The present patent document relates to soft-projectile launching devices, such as projectile toys. More particularly, the present patent document relates to soft-projectile launching devices that launch super absorbent polymer projectiles and related devices and methods.
Children have a variety of different types of projectile launching toys available to them. For example, HASBRO® makes an entire line of NERF® weaponry that fire NERF® projectiles. NERF® is a trademarked term well known in the toy industry and is associated with soft foam-like material. Other than weaponry, NERF® is also commonly associated with sports balls such as footballs, basketballs, and others. Over the years, a large number of NERF® foam-based weaponry products have been developed, including various blasters that launch various types of NERF® projectiles including darts, rockets, and balls.
NERF® foam is a spongy cellular material produced by the reaction of polyester with a diisocyanate. The polyester resin reacts with the diisocyanate while CO2 is simultaneously released by another reaction. The CO2 gas creates open pockets within the polyurethane that give the NERF® foam its soft and light properties.
One reason the NERF® foam and other foam based projectile toys have became so popular has been due to the soft and light properties of the foam material. For example, NERF® balls were originally marketed as the “world's first official indoor ball.” These same soft and light properties also make NERF® and other foams a great material for projectiles. Projectiles made from NERF® and other similar foams can be formed into balls and darts and fired from toy weaponry with little risk of injury. To this end, HASBRO® and other toy manufacturers have created numerous toy weaponry lines that shoot foam based projectiles including the N-Strike® line of toys.
Although NERF® and other foam like materials can be used to make toy weaponry projectiles that are relatively safe to project or launch, the properties of NERF® and other foam like materials have some significant drawbacks when used as projectiles for projectile launching toys. Because foam based materials such as NERF® foam are light, they are highly susceptible to air forces when trying to project them through the air in free flight as occurs when fired from toy weaponry. The soft, light properties of foam and NERF® type products are due to their low density. The low density of foam based projectiles decreases the momentum of the projectiles, which in turn increases the effect of air resistance, drag, and other motion retarding forces. This causes foam based projectiles to rapidly slow after initial firing and easily curve off line.
There are also small projectile systems for gaming and professional training purposes. These include paint ball guns and airsoft guns, but these systems are for adult use only due to the energy imparted to the projectile and the ability of the projectile to do serious harm.
One object of the present patent document is to provide an alternative soft-projectile launching system to those presently on the market. To this end, in one embodiment, a projectile launching device is provided that launches projectiles made from super absorbent polymers. The projectile launching device comprises: a holder designed for containing the soft-projectile made from a super absorbent polymer; and a firing mechanism operatively arranged to accelerate the holder from a firing position.
In another embodiment the holder of the soft-projectile launching system is slideably contained by the device. In another embodiment, the holder for a soft-projectile translates between the firing position and a launch point for the soft-projectile. In yet another embodiment the soft-projectile launching system further comprises a barrel having an interior in communication with the firing position wherein the holder for a soft-projectile translates down the barrel such that a soft-projectile launches from the barrel with little or no contact with the interior of the barrel.
In one embodiment, the soft-projectile launching system may have a firing mechanism incapable of storing energy independent of the user. Yet in other embodiments, the launching system may store energy. The soft-projectile launching systems of the present patent document may use air pressure, springs, rubber bands or any other suitable firing mechanism to launch the soft-projectile.
In another aspect of the present patent document, ammunition for a soft-projectile projection device is provided. The ammunition according to one embodiment comprises a plurality of projectiles made from a super absorbent polymer. The projectiles may be contained in a magazine. The projectiles may be hydrated or dehydrated.
In one embodiment, the projectiles have a diameter of less than 10 millimeters when hydrated. In yet another embodiment, the projectiles have a diameter of more than about 4 mm and less than about 9 mm when hydrated.
In another aspect of the present patent document, a magazine for a device for projecting soft-projectiles is provided. The magazine according to one embodiment comprises: a container having an interior volume having at least one opening wherein the container is configured to operatively mate with a device for projecting soft-projectiles and a plurality of projectiles made from a super absorbent polymer contained within the interior volume. The projectiles in the magazine may be hydrated or dehydrated and the magazine may include an inlet opening configured to only allow dehydrated projectiles to pass through into the magazine.
