The present invention relates generally to a user interface and, more particularly, to a sunroof control interface that provides enhanced functionality utilizing a simplified controller and control methodology.
A conventional vehicle provides various interfaces that allow the user, i.e., the driver or passenger, a way of monitoring various vehicle conditions as well as controlling different vehicle functions. Depending upon the complexity of the systems to be monitored and/or controlled, such a user interface may utilize visual, tactile and/or audible feedback, and may be comprised of multiple interfaces, each interface grouping together those controls necessary to monitor and/or operate a specific vehicle subsystem (e.g., HVAC, entertainment/audio, navigation, etc.).
The user interface for the sunroof in a conventional vehicle typically includes a pair of buttons or similar means that are mounted in the vehicle's dash, ceiling, center console or door panel. One button acts to open the sunroof when pressed or otherwise activated, and the second button acts to close the sunroof when pressed or otherwise activated. In such a vehicle the sunroof moves, either opening or closing, for as long as the corresponding button is activated. Thus if the user wants to open the sunroof to the halfway open position, they depress the corresponding control button and hold the button in the depressed state until the sunroof appears to be approximately halfway open. When the sunroof reaches the desired location, the user releases the button. As a result of this configuration, in a conventional vehicle the user must release the steering wheel with one hand and depress the appropriate sunroof control button until the sunroof reaches the desired location, an action which is not only distracting and inconvenient, but also provides the user with an inaccurate method of controlling the actual position of the sunroof. Accordingly, what is needed is a sunroof controller that minimizes driver distraction while achieving a greater level of sunroof control. The present invention provides such a sunroof control interface.
A method for positioning a sunroof is provided, the method including the steps of (i) providing a GUI display within a vehicle's passenger compartment; (ii) displaying a sunroof GUI control screen on the GUI display; (iii) displaying a sunroof control interface on the sunroof GUI control screen, where the sunroof control interface provides control over the vehicle's sunroof; (iv) accepting a user selection of a desired sunroof position via the sunroof control interface; and (v) positioning the sunroof to a sunroof position that corresponds to the desired sunroof position, where the positioning step is performed automatically in response to the user selection of the desired sunroof position, and where the step of positioning the sunroof is completed after the step of accepting the user selection.
In one aspect, a visual representation of the vehicle, for example a photorealistic depiction of the vehicle, is displayed on the sunroof control interface. The visual representation of the vehicle may include a sunroof overlay, for example positioned at an overlay position that corresponds to the actual sunroof position. The GUI display may be a touch-screen and the method may further include the steps of (i) accepting a tap on the visual representation of the vehicle at a location corresponding to the desired sunroof position, (ii) positioning the sunroof overlay at the desired sunroof position on the visual representation of the vehicle, and (iii) providing a numerical indicator on the sunroof overlay that is representative of the desired sunroof position relative to either a fully open or fully closed sunroof. Alternately, the method may include the steps of (i) allowing placement of a cursor on the visual representation of the vehicle at a location corresponding to the desired sunroof position, (ii) accepting selection of the desired sunroof position using a mouse controller button, (iii) positioning the sunroof overlay at the desired sunroof position on the visual representation of the vehicle, and (iv) providing a numerical indicator on the sunroof overlay that is representative of the desired sunroof position relative to either a fully open or fully closed sunroof.
In another aspect, a slide controller is displayed on the sunroof control interface. The GUI display may be a touch-screen and the method may further include the steps of (i) accepting a tap at a location on the slide controller corresponding to the desired sunroof position, (ii) positioning a button on the slide controller at the desired sunroof position, and (iii) associating a numerical indicator with the button that is representative of the desired sunroof position relative to either a fully open or fully closed sunroof. Alternately, the method may include the steps of (i) allowing placement of a cursor on the slide controller at a location corresponding to the desired sunroof position, (ii) accepting selection of the desired sunroof position using a mouse controller button, (iii) positioning a button on the slide controller at the desired sunroof position, and (iv) associating a numerical indicator with the button that is representative of the desired sunroof position relative to either a fully open or fully closed sunroof.
