The present invention relates to a supercharging system for an internal combustion engine including a turbocharger and a pressure wave supercharger that performs supercharging by utilizing pressure wave energy of exhaust gas.
There is known a supercharging apparatus provided with a turbocharger and a pressure wave supercharger that performs supercharging by utilizing pressure wave energy of exhaust gas (see patent literature 1). In the supercharging apparatus, the pressure wave supercharger is arranged so that exhaust gas is led from an exhaust passage being provided on a downstream side of a turbine of the turbocharger. Furthermore, the pressure wave supercharger is arranged so as to discharge intake gas to an intake passage being provided on an upstream side of a compressor of the turbocharger. In addition, there are Patent Literatures 2 and 3 as prior art references in relation to the present invention.
As well known, the intake side and the exhaust side are connected to each other inside the pressure wave supercharger. Thereby, depending on operating states of an internal combustion engine and so on, exhaust gas may flow in the intake passage via the pressure wave supercharger. In the apparatus of the Patent Literature 1, the pressure wave supercharger is arranged on the upstream side of the compressor. Thereby, in a case that the exhaust gas flows into the intake passage, there is a possibility that a particulate material contained in the exhaust gas contaminates the compressor. In this case, there is a possibility that a performance of the compressor is decreased and a supercharging performance is decreased.
In view of the foregoing, an object of the present invention is to provide a supercharging system for an internal combustion engine, which can supercharge the internal combustion engine from a low rotation range and can prevent an inflow of the exhaust gas into the compressor of the turbocharger.
A supercharging system for an internal combustion engine of the present invention comprises a turbocharger that includes a turbine which is provided in an exhaust passage of the internal combustion engine, and a compressor which is provided in an intake passage of the internal combustion engine and is driven by the turbine; and a pressure wave supercharger that includes a case which is connected to the intake passage via an intake gas inlet port and an intake gas outlet port provided on one end face and is connected to the exhaust passage via an exhaust gas inlet port and an exhaust gas outlet port provided on the other end face opposing the one end face, and a rotor which is arranged in the case rotatably and divides an inside of the case into plural cells penetrating in a direction of a rotation axis line, and that performs supercharging of the internal combustion engine by increasing a pressure of gas led into each of the cells from the intake gas inlet port using a pressure wave of exhaust gas led into the cell from the exhaust gas inlet port and discharging from the intake gas outlet port to the intake passage the gas pressurized, wherein the case of the pressure wave supercharger is connected to the intake passage upstream of the compressor via the intake gas inlet port, and is connected to the intake passage downstream of the compressor via the intake gas outlet port, and is connected to the exhaust passage downstream of the turbine via the exhaust gas inlet port and the exhaust gas outlet port.
According to the supercharging system of the present invention, the intake passage is provided with the compressor of the turbocharger and the pressure wave supercharger in parallel with each other. Thereby, the exhaust gas not flows into the compressor even though the exhaust gas flows into the intake passage from the pressure wave supercharger. Accordingly, it is possible to prevent contamination of the compressor. In the supercharging system of the present invention, the pressure wave supercharger is arranged on the exhaust passage at the downstream side of the turbine. In this case, the turbine can fully collect the exhaust gas energy. In the supercharging system of the present invention, it is possible to supercharge the internal combustion engine by the pressure wave supercharger and the turbocharger. As well-known, the pressure wave supercharger performs supercharging by using a pressure wave of the exhaust gas. Thereby, it is possible to supercharge the internal combustion engine even though a rotation number of the internal combustion engine is low. Accordingly, it is possible to supercharge the internal combustion engine from a low rotation range.
In one embodiment of the supercharging system of the present invention, wherein the pressure wave supercharger may include a driving device which drives the rotor and is capable of varying a rotation number of the rotor. In this case, it is possible to change operation states of the pressure wave supercharger regardless of operation states of the internal combustion engine. According to this embodiment, since the rotation number of the rotor can be changed, it is possible to change timings to connect the cells with the intake gas outlet port appropriately. Thereby, it is possible to lead the intake gas from the intake passage to the exhaust passage via the pressure wave supercharger. Furthermore, it is possible to lead the exhaust gas from the exhaust passage to the intake passage via the pressure wave supercharger.
