Field of the Invention
The present invention relates to a supercharger which is driven by a rotational force of a crankshaft of a combustion engine via an endless band-shaped power transmission member.
Description of Related Art
A combustion engine provided with a supercharger has been known in which the supercharger is driven by a rotational force of a crankshaft via an endless band-shaped power transmission member such as a chain (e.g., Patent Document 1).
[Patent Document 1] WO 2011/046098
However, when a great rotational force is transmitted from the crankshaft of the combustion engine, rotation fluctuation that occurs in the chain is considerable. Specifically, rotation fluctuation may be caused by explosion, suction, or the like of the combustion engine or by change in the rotation speed of the combustion engine due to an accelerating/decelerating operation. Such rotation fluctuation may reduce the durability of the chain.
In view of the above problem, an object of the present invention is to provide a supercharger for a combustion engine, which has a simple structure and is able to increase the durability of a power transmission member even when rotation fluctuation occurs in the power transmission member.
In order to achieve the above object, a supercharger for a combustion engine according to the present invention is driven by a rotational force of a crankshaft of the combustion engine via an endless band-shaped power transmission member. The supercharger includes: a supercharger lubricating oil passage that introduces a lubricating oil to the supercharger; a hydraulic biasing force generating device that suppresses slack of the power transmission member; and a branch path branched off the supercharger lubricating oil passage. A part of the lubricating oil introduced to the supercharger lubricating oil passage is supplied as a hydraulic source to the biasing force generating device through the branch path.
According to the above configuration, a large pressing force generated by hydraulic pressure can be applied to the power transmission member. Therefore, even if rotation fluctuation is transmitted from the crankshaft, slack of the power transmission member can be suppressed. As a result, durability of the power transmission member is increased. Further, since a part of the lubricating oil introduced into the supercharger to lubricate a rotating portion of the supercharger is utilized for the biasing force generating device, a pressing force due to hydraulic pressure can be obtained by a simple structure.
In the present invention, preferably, the supercharger further includes a biasing force generating device mounting portion on which the biasing force generating device is mounted, and the branch path is formed in the biasing force generating device mounting portion. According to this configuration, since the branch path for the biasing force generating device is formed in the biasing force generating device mounting portion, piping from the hydraulic source need not be additionally provided. Further, since the lubricating oil is supplied to the biasing force generating device by only mounting the biasing force generating device on the mounting portion, workability is improved.
In the present invention, preferably, the supercharger further includes a supercharger holder that supports a supercharger rotation shaft and detachably mounted on a combustion engine case, and the biasing force generating device is detachably mounted on the supercharger holder. According to this configuration, the supercharger can be independently handled as a supercharger unit including the biasing force generating device. Thus, switching between a supercharger-equipped combustion engine and a combustion engine having no supercharger can be easily performed.
When the supercharger includes the supercharger holder, preferably, the combustion engine includes a lubricating oil pump accommodated in the combustion engine case, and the supercharger lubricating oil passage is formed passing through abutting surfaces of the supercharger holder and the combustion engine case. In this case, preferably, the lubricating oil pump introduces the lubricating oil to a portion-to-be-lubricated or a portion-to-be-cooled of the combustion engine. According to this configuration, the lubricating oil is supplied to the biasing force generating device by only mounting the supercharger holder on the combustion engine case. Thus, the workability is further improved.
When the combustion engine includes the lubricating oil pump, preferably, driving power is transmitted to the lubricating oil pump directly or indirectly from the crankshaft. According to this configuration, since the discharge pressure of the lubricating oil pump varies in accordance with the rotation speed of the combustion engine, fluctuation of the power transmission member, which is increased with an increase in the rotation speed of the combustion engine, can be effectively suppressed by the biasing force generating device.
When the supercharger includes the supercharger holder, preferably, the biasing force generating device includes a pressing member that pivots around a pivot shaft to apply a pressing force to the power transmission member, and the pivot shaft is supported by the combustion engine case. According to this configuration, since the pivot shaft is supported by the combustion engine case, the strength of the supercharger holder may be reduced.
In the present invention, a part of the lubricating oil to be supplied to the supercharger is branched to be supplied to a hydraulic cylinder of the supercharger. According to this configuration, since the branch path is branched at the upstream side of the portion-to-be-lubricated in the supercharger lubricating oil passage, reduction in the lubricating oil pressure in the supercharger lubricating oil passage can be suppressed.
Any combination of at least two constructions, disclosed in the appended claims and/or the specification and/or the accompanying drawings should be construed as included within the scope of the present invention. In particular, any combination of two or more of the appended claims should be equally construed as included within the scope of the present invention.
