The present invention relates to floats, more particularly suction stabilized floats.
Floats have been used through out history to support objects on water and to transport objects over water. Floats are usually made of buoyant materials less dense that the liquid that they are in; for example wood or foam which floats on water, but may be formed of gas (air) enclosing structures or water displacement. Stability of floats on the water has been a problem throughout history that people have attempted to solve. Ballast is used with many floats to achieve improved stability but has the disadvantage of adding weight to the float, especially when the float is removed from the liquid. Another disadvantage of ballast is that ballast needs to be suspended below the center of buoyancy of the float in the liquid and can interfere with activity below the float. Accordingly there is a need for a float that has improved stabilization without using ballast, or where used with ballast, the ballast can be reduced in size or serve an additional or alternative function.
One embodiment of the invention is directed to floats capable of supporting objects of a predetermined weight not exceeding 150 lbs at an interface between a liquid and a gas with at least one floatation device unitary with or secured to a chamber, wherein the chamber has a first portion that is fluid tight to both gas and liquid and a second portion that is open into the liquid. The first and second portions are unitary or integral and the chamber is floated on the liquid after being at least partially filled with a volume of the liquid raised above the interface.
Other embodiments of the invention are directed to a float with at least one floatation device unitary with or secured to a chamber, wherein the chamber has a first portion that is fluid tight and a second portion adapted to be open into the liquid. The first and second portions are unitary or integral and the chamber is floated on the liquid after being at least partially filled with a volume of the liquid raised above the interface. A gas valve capable of expelling gas from the chamber is also provided.
In one aspect of the invention the liquid is water, the gas is air, and the interface is the water line.
In another aspect of the invention the volume of liquid raised above the interface has a weight at least 25% of the total weight of the float.
In another aspect of the invention a supported object is integrated or attached to the float.
In another aspect of the invention the supported object is an umbrella.
In another aspect of the invention the float is a buoy.
In another aspect of the invention the portion of the float above the interface is flat.
In another aspect of the invention a pump capable of removing gas or aiding in the removal of gas from said chamber is integrated, permanently attached, or temporarily attached to the float.
In another aspect of the invention the supported object is an electronic device or sensor.
In another aspect of the invention the supported object is an antenna or an antenna array.
In another aspect of the invention the float is a dock.
In another aspect of the invention the dock has a connection for connecting to other docks.
In another aspect of the invention the dock is linked together with other floating docks to from a larger structure.
In another aspect of the invention the float is a pontoon.
In another aspect of the invention the float is a table with indentions for cups.
As is seen in
The invention is more generally described below. These descriptions relate to the embodiments shown in the figures which are numbered as well as to embodiments not shown and therefore not numbered. The numbers are meant to reference examples of the subject matter shown in the figures, but are not exclusive to the subject matter shown in the figures. The floats 1(a, b, c) described herein use suction stabilization which is produced when liquid inside a partially sealed chamber 11(a, b, c) that is connected to an external body of liquid 5 (a, b, c) is drawn above the gas/liquid interface 31(a, b, c) between the external body of liquid and gas. The liquid in the upper portion 27(a, b, c) of the inner chamber 19(a, b, c) held at this higher elevation generates a downward force. The upward force caused by buoyancy of the float's buoyant material 7 (a, b, c) and the downward force generated by the elevated liquid in the upper portion 27 (a, b, c) of the inner chamber 19(a, b, c) meet at the gas/liquid interface 31(a, b, c) (where gas meets liquid) resulting in the two opposing forces stabilizing the float 1(a, b, c). The amount of downward force generated is affected by many factors, for example, by the amount of upward force the float's buoyant material 7(a, b, c) provides, the size and shape of the upper portion 27(a, b, c) of the inner chamber 19(a, b, c) holding the liquid above the gas/liquid interface 31(a, b, c), and the weight of the liquid. The distance the liquid is drawn above the liquid level of the external body of liquid 5(a, b, c) is optionally be referred to as head height. The various embodiments of this invention achieve suction stabilization relying on the previously discussed phenomenon.
