The subject application is the national phase entry of PCT/CN2018/086486 filed on May 11, 2018, which claims priority on Chinese patent application 201710928702.X filed on Oct. 9, 2017. The contents and subject matter of the PCT international application and Chinese priority application are incorporated herein by reference.
The present invention relates to marine engineering equipment—a large tonnage lifting hook for a marine floating crane, and relates in particular to a novel super large tonnage detachable hook with a new structural form and made of a high-strength material, with a lifting capacity of one hook of 5,000 tons and above.
Lifting hook is an important pick-up tool for a crane to lift goods. It is widely used in port and ship operations, especially in the operation of a marine engineering floating crane, such as an offshore floating crane and an offshore platform. At the same time, lifting hook can also be employed as a working tool for various lifting cranes, while a large tonnage lifting hook is mainly utilized for a floating crane in marine engineering.
In the prior art, a lifting hook is categorized as detachable or integral type according to its structure. A detachable hook comprises a hook body, a hook rod, a hook nut, a thrust spherical roller bearing, a spherical roller bearing, etc. This type of lifting hook is manufactured in a split form and then assembled to a complete one. Since the hook body and the hook rod are separately manufactured, the size of the workpiece is small, the requirements for the processing equipment are low, and the manufacturing cost is accordingly low. However, because the hook body needs to be mounted with a bearing, a large stress concentration occurs at the joint surface of the bearing installation portion, especially at the corner, resulting in poor fatigue performance.
For lifting hooks with a same lifting capacity, the detachable hook has a lighter weight and a higher lifting capacity. The integral lifting hook, hook rod and hook body are integrated, resulting in a large outer shape and high requirements for manufacturing equipment and materials. Therefore, the world's largest integral lifting hook possessing a lifting capacity of 4,000 tons and lifting hooks with a lifting capacity of more than 4,000 tons are all detachable. In countries outside China, the method of casting molding is normally employed to manufacture a traditional large tonnage detachable hook. In China, although casting method is employed, the hook is shaped by the method of gauging and sanding. Due to the limits of the casting technique, the manufactured hooks have many defects, such as easy to crack in use and a short service life. The carbon gauging and sanding method can easily damage the heat treatment layer on the surface of the hook, resulting in unsmooth surface. Thus, the shape is not consistent with the design profile. The reasons aforementioned would influence the strength and wear resistance of the lifting hook and its fatigue life.
The hook rod and hook nut of a traditional detachable hook are connected by thread to bear the lifting capacity. Because the bearing capacity of a single thread is small, the number of threads must be increased. How to ensure the machining accuracy of all threads and make all threads bear the load at the same time has become a difficult problem in machining. Moreover, during the hook assembly, the nut must be screwed up from the end of the hook rod until all threads are engaged. For large tonnage detachable hooks, the diameter of the nut and the number of engaged threads are large, which makes it difficult to screw nuts and assemble.
The above defects are not adaptable to the trend of the large-scale construction of offshore construction equipment, which seriously restricts the further development of offshore construction equipment.
With the development of offshore equipment technology towards large scale and high-tech, the existing lifting hook operation shows the following characteristics. 1. The lifting capacity of a lifting hook is getting larger and larger; 2. Hook operation is more and more frequent; 3. Working conditions of the lifting hook are more and more varied; 4. Working efficiency of a lifting hook is increasingly higher; 5. The safety requirements are getting ever more stringent.
Therefore, the hook, as the most important lifting tool of the floating crane, must be innovated in structure, material, processing technology and other aspects, so as to ensure that it can meet the requirements of high strength, large bearing capacity, high safety, easy assembly and long service life on the premise of reducing the self-weight, and adapt to the development trend of the floating crane.
The purpose of the present invention is to solve the defects of traditional lifting hooks—not large enough lifting capacity, short service life, inability to endure high-strength and high-frequency operation, and to propose a new super large tonnage detachable hook made of a high-strength material with a lifting capacity of one hook of 5,000 tons and above, which adopts the form of two or four claws, and the four-claw hook only needs two claws to lift 5,000 tons and above.