In any event, the present invention will become more clearly understood from the following description of preferred embodiments thereof, when taken in conjunction with the accompanying drawings. However, the embodiments and the drawings are given only for the purpose of illustration and explanation, and are not to be taken as limiting the scope of the present invention in any way whatsoever, which scope is to be determined by the appended claims. In the accompanying drawings, like reference numerals are used to denote like parts throughout the several views, and:
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. The terms “left side” and “right side” in this specification are the left side and the right side as viewed from a driver on a vehicle.
Meanwhile, a swingarm bracket 9 is provided at a rear end portion of the main frame 1 which is a lower intermediate portion of the motorcycle frame structure FR. A swingarm 12 is supported for swing movement in a vertical direction about a pivot shaft 16 which is mounted to the swingarm bracket 9. A rear wheel 14 is rotatably supported by a rear end portion of the swingarm 12. A combustion engine E is mounted to the lower intermediate portion of the motorcycle frame structure FR at the front side of the swingarm bracket 9. This combustion engine E drives the rear wheel 14 through a drive chain 11.
The combustion engine E includes: a crankshaft 26 having a rotary shaft extending in a left-right direction (vehicle widthwise direction); a crankcase 28 supporting the crankshaft 26; a cylinder block 30 projecting upward from an upper surface of a front portion of the crankcase 28; a cylinder head 32 above the cylinder block 30; and an oil pan 34 provided below the crankcase 28. In the present embodiment, the crankcase 28 and the cylinder block 30 are integrally formed by molding. The crankcase 28, the cylinder block 30, and the cylinder head 32 cooperate together to form an engine case EC.
A lubricating oil pump 29 is provided within the crankcase 28 of the combustion engine E. A rotational force of the crankshaft 26 is gear-transmitted to a rotary shaft 29a of the lubricating oil pump 29, and the lubricating oil pump 29 is driven by the combustion engine E. The lubricating oil pump 29 supplies a lubricating oil to a portion-to-be-lubricated or a portion-to-be-cooled of the combustion engine E through an engine lubricating oil passage (not shown) formed in the engine case EC. The lubricating oil pump 29 also supplies the lubricating oil to a later-described supercharger 42.
Four exhaust pipes 36 are connected to a front surface of the cylinder head 32. The four exhaust pipes 36 are merged together at a location beneath the combustion engine E, and are connected to an exhaust muffler 38 disposed at the right side of the rear wheel 14.
A fuel tank 15 is disposed on an upper portion of the main frame 1, and a rider's seat 18 and a passenger's seat 20 are supported by the rear frame 2. In addition, a fairing 22 made of a resinous material is mounted on a front portion of the motorcycle. The fairing 22 covers the front of the head pipe 4. An air inlet 24 is formed in the fairing 22. The air inlet 24 is located at a front end of the fairing 22, and takes in intake air from the outside to the combustion engine E.
An air intake duct 50 is disposed at the left side of the motorcycle frame structure FR. The air intake duct 50 is supported by the head pipe 4 such that a front end opening 50a thereof faces the air inlet 24 of the fairing 22. The pressure of air introduced through the front end opening 50a of the air intake duct 50 is increased by a ram effect.
The supercharger 42 and an air cleaner 40 that cleans outside air are disposed rearward of the cylinder block 30 and on an upper surface of the crankcase 28 so as to be aligned in the vehicle widthwise direction. The air intake duct 50 introduces incoming wind A as intake air I from the front of the combustion engine E through left outer lateral sides of the cylinder block 30 and the cylinder head 32 into the air cleaner 40. The supercharger 42 pressurizes air, cleaned by the air cleaner 40, and supplies it to the combustion engine E.
An air intake chamber 52 is disposed between a discharge port 48 of the supercharger 42 and an air intake port 54 of the combustion engine E, and the discharge port 48 of the supercharger 42 and the air intake chamber 52 are directly connected to each other. The air intake chamber 52 stores the high-pressure intake air I supplied from the discharge port 48 of the supercharger 42. A throttle body 45 is disposed between the air intake chamber 52 and the air intake port 54. The air intake chamber 52 is disposed above the supercharger 42 and the throttle body 45. The fuel tank 15 is disposed above the air intake chamber 52 and the throttle body 45.
As shown in
The supercharger 42 includes: a centrifugal type impeller 60 that pressurizes intake air; an impeller casing 62 that covers the impeller 60; a transmission mechanism 64 that transmits power of the combustion engine E to the impeller 60; and a supercharger holder 66 that rotatably supports the supercharger rotation shaft 44. The supercharger holder 66 also covers the transmission mechanism 64. The supercharger holder 66 and the air cleaner 40 are disposed at the right side and the left side, respectively, in the widthwise direction of the motorcycle with the impeller casing 62 located therebetween. The transmission mechanism 64 may be dispensed with.