In one embodiment, the magazine further comprises a locking mechanism that prevents an outlet opening from opening unless the magazine is mated with a corresponding projection device.
In yet another aspect, a method of producing soft-projectiles is provided. The method comprises the steps of: placing a plurality of pieces of a super absorbent polymer in a liquid; allowing time for the plurality of pieces of a super absorbent polymer to absorb the liquid; and placing the plurality of pieces of a super absorbent polymer in a magazine.
In yet another aspect, a kit for making a plurality of soft-projectiles from a super absorbent polymer is provided. In one embodiment, the kit comprises: a predetermined quantity of dehydrated projectiles stored in a container, the dehydrated projectiles comprising a super absorbent polymer; instructions for adding the dehydrated projectiles into an interior chamber of a magazine and hydrating the dehydrated projectiles in the interior chamber of the magazine. The container may, for example, comprise a sealed pouch or other low cost, disposable container.
In another embodiment, an adaptation mechanism for a projectile toy comprises: a soft-projectile holder adapted to hold a soft-projectile made from a super absorbent polymer; and an attachment mechanism connected to the soft-projectile holder wherein the attachment mechanism is designed to mate to a firing mechanism of the projectile toy.
In addition to the embodiments described above, a method of play is provided. In one embodiment, the method of play comprises launching a super absorbent polymer projectile from a projectile launcher. The launcher may come in any form including a toy weapon or a gun.
In some embodiments described herein including embodiments of the method of play, the soft-projectile made from a super absorbent polymer may be adapted for use with the firing mechanism of the projection device. In some embodiments, for example, the super absorbent polymer may have a relatively high cross-link density. The durability of the super absorbent polymer may, for example, be increased to prevent substantial damage to the soft-projectile during the launching step. In other embodiments the cross-link density of the super absorbent polymer may be set so that it is sufficient to keep the soft-projectile from breaking apart during the launching step.
Various embodiments and methods may also use various types of firing mechanisms, including firing mechanisms that use direct impact or indirect impact. For example, in some embodiments the projectile launcher comprises a firing mechanism that directly applies a force to the super absorbent polymer and in other embodiments the firing mechanism indirectly applies force to the super absorbent polymer. Further, in certain embodiments and methods, the firing mechanism stores energy independent of the user. In other embodiments, the firing mechanism is incapable of storing energy independent of the user.
In one embodiment of the method of play, the projectile launcher does not include a holder for the super absorbent polymer projectile to help transfer energy of a firing mechanism of the projectile launcher into motion of the super absorbent polymer projectile.
In yet another embodiment, the method of play further comprises loading the super absorbent polymer projectile into the projectile launcher from a magazine.
In another embodiment, a launching system is provided; the launching system comprises a projectile launcher for launching ammunition made from a super absorbent polymer and ammunition made from a super absorbent polymer that is adapted to be launched from the projectile launcher. In various embodiments of the projectile launching system, the projectile launcher is embodied by the various embodiments of a projection device described herein. Similarly, in various embodiments of the projectile launching system, the ammunition made from a super absorbent is embodied by the various embodiments of soft-projectiles described herein.
The super absorbent polymer projectile launching toys and/or weaponry described herein may increase the user experience as compared to foam-based projectile toys, yet they remain safe for children to use. Further aspects, objects, desirable features, and advantages of the devices and methods disclosed herein will be better understood from the detailed description and drawings that follow in which various embodiments are illustrated by way of example. It is to be expressly understood, however, that the drawings are for the purpose of illustration only and are not intended as a definition of the limits of the claimed invention.
The term “magazine” is used herein to refer to any container that holds super absorbent polymer projectiles for a projectile toy gun or other projectile weaponry. The magazine could be of any shape size or volume and have any number of openings as long as it holds super absorbent polymer projectiles in a useable manner for a corresponding super absorbent polymer projectile launching device.
Super absorbent polymers (SAP's) were first invented by the United States Department of Agriculture (USDA) in the 1960's and are commonly used in personal disposable hygiene products such as diapers, protective underwear, and sanitary napkins SAP's are polymers that can absorb an extremely large amount of liquid relative to their own mass. SAP's absorb aqueous solutions through hydrogen bonding with water molecules.