To achieve the above purpose, the present invention provides a super large tonnage detachable hook, which comprises a hook rod, a hook shaft, a hook body, a spherical roller bearing, and a thrust-force spherical roller bearing; the detachable hook of the present invention further comprises an embracing-type hoop holder assembly connecting the hook rod and the hook body. The embracing-type hoop holder assembly comprises a split-type self-locking sleeve and a hook hoop holder arranged below the thrust spherical roller bearing. Among them, the split-type self-locking sleeve is integrated into the embracing-type hoop holder assembly with the hook rod via the hoop holder, forming a fixed connection. The lower part of the hook rod is arranged with a groove at the joint between the embracing-type hoop holder assembly and the split-type self-locking sleeve. A bump matching the groove is provided. The groove and the bump form a couple of bearing pair. The split-type self-locking sleeve is designed as two symmetric halve parts. Assembly of the embracing-type hoop holder assembly is as follows: firstly hang up the hook rod through the hoop holder, then, the groove on the hook rod extends downward from the hoop holder, and the two halve parts forming the split-type self-locking sleeve close from both sides to hold the hook rod, and then the hoop holder subsides and holds the split-type self-locking sleeve to make the embracing-type hoop holder assembly an integral entity.
A hook rod shoulder above the hook rod engages with a chain bracket is used to ensure axial positioning, which solves the problem that a traditional hook can only bear the downward load. Such a structure of the present invention transmits the upward load to the hook shaft when the hook body touches the ground and solves the problem that the traditional hook can only bear the downward load, so that the thrust bearing can avoid this kind of force damage occurring during operation. It can reverse load by means of the chain bracket and the hook rod and transmit the load to the hook shaft. It can ensure the integrity of the thrust bearing and avoid damage. In case the hook hits on the ground, it would not occur that the lower thrust bearing be separated and damaged as in the case of the traditional hook resulting from jacking up of the hook body. This feature of the detachable hook of the present invention meets the requirements of offshore construction operations. If the traditional hook is subject to the reverse force on the ground, the inner and outer rings of the thrust bearing will be separated from one another. Unless they instantly return to original state, the thrust bearing become irrevocably damaged.
An installation hole is provided at an upper part of the hook rod to connect the hook shaft and a sliding bearing is provided between the installation hole and the hook shaft, to make the whole hook rotate flexibly and to minimize horizontal load exerted on the hook rod.
The embracing-type hoop holder assembly further comprises a bottom cover for fixing the hoop holder with the split-type self-locking sleeve, wherein a stop block is installed on the bottom cover and engages with the groove at the bottom of the hook rod to prevent the hook rod from rotating.
The hook rod, the hook body, the split-type self-locking sleeve and the hoop holder of the detachable hook are integrally forged respectively employing a high-strength alloy steel 30CrNiMo8, processed with heat treatment, and formed in a machining center and assembled, enjoying advantages of high-strength material, compact structure, few defects, high surface hardness, high wear resistance, high dimensional accuracy and long service life. The hook body comprises two or more hook claws, and preferably four hook claws. For the four-claw hook, only two of the four claws are need to lift 5,000 tons and above.
The whole bearing part of the hook is integrally forged, including the hook tip portion and the hook body, revolutionizing the welded structure of the hook tip and the hook body of traditional hooks, and solving the problem that the hook tip is separated from the hook body under pulling force of the wire rope of the stable hook during the offshore operation. A Chamfer is arranged at bearing installation portion where the load is largest to reduce stress concentration and thus avoid fatigue crack and enhance its service life. In prior art, the hook tip of the hook is welded with the hook body, while the present invention adopts a forging process, which effectively avoids the problem of the hook tip and the hook body being prone to separation due to lifting load.
