Embodiments of the invention relate to cutting elements and apparatus so equipped for use in drilling subterranean formations. More particularly, embodiments of the invention relate to a polycrystalline diamond or other superabrasive cutting element, or cutter, configured for use on a rotary drag bit or other tool used for earth or rock boring, such as may occur in the drilling or enlarging of an oil, gas, geothermal or other subterranean borehole, and to bits and tools so equipped.
There are three types of bits which are generally used to drill through subterranean formations, including percussion bits (also called impact bits), rolling cone bits, including tri-cone bits, and rotary drag bits or fixed cutter rotary bits (including core bits so configured). Rotary drag bits conventionally employ diamond or other superabrasive cutting elements or “cutters,” with the use of polycrystalline diamond compact (PDC) cutters being most prevalent.
In addition to conventional, concentric rotary drag and bits, there are other apparatus employed downhole and generically termed “tools” herein, which may be employed to cut or enlarge a borehole or which may employ superabrasive cutters, inserts or plugs on the surface thereof as cutters or wear-prevention elements. Such tools include, without limitation, bicenter bits, eccentric bits, expandable reamers, and reamer wings.
It has been known in the art for many years that PDC cutters perform well on drag bits and other rotary tools. A PDC cutter typically has a diamond layer or table formed under high temperature and pressure conditions to a cemented carbide substrate (such as cemented tungsten carbide) containing a metal binder or catalyst such as cobalt. The substrate may be brazed or otherwise joined to an attachment member such as a stud or to a cylindrical backing element to enhance its affixation to the bit face. The cutting element may be mounted to a drill bit either by press-fitting or otherwise locking the stud into a receptacle on a steel-body drag bit, or by brazing the cutter substrate (with or without cylindrical backing element) directly into a preformed pocket, socket or other receptacle on the face of a bit body, as on a matrix-type bit formed of WC particles cast in a solidified, usually copper-based, binder as known in the art.
A PDC is normally fabricated by placing a disk-shaped, cemented carbide substrate into a container or cartridge with a layer of diamond crystals or grains loaded into the cartridge adjacent one face of the substrate. A number of such cartridges are typically loaded into an ultra-high pressure press. The substrates and adjacent diamond crystal layers are then compressed under ultra-high temperature and pressure conditions. The ultra-high pressure and temperature conditions cause the metal binder from the substrate body to become liquid and sweep from the region behind the substrate face next to the diamond layer through the diamond grains and act as a reactive liquid phase to promote a sintering of the diamond grains to form the polycrystalline diamond structure As a result, the diamond grains become mutually bonded to form a diamond table over the substrate face, which diamond table is also bonded to the substrate face. The metal binder may remain in the diamond layer within the pores existing between the diamond grains or all or a portion of the metal binder may be removed, as well known in the art. The binder may be removed by acid leaching or an electrolytic leaching process. For more background information concerning processes used to form polycrystalline diamond cutters, the reader is directed to U.S. Pat. No. 3,745,623, issued on Jul. 17, 1973, in the name of Wentorf, Jr. et al, the disclosure of which patent is incorporated by reference herein.
An embodiment of a conventional rotary drag bit is shown in
Conventional PDC cutters experience durability problems in high load applications. They have an undesirable tendency to crack (including microcracking), chip, spall and break when exposed to hard, tough or highly stressed geologic structures so that the cutters consequently sustain high loads and impact forces. They are similarly weak when placed under high loads from a variety of angles. The durability problems of conventional PDCs are worsened by the dynamic nature of both normal and torsional loading during the drilling process, wherein the bit face moves into and out of contact with the uncut formation material forming the bottom of the wellbore, the loading being further aggravated in some bit designs and in some formations by so-called bit “whirl.”
The diamond table/substrate interface of conventional PDCs is subject to high residual stresses arising from formation of the cutting element, as during cooling, the differing coefficients of thermal expansion of the diamond and substrate material result in thermally induced stresses. In addition, finite element analysis (FEA) has demonstrated that high tensile stresses exist in a localized region in the outer cylindrical substrate surface and internally in the substrate. Both of these phenomena are deleterious to the life of the cutting element during drilling operations as the stresses, when augmented by stresses attributable to the loading of the cutting element by the formation, may cause spalling, fracture or even delamination of the diamond table from the substrate.