The present patent document discloses and teaches projectile launching devices, such as toys, amateur guns and weaponry that use projectiles formed from a super absorbent polymer (SAP). As a result, the projectiles launched by the devices of the present patent document are soft-projectiles. Further, once hydrated, the unique properties that SAP's exhibit give the soft-projectiles several advantages over current projectile materials such as paint balls, plastics, and foams. For example, hydrated SAP projectiles can maintain their shape under modest pressure. The ability of SAP projectiles to maintain their shape allows them to be projected with a reasonable force and velocity without breaking apart. However, under excessive pressure, hydrated SAP projectiles will break down and lose their shape. Because SAP projectiles break down under excessive pressure, the force at impact is spread over a much wider surface area, thus reducing the likelihood of injury.
SAP projectiles can also be designed to break down at different pressures based on their composition. This allows them to be tailored to have specific qualities as soft-projectiles. The total absorbency and swelling capacity of a SAP varies depending on the degree of cross-linking within the polymer. The lower the density of the cross-linking the higher the absorbent capacity of the SAP. Thus, low density cross-linked SAP's generally have a higher absorbent capacity and swell to a larger degree than more highly cross-linked SAP's. Low density cross-linked SAP's also have a softer and more cohesive gel formation. High cross-link density polymers exhibit lower absorbent capacity and swell. The gel strength is firmer and can maintain particle shape even under higher pressures.
Consequently, by using a SAP with a higher cross-link density, a soft-projectile can be made to fly farther and faster without breaking apart and have a stronger impact. In contrast, soft-projectiles made from a SAP with a lower cross-link density will break apart more easily and have a much softer impact. Depending on the level of safety required, different SAP's with different cross-link densities may be used. For example, SAP's can be constructed that would be considered “highly compliant” by industry standards.
Soft-projectiles made from a SAP are preferably round but may be of other shapes as well, including, for example, dart shapes, cylinder shapes, bullet shapes, oval, square, rectangular or any other shape. Round is a preferable shape not only because it has fairly good ballistic characteristics but because SAP's are easily formed in round shapes.
Soft-projectiles made from a SAP can be any size. Preferably, however, the soft-projectiles made from a SAP are between about 3 millimeters (mm) and about 15 mm in diameter when hydrated and more preferably between about 5 mm and 8 mm in diameter when hydrated. Typically, the soft-projectiles are about 1 mm or less when the SAP forming the projectile is dehydrated.
Larger soft-projectiles made from a SAP are possible. For example, rounds having a diameter of 30 mm have been created. However, there is approximately a 20% tolerance on the final diameter of the hydrated SAP soft-projectiles and therefore, the larger rounds are more difficult to make consistently uniform in diameter.
The SAP projectiles may be colorless to prevent any staining upon impact. Alternatively, soft-projectiles made from a SAP may also have additives added during the formulation of the SAP or during hydration that will create a temporary or indelible signature upon hitting a target. For example, soft-projectiles made from a SAP may be colored by adding a die to the SAP or the aqueous solution during the hydrating process. Depending on the die employed, the resulting signature may be of any desired color. Further, the employed die compound may be visible under normal lighting conditions or only under an ultra violet black light. Other additives may also be used including those that give the soft-projectiles a tracer effect such as glow-in-the-dark additives or other materials with luminescent properties.
Soft-projectiles made from water absorbing polymers, classified as hydrogels, will absorb aqueous solutions through hydrogen bonding with the water molecule. A SAP's ability to absorb water is a factor of the ionic concentration of an aqueous solution. Consequently, soft-projectiles made from a SAP are preferably grown in water with a PH of 7. More preferably soft-projectiles made from a SAP are grown in distilled water, where they may absorb 500 times their weight, and from 30-60 times their dehydrated volume.