In one embodiment of the supercharging system of the present invention, wherein the pressure wave supercharger may be provided with a phase change mechanism which is capable of varying a position of the intake gas outlet port with respect to the exhaust gas inlet port by rotating around the rotation axis line at least either one of the one end face and the other end face. In this embodiment, by changing the position of the intake gas outlet port with respect to the exhaust gas inlet port, it is possible to change timings to connect the cells with the intake gas outlet port appropriately. Thereby, it is possible to lead the intake gas from the intake passage to the exhaust passage via the pressure wave supercharger. Furthermore, it is possible to lead the exhaust gas from the exhaust passage to the intake passage via the pressure wave supercharger.
In one embodiment of the supercharging system of the present invention, the supercharging system may further comprise a supercharging control device which controls the pressure wave supercharger and the turbocharger so that the internal combustion engine is supercharged by the pressure wave supercharger when the rotation number of the internal combustion engine is within a predetermined low rotation range, and the internal combustion engine is supercharged by the turbocharger when the rotation number of the internal combustion engine is within a predetermined high rotation range which is higher than the low rotation range. As mentioned above, the pressure wave supercharger is capable of supercharging even though the rotation number of the internal combustion engine is low. Thereby, by controlling the operation of each supercharger in this manner, it is possible to supercharge the internal combustion engine from the low rotation range. In the high rotation range, since the internal combustion engine is supercharged by the turbocharger, it is possible to suppress increasing in size of the pressure wave supercharger.
In one embodiment of the supercharging system of the present invention, wherein the exhaust passage may be provided with a bypass passage which leads the exhaust gas to the downstream side of the pressure wave supercharger by bypassing the pressure wave supercharger, and a bypass valve which opens and closes the bypass passage. In this case, by opening and closing the bypass valve, it is possible to adjust the amount of the exhaust gas which is led to the pressure wave supercharger.
In one embodiment of the supercharging system of the present invention, wherein the exhaust passage may be provided with a bypass passage which leads the exhaust gas to the downstream side of the pressure wave supercharger by bypassing the pressure wave supercharger, and the pressure wave supercharger may be provided with a connection switching device which is capable of switching between a connection state that the inside of the case is connected to the exhaust passage via the exhaust gas inlet port and the exhaust gas outlet port, and a disconnection state that the exhaust gas inlet port and the exhaust gas outlet port are closed so that the connection in the connection state is disconnected. In this case, by switching the connection switching device to the disconnection position, it is possible to stop leading the exhaust gas into the pressure wave supercharger. Thereby, it is unnecessary to provide a valve on the bypass passage.
In this embodiment, the supercharging system may further comprise a connection control device which switches the connection switching device to the disconnection state when the internal combustion engine is supercharged by only the turbocharger. Thereby, it is possible to supercharge the internal combustion engine by only the turbocharger.
In one embodiment of the supercharging system of the present invention, wherein the pressure wave supercharger may be provided with at least either one of a driving device and a phase change mechanism as a controlled object, the driving device driving the rotor and being capable of varying a rotation number of the rotor, and the phase change mechanism capable of varying a position of the intake gas outlet port with respect to the exhaust gas inlet port by rotating around the rotation axis line at least either one of the one end face and the other end face, and the supercharging system may further comprise a supercharging control device which controls the pressure wave supercharger and the turbocharger so that the internal combustion engine is supercharged by the pressure wave supercharger when the rotation number of the internal combustion engine is within a low rotation range which is less than a predetermined rotation number, and the internal combustion engine is supercharged by the turbocharger when the rotation number of the internal combustion engine is within a predetermined high rotation range which is higher than or equal to the predetermined rotation number, wherein the supercharging control device may include a calculation device and a re-acceleration preparation device, the calculation device calculating a target value of a control amount of the controlled object for controlling to operate the pressure wave supercharger in a state that a part of the intake gas passes through the intake passage to the exhaust passage via the pressure wave supercharger while the internal combustion engine is supercharged by the pressure wave supercharger, when the rotation number of the internal combustion engine is within the high rotation range and the rotation number of the internal combustion engine is expected to become less than the predetermined rotation number, and the re-acceleration preparation device controlling the controlled object so that the control amount of the controlled object becomes the target value calculated by the calculation device when the rotation number of the internal combustion engine becomes less than the predetermined rotation number. When the pressure wave supercharger is operated so that a part of the intake gas passes through to the exhaust passage, it is necessary to increase the rotation number of the rotor for becoming the same the supercharging pressure as compared with a case that the pressure wave supercharger is operated so that all of the intake gas is returned to the intake passage. In this embodiment, the pressure wave supercharger is operated so that a part of the intake gas passes through to the exhaust passage soon after the rotation number of the internal combustion engine becomes lower than the predetermined rotation number. Thereby, the rotor is driven at a high rotation number. Accordingly, it is possible to increase the rotation number of the rotor quickly when the internal combustion engine is requested to be re-accelerated. Thereby, since it is possible to increase the supercharging pressure quickly, it is possible to re-accelerate the internal combustion engine quickly.