The supercharger 42 is driven by power of the combustion engine E. Specifically, as shown in
The supercharger holder 66 is provided with a hydraulic tensioner 75 which is one kind of a hydraulic biasing force generating device that suppresses slack or play of the chain 74. Specifically, as shown in
As shown in
An internal thread portion is formed on the inner peripheral surface of the right end portion 65b of the input shaft 65, and the one-way clutch 80 is mounted on the right end portion 65b through a washer 84 by a head portion of a bolt 82 screwed into the internal thread portion. The input shaft 65 forms an input-side rotary shaft of the transmission mechanism 64.
The impeller 60 is fixed to a left end portion 44a of the supercharger rotation shaft 44 of the supercharger 42, and a right side portion 44b of the supercharger rotation shaft 44 is connected to a left end portion 65a of the input shaft 65 through the transmission mechanism 64. That is, the transmission mechanism 64 is disposed between the input shaft 65 and the supercharger rotation shaft 44 and is supported by the supercharger holder 66. In the present embodiment, a planetary gear device is used as the transmission mechanism 64, and the planetary gear device increases the speed of rotation of the input shaft 65 and transmits the rotation to the supercharger rotation shaft 44.
The supercharger rotation shaft 44 is rotatably supported by the supercharger holder 66 through bearings 69. The supercharger holder 66 includes an input case portion 66R that accommodates the input shaft 65, the input-side sprocket 76 and the one-way clutch 80, and a gear case portion 66L that accommodates the transmission mechanism 64. The input case portion 66R and the gear case portion 66L are connected to each other by means of bolts 88. Further, the impeller casing 62 is connected to the gear case portion 66L of the supercharger holder 66 by means of bolts 90.
In the supercharger holder 66, a supercharger lubricating oil passage 92 is formed. The supercharger lubricating oil passage 92 introduces a lubricating oil OL, supplied from the lubricating oil pump 29 outside the supercharger 42, and guides the lubricating oil OL to the bearing 69 and the transmission mechanism 64. Specifically, as shown in
Specifically, the lubricating oil introduced into the supercharger 42 is supplied to the bearing 69 and also to a shaft-supporting portion and a teeth meshing portion of the transmission mechanism (planetary gear device) 64, the input-side sprocket 76, the chain 74, and the like. In addition, in the case that an oil film damper is interposed between the supercharger rotation shaft 44 and the supercharger holder 66, the lubricating oil may be supplied to the oil film damper through the supercharger lubricating oil passage 92. The lubricating oil is supplied from the lubricating oil pump 29 of the combustion engine E to these respective components.
As shown in
In the input case portion 66R, a tensioner lubricating oil passage 98 (
As shown in
As shown in
The tensioner rod 103 advances and retracts in a tensioner axial direction D due to power from the hydraulic cylinder 77, thereby to control the pressing force applied to the pressing member 102. In accordance with the pressing force applied by the tensioner rod 103, the pressing member 102 pivots around the tensioner pivot shaft 100 to apply the pressing force to the chain 74, thereby adjusting the slack of the chain 74. The pressing force from the hydraulic cylinder 77 is determined by a command from an engine control unit (not shown) on the basis of the speed, the acceleration, and the like, for example.
The chain 74 runs in the direction of an arrow X, and a guide member 104 that guides the chain 74 is provided on a tension side TS opposite to a loose side LS on which the hydraulic tensioner 75 is disposed. The guide member 104 is supported by the engine case EC by means of bolts 106. The guide member 104 makes the running of the chain 74 stable.
The rotation direction of the chain 74 is set so that the loose side LS of the chain 74, i.e., the side at which the chain 74 is drawn from the output-side sprocket 71, is located on the upper side. Thus, the hydraulic tensioner 75 can be disposed above the crankcase 28. As a result, interference with devices and members in the crankcase 28 can be avoided, and therefore, arrangement of the hydraulic tensioner 75 is facilitated as compared to the case where the hydraulic tensioner is disposed beneath the chain 74. Further, since the hydraulic tensioner is disposed above the chain 74, when the lubricating oil used as a driving source drops from the hydraulic tensioner 75, the lubricating oil drops toward the chain 74 to be effectively utilized as a lubricating fluid.
By disposing the input-side sprocket 76 above the rear portion of the crankcase 28, a space is formed between the cylinder block 30 and the supercharger 42, and the hydraulic tensioner 75 can be disposed in this space.