Projection device 10 has firing mechanism with a firing position 30. The firing position 30 is where the soft-projectile 16 is positioned just prior to being fired or launched from the projection device 10. The firing mechanism of the embodiment shown in
In addition, various techniques of launching a projectile may also be combined. For example, the embodiment shown in
To begin the process of firing a soft-projectile 16 made from a SAP with the device shown in
In the embodiment of the projection device 10 shown in
Once the soft-projectile 16 made from a SAP has been launched, the plunger 12 and plunger seal 24 have been pulled inside the plunger cylinder 19 to the extent possible. In this position, the plunger seal 24 is located just behind the firing position 30. When the user wants to fire another round, the user pulls back on the handle 11. As the plunger 12 is retracted, air seal 22 and soft-projectile holder 14 are drawn behind the magazine or feed hopper 50. Once the air seal 22 and the soft-projectile holder 14 are positioned behind the magazine or feed hopper 50, another soft-projectile made from a SAP 16 can fall into the firing position 30.
Toy guns and weaponry are typically classified into two different categories: 1) devices that can transfer stored energy into the projectile; and 2) devices that are incapable of storing energy independent of the user. The projection device 10 embodied in
Although the embodiments illustrated in the present patent document include a smaller diameter tube 27, other embodiments may include a tube of any diameter including a tube of larger diameter. As explained above, it is preferable to use a tube with a smaller diameter than the diameter of the air compression chamber 31 to take advantage of the Bernoulli principle. However, using a tube with a smaller diameter is not a requirement. In addition, the barrel 15 may be considered part of the smaller diameter tube 27 or as a separate component connected to the smaller diameter tube 27.
Unlike the embodiment of
The soft-projectile holder 14 is preferably designed to minimize, or even prevent altogether, the contact of the soft-projectile 16 with the barrel 15 as the soft-projectile 16 travels down the barrel 15. Although soft-projectile holder 14 is not a requirement, minimizing the contact between the soft-projectile 16 and the barrel 15 is preferable. The soft-projectile 16 will tend to retain its shape, especially if the cross-link density is high. However, if the soft-projectile 16 is nicked, scratched, or damaged by the barrel as it accelerates, it may disintegrate prior to exiting the barrel 15, especially if the cross-link density is low. If the soft-projectile 16 disintegrates prior to exiting the barrel 15, the soft-projectile 16 will not fly accurately or the correct distance. Consequently, the design of the soft-projectile holder 14 should take care to encase enough of the soft-projectile 16 to prevent it from touching the sides of the barrel 15 as it travels. The soft-projectile holder 14 is preferably cup shaped in a form that mates with the exterior surface of the soft-projectiles 16 to be employed with the device. However, the soft-projectile holder 14 may be bucket shaped, crescent shape, or any other shape that helps prevent or suitably minimize the contact between the soft-projectile 16 and the barrel 15.
In addition to preventing contact between the soft-projectile 16 and the barrel 15 during launch, the soft-projectile holder 14 also helps transfer the energy of the firing mechanism into the motion of the soft-projectile 16. In addition, if shaped similar to soft-projectile 16, the soft-projectile holder 14 helps distribute the force generated by the firing mechanism evenly over the soft-projectile 16 and therefore, helps prevent the soft-projectile 16 from breaking during launch. Consequently, a holder 14 that mates more appropriately with the shape of the outside surface of the soft-projectile 16 is preferable. Furthermore, the soft-projectile holder 14 may help center the soft-projectile 16 and keep the soft-projectile 16 centered as it travels down the barrel 15. To this end, a soft-projectile holder 14 in the shape of a hemisphere may be used with round soft-projectiles 16. The hemispherically shaped holder 14 may have a diameter slightly larger than the soft-projectile 16 to not only help prevent contact with the interior of the barrel 15, but also to accommodate variations in the diameters of soft-projectiles 16.
Although the embodiments of
Magazine 50 has a first opening 52 designed to mate with a projection device 10. Preferably the first opening 52 of magazine 50 includes a locking mechanism, such as a trap door, that blocks the first opening when the magazine 50 is not mated to a corresponding projection device 10. The locking mechanism provides a safety mechanism that prevents foreign objects from being loaded into the magazine 50 and launched by the projection device 10. The locking mechanism can be a keying system, child safety device, or other locking mechanism that prevents foreign objects from being loaded into the magazine.