Preferably, a central oil hole is provided at the bottom of the hook rod to refuel from the bottom so that oil enters the inside of the thrust spherical roller bearing via an oil groove and an effective lubrication is achieved, to enhance the service life of the bearing. The use of a central oil hole to lubricate the bearing from the bottom is not employed in prior art. Instead, prior art employs a grease nipple on the side bearing cap for oil lubricating. Further, a rubber sealing ring is arranged between the rotating parts and the non-rotating parts of the detachable hook of the present invention, so that sea water and salt mist at sea are prevented from entering the inside of the hook body and bearing protection is achieved, to extend the service life of the bearing. The detachable hook of the present invention can withstand a certain water pressure to achieve underwater operation of the hook.
Preferably, four threaded holes are set on the outside of the smooth conical-shape hoop holder, which can be installed with the help of four bolts and employed as hoisting points when necessary.
The present invention possesses the following advantages over the prior art:
1. Main load-bearing components of the detachable hook of the present invention, including the hook rod, the hook body, the sleeve and the hoop holder, are integrally forged respectively employing a high-strength alloy steel 30CrNiMo8, and formed in machining centers after heat treatment, thus possessing advantages of high-strength material, compact structure, few defects, high surface hear treatment performance, high wear resistance, and high dimensional accuracy. It ensures the hook to possess the lifting capacity of 5,000 tons and above, on the premise of reducing the weight and ensuring the service life. A traditional detachable hook is forged, with lifting capacity of less than 4,000 tons and made of the low-strength material of 20Mn or 35 #steel; the hook body and hook tip are forged separately and welded; and the shape of the hook body is forged, heat treated and then carbon planed and polished. All of these make the traditional detachable hook have heavy weight, poor overall mechanical performance, large hook shape deviation, poor surface heat treatment performance, not wear-resistant, easy to crack and short service life.
2. The present invention innovatively applies the embracing-type hoop holder assembly, the split-type self-locking sleeve and the hook rod teeth to transfer load. The split-type self-locking sleeve has two symmetrical parts; wherein the hook rod is firstly put through the hoop holder so that the groove on the hook rod can go downward out of the hoop holder, and then the split-type self-locking sleeve closes from both sides to hold the groove before the hoop holder subsides to hold the split-type self-locking sleeve to become an integral entity. It solves the problems of small bearing capacity, and many processing and assembly difficulties caused by the hook rod and hook nut of a traditional detachable hook being connected by thread to bear the lifting capacity, and further overcomes the key technology of heavy lifting hook. Because the bearing capacity of a single thread is small, the number of threads must be increased. How to ensure the machining accuracy of all threads and make all threads bear the load at the same time has become a difficult problem in machining. Moreover, during hook assembly, the nut must be screwed up from the end of the hook rod until all threads are engaged. For large tonnage detachable hooks, the diameter of the nut and the number of engaged threads are large, which makes it difficult to screw nuts and assemble and thus restricts the large-scale construction of lifting hooks.
3. A rubber seal ring is used on the detachable hook to seal all relatively moving parts, to prevent sea water or salt mist from entering the inside of the hook body under certain pressure, i.e. in certain water depth, to protect the bearing, to prolong bearing life, and to adapt to the special environmental conditions of offshore construction. In order to solve the sealing problem, a traditional detachable hook welds a circular cover at the bottom of the hook body, and connects the bottom cover with bolts to protect the hook and the bearing. In comparison, the hook body itself of prior art is forged, which has poor welding performance and is easy to produce welding cracks, and it can also damage the heat treatment performance of the surface of the hook body, thus reducing the service life of the hook.
4. The present invention innovatively adopts a two-way force transmission system, where the hook can transfer the reverse load to the hook shaft by means of the hook frame and the hook rod in occurrence of any reverse force when the hook lands on ground and when the hook has to bear the downward lifting load. In such a scenario, integrity of the thrust bearing is still preserved and damage is prevented. A traditional detachable hook uses a one-way force system, where only downward load can be born. Once the hook lands on the ground, the bottom cover lifts the hook body up through the circular cover because there is a large gap between the bottom cover and the hook nut, so that the inner and outer rings of the lower thrust bearing are separated. If the inner and outer rings of the thrust bearing cannot return to original state during the next lifting, the bearing will be easily damaged.