A straight line L connecting the axes of the input-side and output-side sprockets 76 and 71 is tilted upward in the rear direction. Thus, the hydraulic tensioner 75 can be disposed so as to be tilted frontward, and the height of projection of the hydraulic cylinder 77 of the hydraulic tensioner 75 from the supercharger holder 66 can be suppressed. Further, by disposing the input-side sprocket 76 above the rear portion of the crankcase 28, an angle formed between the straight line L and a horizontal surface is reduced. Thus, the tensioner axial direction D (pressing direction) of the hydraulic tensioner 75 becomes closer to the vertical direction, whereby interference between the cylinder block 30 and the hydraulic tensioner 75 can be avoided.
In the above configuration, a greater pressing force can be applied to the chain 74 by the hydraulic tensioner 75. Therefore, even when rotation fluctuation is transmitted from the crankshaft 26, slack and/or rattling of the chain 74 can be suppressed. As a result, durability of the chain 74 is increased. Further, since a part of the lubricating oil OL for lubricating the bearing 69 of the supercharger 42 shown in
Since the tensioner lubricating oil passage 98 is formed in the projecting tensioner mounting portion 72 integrally formed with the supercharger holder 66, it is not necessary to additionally provide piping from the hydraulic cylinder 77. Further, since the lubricating oil is supplied to the hydraulic cylinder 77 by only mounting the hydraulic tensioner 75 on the mounting portion 72, the workability is improved.
The supercharger lubricating oil passage 92 is formed in the supercharger holder 66, and the hydraulic tensioner 75 is detachably mounted on the supercharger holder 66. Therefore, the supercharger 42 can be independently handled as a supercharger unit including the hydraulic tensioner 75. Thus, switching between a supercharger-equipped combustion engine and a combustion engine having no supercharger can be easily performed.
By mounting the supercharger holder 66 on the engine case EC, the lubricating oil OL is supplied from the lubricating oil pump 29 of the combustion engine E to the supercharger lubricating oil passage 92, whereby the workability is further improved.
Since the rotary shaft 29a of the lubricating oil pump 29 shown in
Since the tensioner pivot shaft 100 shown in
As shown in
The present invention suppresses slack of the chain by use of the hydraulic tensioner, and therefore, is advantageously used for a supercharger to which power likely with pulsation is transmitted as a driving force. Specifically, the present invention is advantageously used for a case where power generated in an internal combustion engine is transmitted to a supercharger.
The present invention is not limited to the embodiments described above, and various additions, modifications, or deletions may be made without departing from the gist of the invention. In the embodiment described above, the supercharger of the present invention is applied to a combustion engine for a motorcycle. However, the supercharger of the present invention is also applicable to combustion engines for vehicles other than motorcycles, watercrafts and the like, and furthermore, to combustion engines installed on the ground. Further, as the power transmission member, a knife-shaped belt may be used instead of the chain 74. Therefore, these are construed as included within the scope of the present invention.
This application is a continuation application, under 35 U.S.C § 111(a) of international application No. PCT/JP2013/081039, filed Nov. 18, 2013.
Number | Name | Date | Kind |
---|---|---|---|
2223715 | Berger | Dec 1940 | A |
2400306 | Hobbs | May 1946 | A |
2583537 | Alexanderson | Jan 1952 | A |
2667150 | Coar | Jan 1954 | A |
2678639 | Alexanderson | May 1954 | A |
2922314 | Johnson | Jan 1960 | A |
4622817 | Kobayashi | Nov 1986 | A |
4969332 | Nancarrow | Nov 1990 | A |
5176581 | Kumm | Jan 1993 | A |
5361744 | Teraoka | Nov 1994 | A |