The opening on the projection device 10 that mates with the magazine preferably has a corresponding locking mechanism to complement the locking mechanism on the magazine 50. Consequently, soft-projectiles 16 may only be loaded into the projection device 10 from the magazine 50. Similar to the locking mechanism that prevents foreign objects being loaded into the magazine 50, the corresponding locking mechanism on the opening in the projection device prevents foreign objects from being loaded directly into the projection device 10 and then launched.
As shown in
Alternatively, the second opening 54 may further include a screen 56 designed to prevent passage of objects larger than a particular size. The dehydrated SAP pieces forming the soft-projectiles 16 may typically have a diameter of about 1 millimeter (mm) or less. In such embodiments, the screen 56 can be designed to only allow objects of approximately 1 mm or less in diameter to pass through. The dehydrated soft-projectiles 16 can then be loaded into the magazine 50 and water or another aqueous solution can be added and the soft-projectiles 16 can swell to their appropriate size. The screen 56 is a safety mechanism to make sure foreign objects are not loaded into the magazine 50 and then subsequently launched from the projection device 10. Although it is recognized that foreign objects of less than 1 mm can be loaded into the magazine, objects of less than 1 mm are much less likely to cause significant damage if subsequently launched by the projection device 10 because of their reduced size and weight.
The dehydrated soft-projectiles 16 may be sold in a kit designed to refill a magazine 50. In one embodiment, the kit comprises a pre-counted number of dehydrated rounds designed to fill up a particular magazine when hydrated. A magazine 50 preferably holds between 150 and 250 rounds and more preferably holds about 200 soft-projectiles 16. However, the magazine 50 and the kit that fills the magazine 50, can hold any number of soft-projectiles. For example, larger clips of approximately 500 to 1000 rounds may be used for machine guns, Gatling guns, or other rapid fire projection devices 10. In contrast, magazines or clips of 6 to 20 rounds may be used for single shot toys and weaponry.
The kit preferably further includes instructions on how to insert the dehydrated rounds into the magazine 50 and grow the dehydrated rounds inside the magazine 50. After purchasing a kit, a user would dump the dehydrated rounds into the magazine and follow the directions to add distilled water or another appropriate aqueous solution to hydrate the rounds and swell them into their appropriate size for launching from a projectile device 10.
In addition to projection devices designed specifically to launch soft-projectiles 16, embodiments of the present patent document include adaption devices to adapt existing projectile toys and weaponry to launch soft-projectiles 16. Adaption devices attach to the firing mechanism of the existing toy or weaponry and allow the transfer of energy from the firing mechanism into kinetic motion of the SAP projectile 16 without damaging the SAP projectile 16. Preferably, soft-projectile holders 14, similar to those of
In embodiments of the projection device 10 that store and release energy, a finger trigger 3 is preferably included. Finger trigger 3 may be mechanically connected to the firing mechanism to release the stored energy when finger trigger 3 is depressed by a user. In embodiments that also include handle 11, the user may pull the handle 11 back and lock it in the pulled back position. The finger trigger 3 may then be depressed to release the handle 11 and activate the firing mechanism.
In addition, the projection device 10 may have a number of attachments or enhancements that increase the user's experience when playing with the projection device 10. For example, in the case of a gun as shown in
In the embodiment shown in
In operation, a user pulls the handle 11 which draws the plunger 12 and plunger seal 24 towards the aft end 17 of the plunger cylinder 19. As the plunger 12 is retracted through the plunger cylinder 19, the spring 18 is compressed against the aft end 17 and air is sucked into the expanding air compression chamber 31. When the spring 18 is fully compressed against the aft end 17, the plunger 12 is fully retracted and the air compression chamber 31 substantially includes the entire volume of the plunger cylinder 19.
When the user releases the handle 11, the spring 18 rapidly expands and forces the plunger seal 24 back down the plunger cylinder 19 rapidly reducing the size of the air compression chamber 31. Similar to the embodiment of
In a preferred embodiment, the volume enclosed by the smaller diameter tube 27 and the air compression chamber 31 between the seal of soft-projectile holder 14 and the plunger seal 24 is substantially sealed. In a preferred embodiment, the plunger cylinder 19 further includes a one-way valve that allows the plunger cylinder 19 to suck air into the air compression chamber 31, but prevents air from escaping when the handle 11 is released and the plunger 12 is rapidly forced back into the compression chamber 31 by the expanding spring 18.