Reference signs in the drawings are designated as follows:
1: hook beam, 2: hook shaft, 3: hook rod, 4: hook retaining chain, 5: lock plate, 6: spherical roller bearing, 7: hook body, 8: thrust spherical roller bearing, 9: embracing-type hoop holder assembly, 10: bottom cover, 11: grease nipple, 13: chamfer, 21: sliding bearing, 22: shaft-end baffle, 31: hook rod head, 32: hook installation hole, 33: central oil hole, 34: hook rod tooth, 35: non-rotating groove, 36: hook rod shoulder, 71: hook tip, 72: chain lock hole, 91: split-type self-locking sleeve, 92: hoop holder, 93: bolt, 101: chain bracket, 103: stop block, 701: first hook claw, 702: second hook claw, 703: third hook claw, 704: fourth hook claw, 901: sleeve groove.
The present invention will be further described hereinafter by elaborating a preferable embodiment with reference to
As shown in
The hook beam 1 can be respectively connected to a movable pulley group, and each end of the connecting beam 1 is respectively connected with a movable pulley frame employing a pin shaft. A pin hole is provided at a middle portion of the hook beam 1, and the hook beam is connected with the hook shaft via the pin hole to connect the two movable pulleys so that the hook beam can be mounted with a lifting hook with a larger lifting capacity.
The hook beam 1 adopts a semi-closed box structure, and the two ends of the hook shaft 2 adopt fixing shafts to avoid the connection of a shaft-locked plate which moves axially. This structure facilitates the assembling of the lifting hook.
As shown in
As shown in
The embracing-type hoop holder assembly 9 is employed to fixedly connect the hook rod 3 and the hook body 7. As shown in
As shown in
The shoulder 36 above the hook rod 3 engages with the chain bracket 101 to ensure axial positioning, and transmits the vertical upward load to the chain bracket 101 through the hook body, and then to the shoulder on the hook rod and further to the connecting shaft when the hook lands on the ground, so as to ensure that the inner and outer rings of the thrust bearing will not be separated and that the bearing will not be damaged due to the reverse force. Thus, the problem that the traditional hook can only bear the downward load is solved. Further, the detachable hook of the present invention is suitable for special work requirements that the hook may need to enter the water and land during offshore operation.
A rubber seal ring 102 is employed between the rotating and non-rotating parts, to prevent sea water or salt mist at sea from entering the inside of the hook bod, thereby protecting the bearing and extending the bearing life, to adapt to the special environmental conditions of offshore construction.
The bottom cover 10 can also protect the fueling nozzle (i.e. the central oiling hole 33), and the grease nipple 11 in the middle portion of the bottom cover 10 can facilitate oil filling. The traditional detachable hooks are lubricated with oil from the side cover, and the oil quickly runs out from the gap of the cover, resulting in poor lubrication effect.
A stop block 103 is installed on the bottom cover 10, which engages with a non-rotating groove 35 at the bottom of the hook rod 3 to stop the rotation of the hook rod, thereby ensuring that the hook body can rotate when the lifting parts need to be adjusted.
The hoop holder 92 used to fix the split-type self-locking sleeve 91 is smooth and conical in shape for convenient hoisting in the installation process, and four threaded holes are set on the outside of the hoop holder which can be installed with four bolts 93 and used as hoisting points when necessary.
The split-type self-locking sleeve 91 of the present invention is easy to install, and needs to be fixed only by the hoop holder and the bottom cover 10. Furthermore, only two shoulders are needed to constitute a load bearing pair with the two grooves of the hook rod, achieving a lifting capacity of several thousand tons. Compared with a traditional detachable hook using threaded connection, such a structure is simple and compact, with large loading capacity, easy to process, and convenient for assembling and dissembling.