Further, high tangential loading of the cutting edge of the cutting element results in bending stresses on the diamond table, which is relatively weak in tension and will thus fracture easily if not adequately supported against bending. The metal carbide substrate on which the diamond table is formed may be of inadequate stiffness to provide a desirable degree of such support.
The relatively rapid wear of diamond tables of conventional PDC cutters also results in rapid formation of a wear flat in the metal carbide substrate backing the cutting edge, the wear flat reducing the per-unit area loading in the vicinity of the cutting edge and requiring greater weight on bit (WOB) to maintain a given rate of penetration (ROP). The wear flat, due to the introduction of the substrate material as a contact surface with the formation, also increases drag or frictional contact between the cutter and the formation due to modification of the coefficient of friction. As one result, frictional heat generation is increased, elevating temperatures in the cutter and initiating damage to the PDC table in the form of heat checking while, at the same time, the presence of the wear flat reduces the opportunity for access by drilling fluid to the immediate rear of the cutting edge of the diamond table.
There have been many attempts in the art to enhance the durability of conventional PDC cutters by modification of cutting face geometry, specifically in the vicinity of the cutting edge which engages the formation being drilled. By way of example, the reader is directed to U.S. Pat. RE32,036 to Dennis (the '036 patent); U.S. Pat. No. 4,592,433 to Dennis (the '433 patent); and U.S. Pat. No. 5,120,327 to Dennis (the '327 patent). In FIG. 5A of the '036 patent, a cutter with a beveled peripheral edge is depicted, and briefly discussed at Col. 3, lines 51-54. In
It is also known in the art to radius, rather than chamfer, a cutting edge of a PDC cutter, as disclosed in U.S. Pat. No. 5,016,718 to Tandberg. Such radiusing has been demonstrated to provide a load-bearing area similar to that of a small peripheral chamfer on the cutting face.
For other approaches to enhance cutter wear and durability characteristics, the reader is also referred to U.S. Pat. No. 5,437,343 to Cooley et al. (the '343 patent); and U.S. Pat. No. 5,460,233 to Meany et al. (the '233 patent), assigned to the assignee of the present invention. In FIGS. 3 and 5 of the '343 patent, it can be seen that multiple, adjacent chamfers are formed at the periphery of the diamond layer (see Col. 4, lines 31-68 and Cols. 5-6 in their entirety). In FIG. 2 of the '233 patent, it can be seen that the tungsten carbide substrate backing the superabrasive table is tapered at about 10-15° to its longitudinal axis to provide some additional support against catastrophic failure of the diamond layer (see Col. 5, lines 2-67 and Col. 6, lines 1-21 of the '233 patent). The disclosures of each of the '343 patent and the '233 patent are incorporated by reference herein. See also U.S. Pat. No. 5,443,565 to Strange for another disclosure of a multi-chamfered diamond table.
It is known that conventionally providing larger chamfers on cutters enhances durability, but at the same time reduces ROP and undesirably increases required WOB for a given ROP. The increased WOB translates to more energy applied to the drilling system, and specifically the drag bit which, in turn, stimulates cutter damage.
U.S. Pat. No. 5,706,906 to Jurewicz et al., assigned to the assignee of the present invention and the disclosure of which is incorporated by reference herein, describes PDC cutters of substantial depth or thickness, on the order of about 0.070 inch to 0.150 inch and having cutting faces with extremely large chamfers or so-called “rake lands” on the order of not less than about 0.050 inch, as measured radially along the surface of the rake land.
A PDC cutter as described in the '906 patent has demonstrated, for a given depth of cut and formation material being cut, a substantially enhanced useful life in comparison to prior art PDC cutters due to a greatly reduced tendency to catastrophically spall, chip, crack and break. It has been found that the cutter in PDC form may tend to show some cracks after use, but the small cracks do not develop into a catastrophic failure of the diamond table as typically occurs in PDC cutters. This capability, if fully realized, would be particularly useful in a cutter installed on a drag bit to be used on hard rock formations and softer formations with hard rock stringers therein (mixed interbedded formations).