Substantially sealing the volume between the soft-projectile holder 14 and the plunger seal 24 allows the position of the soft-projectile holder within the smaller diameter tube 27 to be manipulated by the user when pulling or releasing the handle 11. In addition to causing the soft-projectile holder 14 to rapidly accelerate down the smaller diameter tube 27 when the user releases the handle 11, the seal may also be used to pull the soft-projectile holder 14 into the firing position 30. As the user pulls the handle 11 back and expands the volume of the air compression chamber 31, air is sucked from the smaller diameter tube 27. As the air is pulled from the smaller diameter tube 27, the soft-projectile holder 14 is drawn back down the barrel 15 towards the firing position 30.
Once the soft projectile holder 14 is in the firing position 30, additional air may be sucked into the air compression chamber through a one way valve. However, a one way valve is not necessary and air may be sucked in through small imperfections in the seal between the plunger seal 24 and the seal around the soft-projectile holder 14.
As may be seen by the embodiment shown in
The barrel portion 15 of the smaller diameter tube 27 has an opening 36 which provides access to the interior of the smaller diameter tube 27 directly above the firing position 30. The opening 36 is large enough for a single soft projectile to fit through. The opening 36 allows the soft projectile to pass from the magazine 50 into the firing position 30 of the projection device 10.
However, without the loading mechanism 33, there would be no control over when the soft projectiles where allowed to descend into the firing position or how many soft projectiles descended into the firing position. Furthermore, without a loading mechanism 33, soft projectiles would be able to drop into the firing position 30 behind the soft projectile holder 14, which would potentially prevent the projection device 10 from working. The loading mechanism 33 controls the loading of soft-projectiles into the firing position and prevents unwanted loading by selectively obstructing the opening 36 in the barrel portion of the smaller diameter tube 27 directly above the firing position 30.
The loading mechanism 33 shown in the embodiment of
The plunger 35 is positioned in the barrel 15 under the opening 36 and the magazine 50. The plunger 35, which is cylindrical in the present embodiment, includes a first flange 39 on the interior of its forward end and a second flange 41 on the exterior of its back end. A compression spring 37 is mounted inside the plunger 35 so that a first end abuts the first flange 39 and the second end extends back into a plunger chamber 44. The second end of the compression spring abuts a third flange inside the plunger chamber 44.
In a preferred embodiment, the plunger 35 has a cylindrical design and the first, second, and third flanges have a small annular height in order to maintain the smaller diameter tube 27 and the barrel 15 substantially open to air flow.
When the user pulls the handle 11 of the projection device back in preparation for firing, a vacuum is pulled on the smaller diameter tube 27 causing the soft-projectile holder 14 to be drawn towards the back of the gun as explained above. As the soft-projectile holder 14 is pulled back by the vacuum, the soft-projectile holder 14 begins to push on the plunger 35 of the loading mechanism 33. In turn, the plunger 35 telescopes back into the plunger chamber 44, compresses the spring 37, and allows the soft-projectile holder 14 to continue to be drawn backwards by the vacuum in the smaller diameter tube 27.
In the preferred embodiment, the fully retracted position of the plunger 35 into the plunger chamber 44 is designed to be the fully compressed position of the spring 37. In another embodiment, the plunger may interfere with a second portion of the plunger chamber 44 to restrict the retraction of the plunger 35 into the plunger chamber 44 to be where the soft-projectile holder 14 is positioned just slightly behind the opening 36 in the top of the barrel 15 (i.e., when the soft-projectile holder 14 is just behind the firing position 30). Once the soft-projectile holder 14 is retracted to just behind the firing position 30, the plunger 35 and/or soft-projectile holder 14 are/is no longer obstructing the opening 36 above the firing position 30 in the barrel 15 and a single soft-projectile may drop into the firing position 30 of the barrel 15.