As is shown in
The hook rod and the hook body of the detachable hook of the present invention are separately forged, heat treated, and machined, and then assembled ensemble employing a bearing, thereby solving the problems of huge structure and machining difficulty of integral hooks, and avoiding the problems of large amount of post-machining after integral forging and the waste of materials.
In some embodiments, the hook rod, hook body, sleeve, and hoop holder are integrally forged separately employing a high-strength alloy steel 30CrNiMo, which must simultaneously satisfy the DIN-EN10250-3 “Alloy Special Steel” standard and the classification society's provisions on the impact toughness of forging materials at a low temperature, thus meeting the special requirements of offshore operations. The basic properties of the material are listed in Table 1 and Table 2.
Compared with the commonly used hook materials DG20Mn, 35CrMo, 20CrMnMo, etc., 30CrNiMo8 has high strength and good performance, and can meet the special requirements of offshore construction. When 30CrNiMo8 is employed for the manufacturing of super tonnage integral hooks, the weight of the hook can be reduced, the overall performance of the hook can be better ensured, and the active load acting on the entire floating crane and the lifting vessel can be reduced, thereby the cost of the entire crane vessel can be reduced.
The detachable hook of the present invention is integrally forged employing high-strength alloy steel. Compared with a cast hook, the forged hook has compact structure, few defects, high strength, and no residual slag during casting, thereby eliminating the risk of early cracking caused by casting. The detachable hook of the present invention is formed by machining after integral forging, and the dimensional accuracy is high. Moreover, compared with the traditional carbon gauging and sanding method, the process does not damage the heat treatment layer on the hook surface, and can avoid heat-treated cracks on the hook surface, which guarantees the heat-treated property of the hook surface; the strength of the hook body and the hardness of the hook surface are also ensured, and wear of the hook surface due to insufficient hardness during use can be avoided, and the service life of the hook is prolonged.
In summary, the detachable hook of the present invention is integrally forged by high-strength alloy steel, with large lifting capacity of a single hook, high strength and good fatigue performance. It innovatively applies the connecting method of embracing-type hoop holder assembly, hoop holder and hook rod teeth to replace the thread connecting used by traditional hooks, to realize high bearing capacity, low processing difficulty and easy assembly. For the first time, the rubber seal ring is used on the detachable hook to prevent sea water or salt mist from entering the inside of the hook body under certain pressure, i.e. in certain water depth, to protect the bearing and prolong the bearing life. The unique two-way force transmission system enables the hook to transfer the reverse load to the hook shaft through the hook frame and the hook rod when the hook lands and reserve force occurs and when the hook mainly bears the downward lifting load, to avoid the separation of the thrust bearing and the damage to the bearing. The present invention thus solves various shortcomings and deficiencies in existing hooks, meeting the requirements in various adverse working conditions of offshore operation of large tonnage lifting hooks.
Although the present invention has been described in detail by the preferable embodiments thereof, it should be understood that the foregoing description should not be construed as limiting. Various modifications and alterations of the present invention will be apparent to those skilled in the art. Therefore, the scope of the invention shall be defined by the appended claims.
So far, the present invention has been exemplified by the aforementioned embodiments. Without violating the spirit and principle of the present invention, those skilled in the art can modify the technical scheme of the above embodiments or replace their technical features, and all modifications, alterations and improvements shall fall within the scope of power protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201710928702.X | Oct 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/086486 | 5/11/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/071948 | 4/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2823944 | Anderson | Feb 1958 | A |
2980400 | Long | Apr 1961 | A |
6991275 | Zollondz | Jan 2006 | B2 |
7293763 | Lutter | Nov 2007 | B2 |
7722013 | Franzen | May 2010 | B2 |
20130069379 | Passmann | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
201512348 | Jun 2010 | CN |
Number | Date | Country | |
---|---|---|---|
20200307961 A1 | Oct 2020 | US |