Embodiments of the invention are composed of a floatation or buoyant portion 7(a, b, c) and an inner chamber 19(a, b, c). The inner chamber 19(a, b, c) is comprised of an upper portion 27(a, b, c) which is above the gas/liquid interface 31(a, b, c) created by the water line and a lower portion 29(a, b, c) which is below the gas/liquid interface 31(a, b, c) In the various embodiments of the invention the inner chamber portion 19(a, b, c) is of equal or greater length than the floatation portion 7(a, b, c). In various embodiments of the invention, the floatation portion 7(a, b, c) is integrated into the inner chamber 19(a, b, c) and comprises all or part of the float 1(a, b, c). The opening 35(a, b, c) in the inner chamber 19(a, b, c) may be at any point below the gas/liquid interface 31(a, b, c), but in preferred embodiments, is at the inner chamber's 19(a, b, c) lowest point. The purpose of this is to ensure that the opening 35(a, b, c) remains in the liquid 5(a, b, c) when the float 1(a, b, c) is in use. In all embodiments of the invention the inner chamber 19(a, b, c) is oriented to be partially below the gas/liquid interface 31(a, b, c) and partially above the gas/liquid interface 31(a, b, c) with the buoyant material 7(a, b, c) being sufficient to maintain this balance when the inner chamber 19(a, b, c) is filled with liquid.
The embodiments of the invention function using the application of Pascal's law which states as follow,
ΔP=ρg(Δh)
where
ΔP is the hydrostatic pressure (given in Pascal's in the SI system), or the difference in pressure at two points within a fluid column, due to the weight of the fluid;
ρ is the fluid density (in kilograms per cubic meter in the SI system);
g is acceleration due to gravity (normally using the sea level acceleration due to Earth's gravity in meters per second squared);
Δh is the height of fluid above the point of measurement, or the difference in elevation between the two points within the fluid column (in meters in SI).
The application of this law means when the liquid in the inner chamber 19(a, b, c) is raised above the gas/liquid interface of the external body of liquid 5(a, b, c), the raised volume of liquid will exert a downward force equal to its weight. In the embodiments of the invention that downward force acts against any destabilization forces, for example rocking or swaying motions and thus serve to stabilize the float 1(a, b, c).
The embodiments of the invention function in a body of liquid 5(a, b, c). Once in a body of liquid, the gas from the inner chamber 19(a, b, c) is expelled and replaced by liquid. This can be accomplished through a variety of methods the following example. The entire float 1(a, b, c) is submerged under liquid 5(a, b, c) with the opening 35(a, b, c) facing upward toward the surface. Once the gas escapes from the inner chamber 19(a, b, c), the float 1(a, b, c) is rotated under the liquid so that the opening is now facing downward, away from the surface of the liquid. The float 1(a, b, c) is then allowed to float to the surface with this same orientation. This method is preferable in smaller floats 1a for example floats that require 150 lbs of force or less to submerge for example: 1 lb, 2 lbs, 3 lbs, 4 lbs, 5 lbs, 10 lbs, 15 lbs, 20 lbs, 30 lbs, 40 lbs, 50 lbs, 60 lbs, 70 lbs, 80 lbs, 90 lbs, 100 lbs, 110 lbs, 120 lbs, 130 lbs, 140 lbs, or 150 lbs.
An alternative method is to use a gas valve 41(b, c) to expel the gas from the chamber while the float 1(a, b, c) is in the liquid 5(a, b, c) with the opening 35(a, b, c) under liquid facing downward, away from the surface. This gas will be replaced by liquid from the surrounding body of liquid 5(a, b, c). This method may be used in floats of all sizes, but it is particularly advantageous with larger floats 1(b, c) as the amount of force required to sink the float 1(b, c) is usually substantial. In some embodiments of the invention, a ballast 43b is attached or integrated into the float 1(a, b, c) to provide extra stabilization and additionally act to self right the float 1(a, b, c) in the event that the float 1(a, b, c) capsizes.
In some embodiments of the invention the float is a moving watercraft wherein the opening to the inner chamber can be selectively opened and closed. When open, any gas in the inner chamber is expelled via an air valve and replaced by liquid. The liquid in the inner chamber acts as resistance to the movement of the watercraft and can be utilized in regular or emergency braking of the watercraft. Inner chambers placed off the center line of the watercraft can be utilized when turning the watercraft by providing resistance to the side of the watercraft that is the same as the direction of the turn. For example when turning right, the watercraft opens the inner chamber positioned on the right side of the watercraft. The water in the inner chamber provides resistance on the right side of the watercraft and on the inside of the turn which allows the watercraft to turn more sharply.
The larger the volume of liquid in the upper portion 27(a, b, c) (drawn above the gas/liquid interface 31(a, b, c)) the more downward force is created. Stabilization of the float 1(a, b, c) in liquid is a product of this downward force. Increased stabilization is achieved if the volume of liquid in the upper portion 27(a, b, c) has a larger width and depth to height ratio, but the embodiments in this invention can be any functional shapes or configurations.