In another aspect, a sunroof control interface is provided that includes (i) a vehicle sunroof, (ii) a GUI display mounted within the vehicle, (iii) a sunroof interface displayed on the GUI display that is comprised of a plurality of discrete and user selectable regions, where each region corresponds to one of a plurality of sunroof positions, and (iv) a system controller, where whenever one of the regions is selected the system controller is configured to match a location corresponding to the selected region with one of the sunroof positions and automatically adjust the sunroof to that sunroof position. A visual representation of the vehicle may be displayed on the sunroof interface, where the selected region may be selected via a tap on a touch-screen GUI display, or selected using a cursor and a mouse controller, after which the system controller may be configured to reposition the sunroof overlay to the selected region on the visual representation of the vehicle. A slide controller may be displayed on the sunroof interface, where the selected region may be selected via a tap on a touch-screen GUI display, or selected using a cursor and a mouse controller, after which the system controller may be configured to position a button on the slide controller that corresponds to the selected region.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
The preferred embodiment of the present invention utilizes a large format touch-screen, both as a visual aid and as a means of controlling various vehicle subsystems including the sunroof. The inventors also envision that the invention may be used with a non-touch-screen display along with an input device such as a mouse controller, although such an approach is less intuitive. In at least one embodiment, the display is a 17-inch touch-screen with a 16:10 aspect ratio. Due to its size as well as the limitations on available mounting space in a typical vehicle, preferably this touch-screen is mounted in portrait mode within the vehicle's central console. Besides being aesthetically pleasing, such a mounting location provides access to the data on the screen as well as the displayed system controls to both the driver and the passenger seated in the passenger front seat.
In the preferred embodiment, and as described below in detail, interface system 100 allows the user to position the sunroof in a variety of ways.
In accordance with at least one embodiment of the invention, the sunroof control screens include a visual representation of the vehicle, and more preferably an exterior, top-down visual representation of the vehicle, e.g., representation 201 shown in
In the preferred and illustrated sunroof control interface GUI screen 200, the location of the sunroof is indicated on the screen in two ways, both of which provide a means of controlling the position of the sunroof as well as a means of determining the present position of the sunroof. First, the sunroof is shown in phantom as an overlay 213 on vehicle representation 201. Second, a slider control 215 is provided in which soft button 217 represents the position of the sunroof. Accordingly, when the position of the sunroof has changed, the position of phantom overlay 213 relative to vehicle representation 201 changes as does the position of slider soft button 217. As a result, the user is given a visual indicator of the position of the sunroof. In at least one preferred embodiment in addition to providing visual indicators of roof position, numerical indicators are provided that express the amount (e.g., percentage) that the sunroof is open or closed. In the illustrated embodiment, 0% represents a closed sunroof and 100% represents a fully open sunroof, although clearly these two values could be reversed, i.e., 0% representing a fully open sunroof and 100% representing a closed sunroof. As shown, sunroof overlay 213 includes numerical indicator 219 while a second numerical indicator 221 is provided on slider button 217, both of which indicate that in the exemplary screen the sunroof is currently open to 32% of the maximum possible opening.
In at least one embodiment of the invention, in order to alter the position of the sunroof the user can tap, or otherwise select (e.g., using a mouse controller), the desired location of the sunroof on vehicle representation 201. The system can also be configured to allow the user to tap, or otherwise select (e.g., using a mouse controller), the desired sunroof location on slider controller 215. When the user selects the desired sunroof location by either tapping on the vehicle image 201 or the slider controller 215, the sunroof immediately begins to move to the indicated position. Sunroof movement continues to the indicated position even though the user does not continue to indicate the desired sunroof position, either via image 201 or slider 215. Thus in contrast to a conventional sunroof interface that requires that the user continuously depress a sunroof control button as long as sunroof movement is desired, the present invention allows the user to quickly and simply indicate the desired final sunroof position with a single tap of the touch-screen, or with a single selection using a mouse controller. By requiring only a single interaction rather than a continuous engagement of the sunroof controller, the user is free to focus on driving the vehicle.