While such PDC cutters with their large rake lands have shown some promise in initial field testing, conclusively proving the durability of the design when compared to other cutters of similar diamond table thickness but without the large rake land, these PDC cutters also demonstrated some disadvantageous characteristics which impaired their usefulness in real-world drilling situations. Specifically, drill bits equipped with these PDC cutters demonstrated a disconcerting tendency, apparently due to the extraordinarily great cutting forces generated by contact of these cutters with a formation being drilled, to overload drilling motors, other bottomhole assembly (BHA) components such as subs and housings, as well as tubular components of the drill string above the BHA.
Further, bits equipped with these PDC cutters often drilled significantly slower, that is to say, their rate of penetration (ROP) of the formation was far less than, the ROP of bits equipped with conventional PDC cutters, and also exhibited difficulty in drilling through hard formations for which they would be otherwise ideally suited. It appears that the exterior configuration of these thick diamond table cutters, although contributing to the robust nature of the cutters, may be less than ideal for many drilling situations due to the variable geometry of the arcuate rake land as it contacts the formation and attendant lack of “aggressiveness” in contacting and cutting the formation. It is conceivable, as demonstrated in the cutting of metal with similarly shaped structures, that in plastic formations these PDC cutter may simply deform the material of the formation face engaged by the cutter, forming a plastic “prow” of rock ahead and flanking the cutter, instead of shearing the formation material as intended.
Therefore, despite the favorable characteristics exhibited by these PDC cutters, their utility in efficiently cutting the difficult formations for which its demonstrated durability is ideally suited remains, as a practical matter, unrealized over a broad range of formations and drilling conditions.
U.S. Pat. No. 5,881,830 to Cooley, assigned to the assignee of the present invention and the disclosure of which is incorporated by reference herein, describes PDC cutters having cutting faces with a first portion transverse to a longitudinal axis of the cutter and a second portion comprising a planar engagement surface or buttress plane oriented at a small, acute angle to the first portion and having a cutting edge along at least a portion of its periphery. These PDC cutters are described as durable, fairly aggressive and providing a more consistent performance over the life of the cutter than the PDC cutters described in the '906 patent, but their large chamfers result in an unacceptable reduction in aggressivity in cutting, leading to a reduced ROP.
In addition, U.S. Pat. No. 6,935,444 to Lund et al., assigned to the assignee of the present invention and the disclosure of which is incorporated by reference herein, discloses the use of multiple, adjacent chamfers having an arcuate surface located therebetween along a cutting edge of a PDC cutter. Such a geometry has been demonstrated to inhibit initial chipping of a PDC cutter along the cutting edge, prolonging the life thereof.
However, and as noted with regard to the PDC cutter designs discussed above, there remains a need for a robust superabrasive cutter which will withstand cutting stresses in the difficult formations referenced above and exhibit reduced wear tendencies while drilling effectively with, and without damage to, conventional, state-of-the-art bottomhole assemblies and drill strings, while providing commercially viable, consistent ROP.
During laboratory testing, it has been observed that conventional, 45° chamfer angle cutters with conventional chamfer depths on the order of, for example, 0.016 inch, commonly experience premature cutter damage and failure when the wear flat extends inwardly of the inner boundary of the chamfer. Specifically, an increased incidence of spalling and chipping of the PDC table has been observed. This is a particular problem in the aforementioned highly stressed or tougher formations, interbedded formations and formations containing hard stringers.
Several factors are believed to contribute to these types of cutter failure. First, during a drilling operation, downward force is applied to the competent formation under WOB as a result of chamfer and cutter backrake angle, maintaining the PDC table in compression and adding to cutter integrity. However, when the inner edge or boundary of the chamfer is worn away, the chamfer component of the compressive forces is diminished, with a consequent potential for high tensile shear forces to be present at the cutting face, resulting in the aforementioned spalling and chipping. Further, when the inner edge or boundary of the chamfer is worn away, a sharp edge or corner at the cutting face is presented to the formation, similar to that presented by an unchamfered cutter. Any vertical (parallel to the plane of the cutting face) forces acting on this sharp edge will translate as vertical tensile shear across the cutting face, resulting in a spatted cutter.
In addition, heat checking in the PDC table, due to the initiation of a large, relatively wide wear flat is particularly significant toward the rear of the wear flat and may result in significant breakage of the PDC table at the back and sides thereof.
