The present invention relates to a supercharging and pressure accumulating structure for an all terrain vehicle or a utility vehicle and, more particularly, to a supercharging and pressure accumulating structure for increasing the stability of the supercharged output of an engine.
All terrain vehicles (ATV) or utility vehicles (UTV) are transportation tools for people doing leisure activities and provide excellent chassis suspension systems for travelling over rough terrains.
All terrain vehicles (ATV) or utility vehicles (UTV) generally use the power of an engine which includes cylinders, pistons, a crankshaft, valves, etc. Air and gasoline are introduced into the cylinders and are combusted to push pistons for generating mechanical energy, and the waste gas is discharged. Thus, the engine has a horse power and a torque corresponding to the displacement of the engine.
However, the volume of an all terrain vehicle or a utility vehicle is smaller than an ordinary car and uses an engine with a smaller displacement, such that the output performances cannot fulfill the needs of users having higher demands in performances. Although the engine can include a supercharging device, the supercharging device could cause an unstable engine output.
An objective of the present invention is to provide a supercharging and pressure accumulating structure for increasing the stability of the supercharged output of an engine of an all terrain vehicle or a utility vehicle.
A supercharging and pressure accumulating structure for an all terrain vehicle or a utility vehicle according to the present invention includes an engine body including a cylinder having an intake passage and an outtake passage. A supercharger includes a chamber having an inlet and an outlet. The supercharger is configured to introduce air into the chamber to generate a supercharged air current. An air accumulator is mounted between the cylinder and the supercharger. The air accumulator includes an air chamber having an input side and an output side. The input side of the air chamber intercommunicates with the outlet of the supercharger. An intake manifold includes a first end connected to the output side of the air chamber of the air accumulator and a second end connected to the intake passage of the cylinder. At least one nozzle intercommunicates with the intake passage of the cylinder and is adapted to be connected to a fuel supply pipe of a vehicle. Operation of the engine body actuates the supercharger to generate the supercharged air current. The supercharged air current is firstly introduced through the input side of the air accumulator into the air chamber of the air accumulator, passes through the output side of the air accumulator into the intake manifold to mix with fuel ejected by the at least one nozzle, and then enters the cylinder. The supercharged air current increases the engine output performances. Furthermore, the air accumulator provides accumulation of pressure and buffering between the supercharger and the cylinder. When the engine output varies, the air accumulator introduces stable, supercharged air current to increase the operational stability of the engine.
In an example, a throttle coupled with the inlet of the supercharger. The chamber is configured to receive a guiding device for guiding air, and the guiding device is operably connected to the engine body.
In an example, the supercharger includes a duct at the inlet. The duct is connected to the output side of the air accumulator. A control valve is mounted to the duct. The control valve is configured to be closed when fuel is added. The control valve is configured to be opened during fuel return or idling.
In an example, the control valve is a vacuum valve.
In an example, the at least one nozzle includes two nozzles, and the two nozzles eject fuel into the cylinder simultaneously.
When fuel is added, the control valve is closed, and the external air passes through the throttle and the inlet into the chamber and is pressurized. The pressurized air passes through the outlet into the air accumulator. Next, the pressurized air enters the intake manifold to mix with fuel ejected by the two nozzles and then enters the cylinder. The air accumulator provides accumulation of pressure and buffering between the supercharger and the cylinder. Thus, air can be introduced into the intake manifold and the cylinder. The two nozzles can eject a greater amount of fuel in response to the pressurized air to increase the engine output efficiency.
During fuel return or idling of the engine, the throttle can be adjusted to allow a small amount of external air to enter the supercharger. In this case, the supercharger creates a negative pressure, and the control valve is opened. Furthermore, the duct forms a bypass passage communicating the inlet of the supercharger, the air accumulator, and the outlet of the supercharger. The pressure of the inlet and the outlet of the supercharger can be balanced. During fuel return or idling of the engine, the supercharger can operate in a force-saving manner while preventing from adverse influence on the engine performances. Furthermore, the air can be guided from the air accumulator into the intake manifold and the cylinder while permitting the air accumulator to accumulate pressure for the purposes of returning fuel or idling. When fuel is added again, the control valve is closed, the throttle valve is opened to provide a larger opening, and the pressure in the air accumulator can be rapidly introduced into the cylinder to improve the accelerating effect.
The present invention will become clearer in light of the following detailed description of illustrative embodiments of this invention described in connection with the drawings.
With reference to
The supercharger 21 includes a chamber 211. The chamber 211 has an inlet 212 and an outlet 213. The inlet 212 is coupled with the throttle 22. The supercharger 21 further includes a duct 214 at the inlet 212. The duct 214 is connected to the air accumulator 23. A control valve 24 is mounted to the duct 214 and can be a vacuum valve. The chamber 211 is configured to receive an impeller or other guiding device (not shown) operably connected to the crankshaft 12 of the engine body 1. Operation of the engine body 1 actuates the impeller or other guiding device to draw external air to flow through the throttle 22 and the inlet 212 into the chamber 211.
The air accumulator 23 is mounted between the cylinder 11 and the supercharger 21. The air accumulator 23 includes an air chamber 231 having an input side 232 and an output side 233. The input side 232 of the air chamber 231 intercommunicates with the outlet 213 and the duct 214 of the supercharger 21. The output side 233 of the air chamber 231 intercommunicates with the air intake manifold 25 and the intake passage 111 of the cylinder 11. The nozzles 26 are adapted to be connected to a fuel supply pipe of a vehicle. The air in the air chamber 231 can mix with fuel and then be guided into the cylinder 11.
With reference to
During fuel return or idling of the engine, the throttle 22 can be adjusted to allow a small amount of external air to enter the supercharger 21. In this case, the supercharger 21 creates a negative pressure, and the control valve 24 is opened. Furthermore, the duct 214 forms a bypass passage communicating the inlet 212 of the supercharger 21, the air accumulator 23, and the outlet 213 of the supercharger 21. The pressure of the inlet 212 and the outlet 213 of the supercharger 21 can be balanced. During fuel return or idling of the engine, the supercharger 21 can operate in a force-saving manner while preventing from adverse influence on the engine performances. Furthermore, the air can be guided from the air accumulator 23 into the intake manifold 25 and the cylinder 11 while permitting the air accumulator 23 to accumulate pressure for the purposes of returning fuel or idling.
When fuel is added again, the control valve 24 is closed, the throttle valve 22 is opened to provide a larger opening, and the pressure in the air accumulator 23 can be rapidly introduced into the cylinder 11 to improve the accelerating effect.
In view of the foregoing, the supercharging and pressure accumulating structure according to the present invention can significantly increase the engine efficiency and stability of the pressurizing movement of an all terrain vehicle or a utility vehicle while fulfilling the vehicle performance demands of the user. Although the supercharger 21 is a mechanical supercharger in the embodiment shown, a turbocharger can be used.
Although specific embodiments have been illustrated and described, numerous modifications and variations are still possible without departing from the scope of the invention. The scope of the invention is limited by the accompanying claims.