In the embodiment described above, the user selects a sunroof position by tapping, or otherwise selecting, the desired sunroof location, either on vehicle depiction 201 or slide controller 215. In the preferred embodiment, system controller 103 aligns the touch location on vehicle depiction 201 (e.g., location 303 in
In at least one embodiment of the invention, in order to alter the position of the sunroof a select-and-slide interface interaction technique is used to move the sunroof to the desired location, for example using a touch-and-slide motion with sunroof overlay 213 or with button 217 on slide controller 215. In this approach the user touches, or otherwise selects, sunroof overlay 213 and then slides the sunroof to the desired location on vehicle depiction 201. Alternately the user can touch, or otherwise select, button 217 and then slide the button to the desired location on slide controller 215. During this motion overlay 213, and/or button 217, moves at the same rate as the user's finger or at the same rate as a cursor if a mouse controller is used. Once the user has moved overlay 213, or button 217, to the desired location, they release their finger from the touch-screen, or deselect (e.g., unclick) the selection button on the mouse controller, thus indicating to controller 103 that a final sunroof destination has been selected. Preferably the sunroof begins to move as soon as the user alters the position of overlay 213 or button 217. Alternately, the system can be configured to only begin moving the sunroof after the user has selected the desired sunroof position and released their finger from the touch-screen, or selected the desired sunroof position and unclicked the mouse controller. Regardless of whether sunroof motion begins when the user initiates the touch-and-slide motion, or after completion of the touch-and-slide motion, sunroof movement continues to the indicated final position after the user has completed the touch-and-slide motion. Therefore as with the prior embodiment, the user is able to quickly indicate the desired final sunroof position without requiring continuous engagement of the sunroof controller, thus allowing the user to focus on driving the vehicle.
In the above embodiment in which a touch-and-slide or click-and-slide motion is used with either overlay 213 or button 217, the overlay/button are preferably configured to track the user's motion as the user adjusts overlay 213 or button 217, thereby providing the user with a visual indicator of the expected final position of the sunroof. Additionally, in at least one preferred embodiment, numerical indicators 219 and 221 also continuously vary from the initial sunroof setting to the final sunroof setting as the user slides the overlay/button, thus providing a secondary indicator of the sunroof position.
Additionally, it should be understood that in a GUI interface that utilizes both the overlay and the slide controller as shown in
In at least one embodiment of the invention, the sunroof controller includes one or more presets, each of which corresponds to a specific sunroof position. For example, in the sunroof GUI interface screen 900 shown in
The sunroof controller of the invention can be configured to utilize the previously described presets in a variety of ways. In one configuration, the user is only able to move the sunroof to a preset location. Although this configuration prevents the user from making small adjustments to the sunroof's position, it simplifies user interaction which, in turn, minimizes driver distractions. In this configuration the user taps, or otherwise selects, a location on either vehicle depiction 201 or slide controller 215. Controller 103 determines the intended preset based on the location of the tap/selection and then moves the sunroof to the position corresponding to the selected preset.
While the configuration described above simplifies sunroof operation, in the preferred embodiment the system allows the use of presets and provides the user with means for positioning the sunroof at a location other than that corresponding to a preset. The inventors envision that the system can be configured to use a variety of different combinations of presets and other input techniques. For example:
It should be understood that identical element symbols used on multiple figures refer to the same component, or components of equal functionality. Additionally, the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale.
Systems and methods have been described in general terms as an aid to understanding details of the invention. In some instances, well-known structures, materials, and/or operations have not been specifically shown or described in detail to avoid obscuring aspects of the invention. In other instances, specific details have been given in order to provide a thorough understanding of the invention. One skilled in the relevant art will recognize that the invention may be embodied in other specific forms, for example to adapt to a particular system or apparatus or situation or material or component, without departing from the spirit or essential characteristics thereof. Therefore the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention. Claims: A method of controlling operation of a vehicle sunroof, the method comprising the steps of:
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/706,915, filed 28 Sep. 2012, the disclosure of which is incorporated herein by reference for any and all purposes.
Number | Date | Country | |
---|---|---|---|
61706915 | Sep 2012 | US |