In one embodiment, a cutter according to the invention comprises a superabrasive table mounted to a supporting substrate of a metal material such as a cemented metal carbide. The cutter has a longitudinal axis extending generally transversely to the plane of the cutting face. In a cylindrical cutter configuration, the longitudinal axis would be coincident with the center line of the cutter. A chamfer is provided adjacent a least a portion of a periphery of the superabrasive table, the chamfer lying at a relatively steep chamfer angle of greater than about 45°0 to the longitudinal axis of the cutter, or with respect to the line of the sidewall of the cutter (assuming the cutter has a sidewall parallel to the longitudinal axis of the cutter). The chamfer may be arcuate, or planar. The chamfer depth, in conjunction with the relatively steep chamfer angle, is sufficient to maintain a wear flat outside the inner boundary of the chamfer on the cutting face, yet small enough to avoid substantially compromising aggressivity of the cutter.
By employing a relatively steep chamfer angle, aggressivity of the cutter is maintained, as force applied to the formation under the cutter is more concentrated, compressing less of the formation and resulting in less sliding friction between the cutter and the formation, maintaining a sharp cutting edge. Required WOB may be reduced with the use of relatively steep chamfer angles, as they penetrate the formation to a desired depth of cut more efficiently, reduce friction and consequent heat, and prolong cutter life.
With relatively steep chamfer angles, a smaller, smaller in length wear flat is generated in comparison to wear flats generated on conventionally chamfer angled cutters, reducing heat checking resulting from thermal stress on the PDC table.
By containing the wear flat outside the inner boundary of the chamfer and within the chamfer envelope, forces on the cutter substantially parallel to the cutting face are distributed over the chamfer surface, reducing the incidence of cutter spalling. This may be due to the ability of such a cutter to withstand significantly greater magnitude of drilling vibrations. The term “chamfer envelope” as used herein with respect to wear flat development on the cutting face of the superabrasive table, means the portion of the cutting face outside the inner boundary of the chamfer. Stated another way and in the context of use of the cutter for drilling a subterranean formation, the term means an area on the cutting face between the portion of the cutting edge in contact with a formation during drilling and the adjacent inner boundary of the chamfer.
It has also been noted by the inventors that cutters configured with steep chamfer angles according to some embodiments of the invention may be particularly suited to placement on relatively low load areas of a bit where enhanced cutting efficiency is required, such as on the nose, shoulder and gage regions of the bit. Other embodiments of cutters of the invention may be particularly suited to placement on high load areas of the bit, such as on a region of the bit proximate the longitudinal axis, generally termed the cone region, where there are relatively high forces on the cutters due to low cutter redundancy at a given radius on the bit face, and cutters have a greater area of cut.
Accordingly, cutters according to various embodiments of the invention may be placed on the face of a bit in consideration of the work demanded of a cutter at a given location and chamfer angle and size.
Rotary drag bits and other fixed cutter drilling tools incorporating embodiments of cutters of the invention are also encompassed thereby.
The foregoing and other features and advantages of the invention will become apparent to persons of ordinary skill in the art upon reading the specification in conjunction with the accompanying drawings, wherein:
a through 2d depict, respectively, a side view, an enlarged side view, a front view, and a perspective view, of an embodiment of a superabrasive cutter of the present invention;
a depicts an enlarged side view of a portion of a cutter of
Referring to
The drill bit 10 may further include an API threaded connection portion 30 for attaching the drill bit 10 to a drill string (not shown). Furthermore, a longitudinal bore (not shown) extends longitudinally through at least a portion of the bit body 12, and internal fluid passageways (not shown) provide fluid communication between the longitudinal bore and nozzles 32 provided at the face 20 of the bit body 12 and opening onto the channels leading to junk slots 16.
During drilling operations, the drill bit 10 is positioned at the bottom of a well bore hole and rotated while weight on bit is applied and drilling fluid is pumped through the longitudinal bore, the internal fluid passageways, and the nozzles 32 to the face 20 of the bit body 12. As the drill bit 10 is rotated, the PDC cutters 18 scrape across and shear away the underlying earth formation. The formation cutting mix with and are suspended within the drilling fluid and pass through the junk slots 16 and up through an annular space between the wall of the bore hole and the outer surface of the drill string to the surface of the earth formation.