In other embodiments of the invention the float 1(a, b, c) optionally has a flat top surface. In various other embodiments the top surface may be curved, higher or lower along the edges, or a variety of different shapes. The inner chamber 19(a, b, c) and buoyant material 7(a, b, c) may be various sizes or shapes, but the buoyant material 7(a, b, c) can not be so long or so buoyant as to lift any part of the opening to the inner chamber 19(a, b, c) out of the liquid 5(a, b, c).
In some embodiments the inner chamber 19(a, b, c) has a compartment 37b, container, or canister that is optionally gas/liquid tight so as to be accessed through an opening on the surface which optionally has a door 39b, or in other embodiments, the compartment may be accessed through an opening in the bottom, which optionally has a door. In some embodiments there is a tube 9a that penetrates the float 1(a, b, c) and extends into the inner chamber 19(a, b, c). The tube 9a does not destroy or damage the seal of the gas/liquid tight inner chamber 19(a, b, c). In some embodiments objects are secured to the float via the tube 9a, for example the umbrella 3a.
In various embodiments of the invention the gas is air and the liquid is water 5(a, b, c).
In various embodiments of the invention the float 1(a, b, c) is a foundation or a platform for an object 3(a, b, c). The object 3(a, b, c) can be a structure that is attached or unattached to the float. The object 3(a, b, c) can be a living or nonliving thing. In one embodiment the float's surface 16a can functions as a table and may optionally contain grooves or indentions for cups, plates, and/or other items used on a table. In another embodiment the float 1a is a foundation for a human float. In other embodiments of the invention the float 1(a, b, c) can support multiple attached or integrated objects 3(a, b, c), unattached objects 3(a, b, c), or a combination of both.
In some embodiments of the invention the float is a pontoon. A pontoon is a floating structure used in many watercrafts and on some aircrafts designed to optionally take off and land on water. The pontoon is on the bottom portion of the air/watercrafts and allows them to float on the liquid. The pontoons of the claims of the invention are optionally made of buoyant material and are open or have an open portion in or along the bottom portion of the pontoon. The opening allows liquid from the surrounding body of liquid to fill the inner chamber while gas is expelled through a valve on the pontoon float. The liquid inside the pontoon is held above the liquid of the surrounding body of liquid and thus creates a downward force which stabilizes the float.
Using water instead of conventional ballast also has the advantage of utilizing the adhesion and cohesion properties of water to further stabilize the float.
An experiment was conducted to calculate the static force created by a 30″ diameter float. The float was put into water and the air within was purged. The 30″ diameter circular Suction Stabilized Device resulted in 2⅛″ of fluid (water) being raised above the interface (surface of water). This volume was calibrated to contain 3.25 gallons of water. Water weighing approx. 8.34540 pounds per gallon equals a static force created of 27.122 pounds.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
The drawings in the application show embodiments wherein the chamber depicted has been at least substantially filled with water.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/392,755 filed Oct. 13, 2010, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1840324 | Lindquist | Jan 1932 | A |
1908714 | Schneider | May 1933 | A |
3097622 | Bell | Jul 1963 | A |
3301209 | Caldwell, Jr. | Jan 1967 | A |
3376588 | Berteaux et al. | Apr 1968 | A |
3870006 | Hashimoto | Mar 1975 | A |
3896578 | Franceschini | Jul 1975 | A |
4231313 | Heerema et al. | Nov 1980 | A |
4241685 | Mougin | Dec 1980 | A |
RE32560 | Givens | Dec 1987 | E |
4898288 | Erdbrink | Feb 1990 | A |
4927041 | Hepburn | May 1990 | A |
5207757 | Franceschini | May 1993 | A |
5215025 | Talmor | Jun 1993 | A |
5375550 | Innis | Dec 1994 | A |
5518431 | Staley | May 1996 | A |
5775248 | Simola | Jul 1998 | A |
7780139 | Markert | Aug 2010 | B2 |
20050009422 | Warriner | Jan 2005 | A1 |
20060225634 | Cho et al. | Oct 2006 | A1 |
20080003901 | Viets | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
0 015 352 | Sep 1980 | EP |
1 320 486 | Jun 2003 | EP |
2 773 352 | Jul 1999 | FR |
WO 0226557 | Apr 2002 | WO |
Entry |
---|
Dumez Gtm, “Floating crude oil store for use at sea,” Espacenet, Publication Date: Jul. 9, 1999; English Abstract of FR-2 773 352. |
Number | Date | Country | |
---|---|---|---|
20120090525 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61392755 | Oct 2010 | US |