Claims
- 1. A super-pressured high-altitude airship comprising:a gas bag, which forms an envelope, allows no in-flow or out-flow of a gas from or to, respectively, an outside atmospheric air at a mission altitude, said gas bag being pressure-resistant so as to endure a rise in internal pressure, and said gas bag having a super-pressure structure to maintain a rigidity necessary for said envelope by a pressure difference between said internal pressure and the outside atmospheric pressure; and a solar cell arranged on an upper external surface of said envelope; and a heat blocking means, provided below an installation surface of said solar cell, configured to prevent heat from said solar cell from being transferred to said gas, which is buoyant and which is filled in said envelope, and also configured to prevent said rise in said internal pressure, wherein said heat blocking means includes a ventilation space, located between said gas bag and said installation surface of said solar cell, and a ventilating means configured to forcibly circulate the outside atmospheric air in said ventilation space, wherein said ventilating means includes a suction fan provided on an air inlet on said ventilation space, and wherein said suction fan is driven by an excessive power generated by said solar cell.
- 2. The super-pressured high-altitude airship according to claim 1, wherein the outside air is taken in from a large number of air inlets provided through said envelope at a position in front of said solar cell and discharged outside of said envelope from rear exhaust holes through said ventilation space.
- 3. The super-pressured high-altitude airship according to claim 2, wherein said air inlets and said suction fan of said ventilation space which form said heat blocking means are provided at a front of a hull of said airship, and said suction fan is also used to intake the outside atmospheric air when said airship descends.
- 4. The super-pressured high-altitude airship according to claim 3, wherein said ventilation space communicates with a discharge hole at a rear of said hull of said airship, and air discharged therefrom can also be used for fluid control to reduce drag of said hull of said airship.
- 5. The super-pressured high-altitude airship according to any one of claims 1-4, wherein said envelope is provided with a pitch attitude control means configured to trim a static balance of an airship pitch attitude angle by shifting an on-board weight in a longitudinal direction.
- 6. A super-pressured high-altitude airship comprising:a gas bag forming an envelope for preventing in-flow or out-flow of a gas from or to, respectively, an outside atmospheric air at a mission altitude, said gas bag being pressure-resistant so as to endure a rise in internal pressure, and said gas bag having a super-pressure structure to maintain a rigidity necessary for said envelope by a pressure difference between said internal pressure and the outside atmospheric pressure; and a solar cell arranged on an upper external surface of said envelope; and a heat blocking means, provided below an installation surface of said solar cell, for preventing heat from said solar cell from being transferred to said gas, which is buoyant and which has filled in said envelope and for preventing said rise in said internal pressure, wherein said heat blocking means includes a ventilation space, located between said gas bag and said installation surface of said solar cell, and a ventilating means configured to forcibly circulate the outside atmospheric air in said ventilation space, wherein said ventilating means includes a suction fan provided on an air inlet on said ventilation space, and wherein said suction fan is driven by an excessive power generated by said solar cell.
- 7. The super-pressured high-altitude airship according to claim 6, wherein the outside atmospheric air is taken in from a large number of air inlets provided through said envelope at a position in front of said solar cell and discharged outside of said envelope from rear exhaust holes through said ventilation space.
- 8. The super-pressured high-altitude airship according to claim 7, wherein said air inlets and said suction fan of said ventilation space which form said heat blocking means are provided at a front of a hull of said airship, and said suction fan is also used to intake the outside atmospheric air when said airship descends.
- 9. The super-pressured high-altitude airship according to claim 8, wherein said ventilation space communicates with a discharge hole at a rear of said hull of said airship, and air discharged therefrom can also be used for fluid control to reduce drag of said hull of said airship.
- 10. The super-pressured high-altitude airship according to one of claims 6-9, wherein said envelope is provided with a pitch attitude control means for trimming a static balance of an airship pitch attitude angle by shifting an on-board weight in a longitudinal direction.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-087207 |
Mar 1999 |
JP |
|
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related and claims priority, under 35 U.S.C. §119, Japanese Patent Application No. 11-087207, filed on Mar. 29, 1999, the entire contents of which is hereby incorporated by reference herein.
US Referenced Citations (10)
Foreign Referenced Citations (4)
Number |
Date |
Country |
1159034 |
Dec 1983 |
CA |
1531350 |
Feb 1970 |
DE |
2043950 |
Mar 1972 |
DE |
1191321 |
May 1970 |
GB |