The inventors contemplate that embodiments of the cutter of the invention will be used primarily on rotary drag bits as described above and including without limitation core bits, bi-center bits, and eccentric bits, as well as on fixed cutter drilling tools of any configuration, including without limitation reamers or other hole opening tools. As used herein, the term “bit” includes all such bits and tools.
It is also contemplated by the inventors that embodiments of the cutter of the invention may be used at various locations on a bit or other drilling tool, such as on cone, nose, shoulder and gage regions of a bit or tool face, and may be positioned as primary cutters along a rotationally leading edge of a blade of a bit, or as so-called “back up” cutters rotationally trailing one or more primary cutters on a blade. Such back up cutters may be positioned to exhibit an exposure the same as, greater than, or less than, an associated primary cutter. Reference is made to
The dimensions of the chamfer are significant to performance of the cutter. The inventors have found that the Depth D1 of the chamfer 208 should be at least about 0.002 inch and no more than about 0.025 inch, measured from a line transverse to the longitudinal axis of the cutter at the inner boundary of the chamfer to the outer periphery of the cutting edge in a direction along or parallel to the longitudinal axis, or the side wall of the cutter if the cutter is substantially cylindrical. It is significant that the wear flat of the cutter be maintained within the chamfer or, stated another way, to maintain the wear flat of the cutter outside of the inner boundary of the chamfer on the cutting face.
Diamond table 202 also includes a cutting face 213 having a flat central area 211 radially inward of chamfer 208, and a cutting edge 209. Between the cutting edge 209 and the substrate 203 resides a portion or depth of the diamond layer referred to as the base layer 210 having a thickness T3 (
The central area 211 of cutting face 213, as depicted in
In the depicted cutter, the thickness T1 of the diamond layer 202 may lie in the range of about 0.030 inch to about 0.120 inch, with a particularly suitable thickness range currently believed to be from about 0.060 inch to about 0.080 inch. Such a diamond layer thickness results in a cutter which, in combination with the aforementioned chamfer size and angle ranges, exhibits substantially improved impact resistance, abrasion resistance and erosion resistance. Further, the foregoing thickness ranges are nominal ranges, without taking into consideration protrusions of the diamond layer 202 into the substrate 203 or vice-versa, such as occur when a non-planar diamond layer/substrate interface topography is employed, as is well known in the art. In any case, beyond a minimum diamond layer thickness sufficient to provide the aforementioned advantages, the diamond layer thickness employed is not significant to the invention.
The boundary 215 of the diamond layer and substrate to the rear of the cutting edge 209 is desirably at least about 0.005 inch longitudinally to the rear of the cutting edge. The inventors believe that the aforementioned minimum cutting edge to interface distance is desirable to ensure that the area of highest residual stress (i.e., the area to the rear of the location where the cutting edge of the cutter contacts the formation being cut) is not subject to early point loading, and to ensure that an adequate, rigid mass of diamond and substrate material supports the line of high loading stress.
As shown in
Another optional but desirable feature of the embodiment of the invention depicted in
Another optional cutter feature usable in the invention and depicted in broken lines in
It is contemplated that different chamfer angles Θ may be selected in order to increase either cutting face strength or depth of cut. As Θ is increased, cutting edge loading per unit area increases and depth of cut should increase, resulting in a corresponding increase in the rate of penetration through the formation for a given WOB. Conversely, as Θ is decreased, cutting edge loading per unit area decreases, depth of cut decreases, and rate of penetration decreases for a given WOB.
In
Embodiments of the cutter of the invention improve cutter performance by providing a cutter which has been found to cut a subterranean formation at a rate of penetration (ROP) equivalent to that of a typical conventional cutter of similar diameter and composition, with a similar-sized chamfer, but at a conventional, 45° chamfer angle, in combination with the ability to cut a substantially greater volume of formation material before wearing to a point where effective cutting action ceases. Embodiments of the cutter of the invention have also been found, in laboratory testing, to exhibit greater wear resistance as well as resistance to spalling, chipping, heat checking and microcracking of the PDC table than prior art cutters having a similar chamfer depth but conventional 45° chamfer angles.