Preferably, the spring 37 maintains a constant bias on the plunger 35 in order to maintain the plunger in its fully extended position blocking the opening 36. Once a vacuum is no longer being pulled on the smaller diameter tube 27 or the firing mechanism 33 has been released, the spring 37 forces the plunger 35 forward back into its steady state position blocking any additional soft-projectiles from entering the barrel 15.
Preferably, the spring 37 has a sufficiently small spring constant to allow it to be retracted with the force generated from soft-projectile holder 14 as it is pulled back down the barrel 15 by the vacuum created when the user retracts the handle 11. The spring constant should also be sufficiently small so that the spring does not cause the plunger 35 to force the soft-projectile holder 14 down the barrel 15 prematurely should a vacuum no longer pull the soft-projectile holder 14 backward. For example, if the user where to retract the handle 11 of the gun and then hold it for a period of time prior to releasing it, small leaks in the system may prevent the plunger 35 from continually being retracted in the plunger chamber 44.
Preferably the compression spring 37 is also designed to bias the plunger 35 to maintain the plunger's position obstructing the opening above the firing position in the barrel 15 when a soft-projectile is not being loaded. The plunger 35 is retained in the obstructing position by the second flange 41 on the back of the plunger 35 which interferes with a flange on the inside of plunger chamber 44.
Although the embodiment of
In the soft-projectile 16, either through pneumatic force or mechanical impact, it is preferable to modify the durability of the soft-projectile to allow the soft-projectile to withstand the direct force of the firing mechanism. To this end, the properties of the soft-projectile may be modified to further adapt it to work with a direct force firing mechanism. For example and as explained above, the gel hardness of SAPs may be modified by changing their cross-link density. Thus, the projectiles 16 made from a SAP may be made harder to work with a direct force firing mechanism by increasing their cross-link density.
In order to minimize the risk that objects other than the desired ammunition, such as soft-projectiles 16 made from a SAP are used with projection device 10, complementary locking mechanisms 60 and 70 may be used as part of both the magazine 50 and the projection device 10, respectively. The complementary locking mechanisms 60 and 70 are designed to prevent access to the interior of the magazine 50 and projection device 10, respectively, except when the two are mated together, or another device with a corresponding locking mechanism. The locking mechanism 60 prevents loading of foreign objects into the magazine 50 and locking mechanism 70 prevents foreign objects from being directly loaded into the firing chamber of the projection device 10. Numerous types of locking mechanisms may be used for complementary locking mechanisms 60 and 70 without departing from the scope of the present patent document. The complementary locking mechanisms 60 and 70 of magazine 50 shown in
Before explaining the operation of the complementary locking mechanisms 60 and 70, however, it is noted that
The locking mechanism 60 of magazine 50 shown in
When the magazine 50 is correctly mated with the corresponding locking mechanism 70 of projection device 10 or other desired device, the trap doors 69 and 79 are both retracted against the biasing force of springs 65 and 75 so that they no longer block their respective openings 52 and 72, and soft-projectiles may thus pass between the magazine 50 and projection device 10 or other corresponding device.
In the embodiment shown in the figures, the magazine 50 is initially mated to the corresponding locking mechanism 70 forward of its final position and is then slid back into its final position where a small tongue spring 66 snaps into a groove 76 provided on the corresponding locking mechanism 70. The tongue spring 66 prevents the magazine 50 from accidently sliding forward and becoming disengaged from the corresponding locking mechanism 70 of projection device 10 or other mating device, during use. However, when the user desires to reload the magazine with additional super absorbent polymer projectiles 16, the user may reverse the process by sliding the magazine forward so that it may removed from corresponding locking mechanism 70 of projection device 10.
The tabs 58 located on the bottom of the magazine 50 correspond to a set of flanges 78 provided on corresponding locking mechanism 70 such that the magazine 50 must be initially engaged forward of its final position and then slid back into place. Once the magazine 50 is slid back into place on the corresponding locking mechanism 70, the tabs 58 are disposed under the corresponding flanges 78. The tabs 58 and the flanges 78 thus cooperate to further secure the magazine 50 to the corresponding locking mechanism 70.
