abstract
A suction roll for dewatering a fibrous web, having a rotatable and perforated suction roll jacket and a suction box in the interior of the suction roll. The suction box has a first suction channel that extends in the interior of the roll essentially along the axis of the suction roll. The suction box also has a second suction channel that extends in the interior of the roll along the inner surface of the suction roll jacket and is delimited by seals. The first suction channel is connected to the second suction channel via at least one connecting channel.
Description

The subject of this invention is a suction roll for dewatering a fibrous web, having a rotatable and perforated suction roll jacket and a suction box. The suction box is located in the interior of the suction roll and connected to a negative pressure source in such a way that said suction box applies a negative pressure to an inner surface, that is delimited by seals, of the suction roll jacket, thus enabling a defined surface region of the suction roll to be aspirated.


A traditional suction roll is shown in FIG. 1. In the case of this suction roll, there is the risk of the filtrate not being able to be completely suctioned off at higher speeds and of the roll thus having a tendency to “spatter”. The reason for this is to be found in the non-optimized suction channel. A suction roll of such type is disclosed in DE 298 22 227 U1. DE 103 29 808 A1 describes a suction roll with a partitioned suction chamber, in which a regulating device for flows from the second part of the suction chamber into the first part may also be provided.


A further suction roll according to prior art is shown in FIG. 2. In this roll, the filtrate is extracted from the roll by means of a siphon; this does lead to an improvement in the extraction of filtrate, but in this case requires a further negative pressure connection for the siphon. A suction roll according to FIG. 2 is also disclosed in DE 41 03 040 A1.


The object of the invention is thus to optimize a suction roll in such a way that the filtrate can reliably be extracted from the suction roll.


This object is achieved by a suction roll with an optimized suction box. The suction box herein has a first and a second suction channel. The first suction channel extends in the interior of the suction roll substantitally along the axis of the suction roll, and the second suction channel extends in the interior of the roll along the inner surface of the suction roll jacket. The second suction channel is sealed off by seals which fit to the inside of the suction roll jacket. According to the invention, the first and the second suction channel are interconnected by at least one connecting channel. This connecting channel preferably extends in a radial direction (in relation to the geometry of the roll). It is further provided that the at least one connecting channel leads into the first suction channel above a collection region of the first suction channel, such that extracted water can accumulate in the collection region and does not run off back through the connecting channel.


This embodiment of the suction box according to the invention enables a significantly reduced aspirated internal volume of the suction roll to be achieved, as compared to traditional suction boxes. As a result of the reduced volume, high air speeds, which reliably carry along the extracted filtrate, occur in particular in the second suction channel.


It is advantageous that two press nips (pressure points A, B) of the suction roll are aspirated by the second suction channel, as the filtrate accruing at two locations is thus extracted by a single extraction.


In a favorable embodiment, retaining strips which extend in the running direction of the machine (C) are located in the interior of the second suction channel. This enables the dewatering performance of the suction roll to be improved yet further. The purpose of these retaining strips is to prevent a transverse flow in relation to the running direction in the interior of the suction zone of the second suction channel.


By means of the retaining strips, a non-aspirated region within the suction zone can be prevented. Furthermore this also achieves that the holes in the suction roll jacket cannot be covered by material, as they are being constantly rinsed with filtrate.


The retaining strips preferably have some mechanical play in relation to the suction roll jacket, that is to say that they do not form a seal against the suction roll jacket. The mechanical play of the suction strips in relation to the suction roll jacket may also be adjustable by means of an adjustment element.


In a favorable embodiment, the retaining strips extend from the second suction channel into the connecting channel which connects the second suction channel with the first suction channel. This further improves the guidance of the flow.


It is also conceivable that a further suction channel is located in the interior of the roll of the suction roll, through which a further defined surface region of the suction roll is aspirated. This suction zone can, for instance, be used for vacuum drying a cover. For the purpose of homogenizing the aspiration across the width of the machine, retaining strips may also be located in the further suction channel.


In the following, the invention is explained with reference to drawings, in which:






FIG. 1 shows a schematic cross section of a suction roll according to prior art;



FIG. 2 shows a further suction roll according to prior art;



FIG. 3 shows a schematic cross section of the suction roll according to the invention;



FIG. 4 shows the suction roll according to FIG. 3 with respective retaining strips;



FIG. 5 shows a somewhat more detailed illustration of the suction roll according to FIG. 4;



FIG. 6 shows a schematic longitudinal section of the suction roll according to the invention.





Identical reference signs in the respective figures refer to identical components.



FIG. 1 shows a cross section of a traditional suction roll 20 with a perforated suction roll jacket 21 according to prior art with a non-optimized suction box 26. The suction box 26 comprises a first suction channel 22 and a second suction channel 23, each being sealed off against the suction roll jacket 21 by the seal strips 24 and 25, respectively. One or two press nips are aspirated through the first suction channel 22. A follow-on suction zone (cover drying zone) is aspirated through the second suction channel 23. A ventilation zone 28 is located between the two suction zones for the purpose of breaking the vacuum. The direction of rotation, or the running direction of the machine, respectively, is indicated by an arrow and the reference sign C.


In the case of this suction roll, there is the risk of the filtrate not being able to be completely suctioned off from the suction roll at higher speeds and of the roll 20 thus having a tendency to “spatter”. This is dependent on the vacuum and on the circumferential speed.

Claims
  • 1. A suction roll for dewatering a fibrous web, comprising a rotatable and perforated suction roll jacket and a suction box, the suction box being connected to a negative pressure source in such a way that the former applies a negative pressure to an inner surface, that is delimited by seals, of the suction roll jacket, thus enabling a defined surface region of the suction roll to be aspirated, wherein the suction box has a first suction channel which extends in the interior of the roll substantially along the axis of the suction roll, and in that the suction box has a second suction channel which extends in the interior of the roll along the inner surface of the suction roll jacket and which is delimited by seals, the first suction channel being connected to the second suction channel by at least one connecting channel, and in that the at least one connecting channel leads into the first suction channel above a collection region of the first suction channel, such that extracted water can accumulate in the collection region and does not run off back through the connecting channel.
  • 2. The suction roll as claimed in claim 1, wherein the at least one connecting channel extends substantially in the radial direction.
  • 3. The suction roll as claimed in claim 1, wherein two press nips of the suction roll are aspirated by the second suction channel.
  • 4. The suction roll as claimed in claim 1, wherein retaining strips which extend in the running direction of the machine are located in the interior of the second suction channel.
  • 5. The suction roll as claimed in claim 4, wherein the retaining strips have a mechanical play in relation to the suction roll jacket.
  • 6. The suction roll as claimed in claim 4, wherein the retaining strips extend from the second suction channel into the connecting channel.
  • 7. The suction roll as claimed in claim 1, wherein a further suction channel, which enables a further defined surface region of the suction roll to be aspirated, is located in the interior of the roll.
  • 8. The suction roll as claimed in claim 7, wherein retaining strips are located in the further suction channel.
Priority Claims (1)
Number Date Country Kind
A 1783/2010 Oct 2010 AT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/AT2011/000424 10/13/2011 WO 00 4/12/2013