The superabrasive table may be made from polycrystalline diamond or thermally stable polycrystalline diamond, depending upon the application. Further, a polycrystalline diamond table may have catalyst or binder removed only to a selected depth below the cutting face and along the side wall of the table, as is known in the art. In lieu of a polycrystalline diamond table, a table or compact structure of any of the following types may be used in the cutter: diamond film (including CVD), cubic boron nitride, and a structure predicted in the literature as C3N4 being equivalent to known superabrasive materials. Cutters according to embodiments of the invention may be manufactured using the conventional processes as briefly mentioned in the Background hereof, such processes being well known to those of ordinary skill in the art. Of course, if materials other than diamond particles are used for the cutter table, or if materials other than a cemented carbide, such as tungsten carbide (WC), are used for the substrate, then the manufacturing process may be modified appropriately. The inventors contemplate that numerous substrates other than tungsten carbide may be used to make the invented cutter. Appropriate substrate materials include any cemented metal carbide such as carbides of tungsten (W), niobium (Nb), zirconium (Zr), vanadium (V), tantalum (Ta), titanium (Ti), tungsten Ti) and hafnium (Hf).
A further embodiment of a cutter 301 according to the present invention and exhibiting a substantially planar chamfer 308 on a superabrasive table 302 across a portion of cutting face 313 and extending to a cutting edge 309 is depicted in
Yet another embodiment of a cutter 401 according to the present invention and exhibiting a larger, inner chamfer 408 on the cutting face 413 of the diamond table 402 angled in accordance with the present invention and bounded at its radially outer periphery by a much smaller, less steeply angled outer chamfer or radiused edge 408′, is depicted in
The actual angle of contact of the cutting face of embodiments of cutters of the invention with the formation (and thus the effective back rake) is determined in part by the chamfer angle, and in part by the back rake angle of the cutter itself, as is known in the art. In comparison to conventional superabrasive cutters of similar chamfer depths wherein the chamfer is relatively quickly removed and, subsequently, only the back rake angle of the cutter itself contributes to compression of the superabrasive table, the prolonged chamfer life of cutters according to embodiments of the present invention helps maintain the superabrasive table in compression for an extended period, significantly contributing to cutter integrity over an extended wear life thereof.
It should be noted that cutters according to embodiments of the present invention are significantly beneficial when used to drill hard formations exhibiting above about 15 Kpsi unconfined compressive strength, and even more so when used in ultrahard formations exhibiting an unconfined compressive strength in excess of about 25 Kpsi. Such cutters are also particularly suitable for use in drilling abrasive formations, where smaller wear flats are desirable to maintain ROP. For example, laboratory tests using cutters according to embodiments of the present invention on Sierra White granite, which exhibits a 26 Kpsi UCS and is very abrasive, produced excellent results.
A graphic illustration of the longevity benefits of configuring a cutter in accordance with embodiments of the present invention is presented in
Referring now to
Thus, drilling performance for cutters number C24 and C28 is very dependent on chamfer angle for drilling performance in terms of cutting efficiency and durability. Conventionally, such cutters may have relatively high back rakes (note the somewhat elliptical shapes of cutter numbers C30, C36, reflecting high back rakes), resulting in a tough cutter in terms of durability but compromising drilling efficiency when a conventional 45° chamfer is employed. By using a cutter according to an embodiment of the invention using a relatively steep chamfer angle and maintaining the area of cut within the chamfer envelope, drilling efficiency is enhanced, less frictional heat is generated and prolonged cutter life results.
It has been observed by the inventors that, while cutters according to embodiments of the invention drill faster than conventionally chamfered cutters, in some instances use of such cutters on a drill bit may result in higher torque rates and increased vibration. In such instances, it may be desirable to employ so-called depth of cut control technology as is offered by Hughes Christensen Company as “EZ Steer” technology, as described in U.S. Pat. No. 6,298,930 and No. 6,460,631, each assigned to the assignee of the present invention and the disclosure of each of which is incorporated herein in its entirety by reference. Such technology may be used to prevent over-torquing of the bit or the bit drilling too fast, and provides greater cutter durability. Other approaches include the use of additional cutters, and to employ such cutters on so-called “heavy set” bits with a large number of cutters and enhanced cutter redundancy.
While the present invention has been described and illustrated in conjunction with a number of specific embodiments, those skilled in the art will appreciate that variations and modifications may be made without departing from the principles of the invention as herein illustrated, described and claimed. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects as only illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/875,698, filed Dec. 18, 2006, the disclosure of which is hereby incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
60875698 | Dec 2006 | US |