As may be seen from
Although as illustrated in
In general, any type of keying system may be used to ensure that the openings 52 and 72 remain blocked and are only opened when complementary locking mechanisms 60, 70 are mated with an approved corresponding device. As just one example, additional steps may be required such as turning or sliding an additional switch after the complementary locking mechanisms 60, 70 are engaged to open trap doors 69, 79. In yet another embodiment, the opening and closing of the trap doors 69, 79 may be controlled by electronics and a digital key may be exchanged when the locking mechanisms 69,79 are mated to signal to one or more trap door drivers to open the trap door 69, 79 or allow the trap doors 69, 79 to be opened.
In addition to preventing foreign objects from being loaded into the projection device 10 via the magazine 50, in a preferred embodiment, a safety mechanism 100 may also be provided at the end of the barrel 15 to prevent foreign objects, or at least foreign objects larger than a predetermined size, from being loaded down the barrel 15 of the projection device 10. For projection devices formed in the shape of a gun, a safety mechanism 100 at the end of the barrel 15 will minimize the likelihood that a foreign object can be loaded musket style down the barrel 15.
Safety mechanism 100 of the illustrated embodiment includes barrel cap 90, stop 92, shields 94, triggers 96, and springs 98.
In the embodiment shown in
In the embodiment of
The safety mechanism 100 shown in
In the embodiment shown in
Triggers 96 are pivotally connected to the barrel cap 90. Furthermore, each trigger 96 is biased by a spring 98 to the closed position. The shields 94 and triggers 96 are arranged with the springs 98 such that the shields rotate about the outer circumference of the barrel 15 outward and away from the center axis of the barrel 15. In addition, the shields 94 and triggers 96 are operatively arranged with springs 98 such that the shields 94 may not rotate inward back into the barrel 15. Because the shields may not rotate inward towards the center axis of the barrel 15, access to the interior of the barrel 15 is prevented by the shields 94.
The operation of the safety mechanism 100 when the projection device 10 launches a soft-projectile will now be described. As the soft-projectile holder 14 nears the end of the barrel, the soft-projectile holder 14 impacts stop 92. As a result, stop 92 is slides within gap 93 of barrel cap 90 towards the annular flange provided in barrel cap 90. By contrast, in the steady state condition, stop 92 is urged against the end of the barrel 15 by the spring bias of triggers 96.
When the soft-projectile holder 14 impacts the stop 92, the momentum stored in the soft-projectile holder 14 is transferred to the stop 92 and the stop is thus caused to slide forward in gap 93. As stop 92 slides forward in gap 93, the stop 92 engages the triggers 96. Triggers 96 are shaped such that when the stop 92 engages triggers 96 it causes them to rotate outward as stop 92 slides axially within the barrel cap 90. When stop 92 has slid axially to its full extent within gap 93 of barrel cap 90, triggers 96 are caused to rotate enough to rotate the corresponding shields 94 outwardly away from the axis of the barrel 15 and allow a sufficient opening for a soft-projectile 16 to exit unscathed.
Once all the momentum of the soft-projectile holder 14 has been transferred into the stop 92, the biasing force provided by springs 98 forces the triggers 96 to rotate back towards the axes of the barrel and return to their steady state position with the shields 94 covering the opening in the barrel 15. The triggers 96 in turn force the stop 92 to slide back across gap 93 toward the distal end of barrel 15. Stop 92 is held against the distal end of the barrel 15 ready for the next soft-projectile 16 to be launched.
Although the inventions have been described with reference to preferred embodiments and specific examples, it will readily be appreciated by those skilled in the art that many modifications and adaptations of the methods and devices described herein are possible without departure from the spirit and scope of the inventions as claimed hereinafter. Thus, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the inventions as claimed below.
This application is a continuation and claims the benefit of U.S. application Ser. No. 12/973,897, filed Dec. 20, 2010, which is a continuation in part and claims the benefit of U.S. patent application Ser. No. 12/777,134, filed May 10, 2010, all of which applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12973897 | Dec 2010 | US |
Child | 14083319 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12777134 | May 2010 | US |
Child | 12973897 | US |