The present teachings generally include a supercharger assembly having a rotor with an end face.
Energy efficient engines of reduced size are desirable for fuel economy and cost reduction. Smaller engines provide less torque than larger engines. A supercharger assembly is sometimes used to increase the torque available from an engine. At low engine speeds, when higher torque is requested by a vehicle operator by depressing the accelerator pedal, the supercharger assembly provides additional air to the engine intake manifold, boosting air pressure and thereby allowing the engine to generate greater torque at lower engine speeds.
Assembling the supercharger assembly typically requires that a gap remain between the end faces of the rotors and an end portion or bearing plate of the supercharger housing in order to accommodate the stack-up of manufacturing tolerances of the components, as well as to accommodate thermal growth of the components that occurs during usage of the supercharger assembly. Leakage of air past the rotors, such as through the gap at the end faces, especially at low rotational speeds, can significantly reduce the ability of the supercharger assembly to provide engine boost.
A supercharger assembly is provided that has a rotor housing defining a chamber. A rotor is within the chamber and has an end with an end face. A seal has a seal face adjacent the end face. The seal face and the end face have nonplanar topographies configured to be complementary to define a gap therebetween. The nonplanar topographies can be, but are not limited to, interfitting concentric annular ridges and channels. The gap between the seal face and the end face functions as a tortuous flow path to inhibit fluid leakage through the chamber past the end face. The increased turbulence through the tortuous flow path should slow the air flow, thereby reducing leakage past the rotor end face and increasing the efficiency of the supercharger assembly in comparison to supercharger assemblies that do not have end faces and seal faces with complementary, non-planar topographies.
A method of manufacturing a supercharger assembly includes machining annular concentric channels in an end face of a rotor and fitting a rotor shaft through a center of the rotor so that a portion of the rotor shaft extends past the end face. A bearing is placed into an annular seal that has a seal face with annular ridges. The seal with the bearing therein is then pressed into the end portion of a rotor housing. The method includes sliding the rotor shaft into the bearing so that the annular ridges of the end face fit within the annular concentric channels of the seal face and the seal face and the end face define a gap therebetween. The gap functions as a tortuous flow path to inhibit fluid leakage past the end face.
The above features and advantages and other features and advantages of the present teachings are readily apparent from the following detailed description of the best modes for carrying out the present teachings when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numbers refer to like components throughout the several views,
The rotors 12, 14 and rotor shafts 16, 18 are contained within a multi-component housing 26. The housing 26 includes a front cover 28, a midportion 30 that can be referred to as a rotor housing portion, an end portion 32 that can be referred to as a bearing plate, and a drive shaft cover portion 34. The front cover 28 and the end portion 32 are fastened with bolts or otherwise secured to the midportion 30.
An input shaft 36 that can be powered by an engine crankshaft directly or through other gears is connected through a flexible coupling 38 to a first gear 40A that rotates with the first rotor shaft 16. The first gear 40A meshes with a second gear 40B mounted to rotate with the second rotor shaft 18.
Bearings 48A, 48B support the rotor shafts 16, 18 near the ends 50A, 50B of the rotor shafts in the front cover 28. Lip seals 52A, 52B surround the rotor shafts 16, 18 and help to enclose the rotors 12, 14. The rotor shafts 16, 18 are supported near opposite ends 54A, 54B in the end portion 32 by additional bearings 56A, 56B.
The midportion 30 defines a rotor cavity 42 through which the rotor shafts 16, 18 extend and in which the rotors 12, 14 rotate. A fluid such as air is driven by the rotating rotors 12, 14 through the rotor cavity 42 between the rotor housing 26 and the rotors 12, 14 from an inlet 44 to an outlet 46. The inlet 44 is in the end portion 32 below the rotor shafts 16 and 18 in
Air that passes from the air inlet 44 to the air outlet 46 along an unintended flow path, such as by passing between the mesh of the rotors 12, 14, or air that exits out of the rotor cavity 42 by passing back to the inlet 44 along first rotor end faces 20A, 20B of the rotors 12, 14 or along second rotor end faces 22A, 22B of the rotors 12, 14 is referred to as “leakage” that decreases the efficiency of the supercharger assembly 10.
Referring to
Similarly, the seal 60B has a seal face 64B that is adjacent the end face 20B of the rotor 14. Both the seal face 64B and the end face 20B have nonplanar topographies that are configured to be complementary, i.e., to interfit, to define a gap 66B therebetween. That is, the seal 60B does not contact the end face 20B, but is spaced from the end face 20B by the gap 66B. Because of the nonplanar topographies of the faces 64B, 20B, the gap 66B defines a tortuous flow path, inhibiting fluid leakage past the end face 20B. Less fluid will pass along the end face 20B than would be the case if the end face 20B was planar. Accordingly, the gap 66B is sufficient to allow for both manufacturing tolerances of the components of the supercharger assembly 10 and thermal growth of the components of the supercharger assembly 10 while minimizing fluid leakage past the end face 20B.
Both the seal 60A and the seal 60B are configured identically. Accordingly, a detailed description of the seal 60A with respect to
When portion 62A of the rotor shaft 16 is pressed into the bearing 56A in the end portion 32 of the rotor housing 26, the seal face 64A is adjacent the end face 20A with the gap 66A between the faces 64A, 20A so that the faces 64A, 20A do not contact one another. Due to the annular ridges 70A, 72A, and 84A and the annular channels 82A, 86A and 68A, the gap 66A creates a tortuous flow path indicated by arrow P in
As shown in
Referring again to
The end portion 32 of the housing 26 has a bearing cavity 98A sized to retain the seal 60A and the bearing 94A prior to the rotor shaft 16 being slid through the central opening 97.
The bearing 56B is placed into the seal 60B in a bearing cavity 98B and is configured in like manner as described with respect to the seal 60A. The bearing 56A and the bearing cavity 98A are configured the same as the bearing 56B and the bearing cavity 98B, respectively.
A method of manufacturing a supercharger assembly 10 includes machining annular concentric channels 82A, 86A in the end face 20A of the rotor 12, and then fitting the rotor shaft 16 through a center of the rotor 12 so that a portion 62A of the rotor shaft 16 extends past the end face 20A. An additional gear 40A and bearing 48A can be placed on an opposite end of the rotor shaft 16A. A bearing 56A is placed into the annular seal 60A, and the annular seal 60A with the bearing 56A therein is then pressed into the end portion 32 of the rotor housing 26. The rotor shaft 16 is then slid into the bearing 56A so that the annular ridges 70A, 72A fit within the annular concentric channels 82A, 86A and the seal face 64A and the end face 20A define a gap 66A therebetween. The gap 66A functions as a tortuous flow path to inhibit fluid leakage past the end face 20A.
The reference numbers used in the drawings and the specification along with the corresponding components are as follows:
While the best modes for carrying out the many aspects of the present teachings have been described in detail, those familiar with the art to which these teachings relate will recognize various alternative aspects for practicing the present teachings that are within the scope of the appended claims.
This application is a Continuation Application of PCT/US2013/046088 filed on 17 Jun. 2013, which claims benefit of U.S. patent application Ser. No. 61/665,969 filed on 29 Jun. 2012, and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Number | Date | Country | |
---|---|---|---|
61665969 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/046088 | Jun 2013 | US |
Child | 14580879 | US |