5366418 | Fukushima | Nov 1994 | A |
5394853 | Teraoka | Mar 1995 | A |
5462035 | Teraoka | Oct 1995 | A |
5937833 | Kapich | Aug 1999 | A |
6146300 | Suzuki | Nov 2000 | A |
6390869 | Korenjak et al. | May 2002 | B2 |
6415759 | Ohrnberger et al. | Jul 2002 | B2 |
6478701 | Yasuhara | Nov 2002 | B1 |
6502398 | Kapich | Jan 2003 | B2 |
6544086 | Tscherne et al. | Apr 2003 | B2 |
6568376 | Sonnleitner et al. | May 2003 | B2 |
6591819 | Tscherne et al. | Jul 2003 | B2 |
6601528 | Bilek et al. | Aug 2003 | B2 |
6626140 | Aichinger et al. | Sep 2003 | B2 |
7000577 | Bilek et al. | Feb 2006 | B2 |
7040874 | Martin et al. | May 2006 | B1 |
7101238 | Aichinger et al. | Sep 2006 | B2 |
7337755 | Gokan et al. | Mar 2008 | B2 |
7530228 | Martin et al. | May 2009 | B2 |
7549493 | Jones | Jun 2009 | B1 |
7552721 | Wolfsgruber et al. | Jun 2009 | B2 |
7600492 | Bilek et al. | Oct 2009 | B2 |
7882819 | Koyama | Feb 2011 | B2 |
8707931 | Arima et al. | Apr 2014 | B2 |
10029695 | Gibson | Jul 2018 | B1 |
20010039908 | Bilek et al. | Nov 2001 | A1 |
20010039934 | Ohrnberger et al. | Nov 2001 | A1 |
20010042532 | Aichinger et al. | Nov 2001 | A1 |
20010044244 | Tscherne et al. | Nov 2001 | A1 |
20010044352 | Korenjak et al. | Nov 2001 | A1 |
20010052340 | Sonnleitner et al. | Dec 2001 | A1 |
20010053640 | Korenjak et al. | Dec 2001 | A1 |
20020000224 | Tscherne et al. | Jan 2002 | A1 |
20020011222 | Bilek et al. | Jan 2002 | A1 |
20040069250 | Aichinger et al. | Apr 2004 | A1 |
20040168441 | Dumas et al. | Sep 2004 | A1 |
20060065218 | Gokan et al. | Mar 2006 | A1 |
20060104832 | Martin et al. | May 2006 | A1 |
20060193734 | Martin et al. | Aug 2006 | A1 |
20070068465 | Wolfsgruber et al. | Mar 2007 | A1 |
20070105465 | Wolfsgruber et al. | May 2007 | A1 |
20080127915 | Bilek et al. | Jun 2008 | A1 |
20080173275 | Koyama | Jul 2008 | A1 |
20110168126 | Fujikawa | Jul 2011 | A1 |
20120192839 | Arima et al. | Aug 2012 | A1 |
20130288836 | Kurematsu | Oct 2013 | A1 |
20140309882 | Antchak | Oct 2014 | A1 |
20150024887 | Oh | Jan 2015 | A1 |
20150240918 | Emizu | Aug 2015 | A1 |
20150354675 | Hao | Dec 2015 | A1 |
20160033016 | Todd | Feb 2016 | A1 |
20160102736 | Suchecki | Apr 2016 | A1 |
20160153529 | Kobayashi | Jun 2016 | A1 |
20170059010 | Staley | Mar 2017 | A1 |
20170138444 | Kurematsu | May 2017 | A1 |
20170204945 | Emig | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
101103179 | Jan 2008 | CN |
3711603 | Oct 1988 | DE |
61-138839 | Aug 1986 | JP |
02-061134 | May 1990 | JP |
02-291424 | Dec 1990 | JP |
03-010041 | Jan 1991 | JP |
03-047425 | Feb 1991 | JP |
09-222008 | Aug 1997 | JP |
2006-097614 | Apr 2006 | JP |
2008-175138 | Jul 2008 | JP |
2008-267454 | Nov 2008 | JP |
2010-127073 | Jun 2010 | JP |
2011-144813 | Jul 2011 | JP |
2011140909 | Jul 2011 | JP |
2011140928 | Jul 2011 | JP |
2012-002139 | Jan 2012 | JP |
WO0165093 | Sep 2001 | WO |
WO2006055560 | May 2006 | WO |
WO2011046098 | Apr 2011 | WO |
Entry |
---|
English Translation of the International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Jun. 2, 2016 for International PCT Patent Application No. PCT/JP2013/081039, filed Nov. 18, 2013 (9 pages). |
Notification of Reason(s) for Rejection dated Feb. 28, 2017 and English Language Summary thereof for corresponding Japan Patent Application No. 2015-547370 (10 pages). |
Decision of Grant dated Aug. 22, 2017 for Corresponding Japanese Patent Application No. 2015-547370 (3 pages). |
Extended and Supplementary Search Report dated Jun. 6, 2017 for Corresponding European Patent Application No. 13897686.5 (8 pages). |
First Office Action dated Nov. 29, 2017 for Corresponding Chinese Patent Application No. 201380080981.9 with English Language Translation of the Search Report attached to the Office Action (8 pages). |
International Search Report for PCT/JP2013/081039, dated Dec. 17, 2013, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160208683 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/081039 | Nov 2013 | US |
Child | 15085846 | US |