In one embodiment of the supercharging system of the present invention, wherein the pressure wave supercharger may be provided with at least either one of a driving device and a phase change mechanism as a controlled object, the driving device driving the rotor and being capable of varying a rotation number of the rotor, and the phase change mechanism capable of varying a position of the intake gas outlet port with respect to the exhaust gas inlet port by rotating around the rotation axis line at least either one of the one end face and the other end face, and the supercharging system may further comprise a supercharging control device which controls the pressure wave supercharger and the turbocharger so that the internal combustion engine is supercharged by the pressure wave supercharger when the rotation number of the internal combustion engine is within a predetermined low rotation range, and the internal combustion engine is supercharged by the pressure wave supercharger and the turbocharger when the rotation number of the internal combustion engine is within a predetermined medium rotation range which is higher than the low rotation range, and the internal combustion engine is supercharged by the turbocharger when the rotation number of the internal combustion engine is within a predetermined high rotation range which is higher than the medium rotation range, and which is capable of controlling the controlled object so that the exhaust gas is circulated to the intake passage from the exhaust passage via the pressure wave supercharger while the internal combustion engine is supercharged by the pressure wave supercharger, wherein the supercharging control device may include an EGR control device which adjusts an amount of the exhaust gas circulated to the intake passage via the pressure wave supercharger by controlling the operation of the controlled object so as to be suppress a variation of an amount of air in the intake gas after starting of the turbocharger when the rotation number of the internal combustion engine changes to the medium rotation range from the low rotation range. According to this embodiment, since it is possible to suppress the variation of the amount of air when the turbocharger is started up, it is possible to suppress sudden increase of the amount of the air supplied to the cylinders. As well known, a nitrogen oxide (NOx) increases when the amount of the air supplied to the cylinders increases. Thereby, by suppressing the sudden increase of the amount of the air in this manner, it is possible to suppress an increase of the NOx when the turbocharger is started up.
In one embodiment of the supercharging system of the present invention, wherein the internal combustion engine may be provided with a PCV passage, which connects with an inside of a crankcase of the internal combustion engine a section of the intake passage between the downstream side of a position where the case is connected via the intake gas inlet port and the upstream side of the compressor. In this case, it is possible to suppress flowing the blow-by gas into the pressure wave supercharger. Thereby, it is possible to prevent that the rotor is locked by oil contained in the blow-by gas.
In one embodiment of the supercharging system of the present invention, wherein the internal combustion engine may be mounted on a vehicle, the pressure wave supercharger may be provided with a connection switching device which is capable of switching between a connection state that the inside of the case is connected to the exhaust passage via the exhaust gas inlet port and the exhaust gas outlet port, and a disconnection state that the exhaust gas inlet port and the exhaust gas outlet port are closed so that the connection in the connection state is disconnected, and the supercharging system may comprise a pressure accumulation tank and a pressure accumulation control device, the pressure accumulation tank being capable of leading gas from the exhaust passage at the upstream side of the turbine, capable of supplying gas to the exhaust passage at the upstream side of the turbine, and capable of storing pressurized gas inside thereof, and the pressure accumulation control device switching the connection switching device to the disconnection state and controlling the driving device so that the rotor is stopped when the vehicle decelerates. By controlling the rotor and the connection switching device in this manner, it is possible to store the exhaust gas in the pressure accumulation tank. Since it is unnecessary a valve for opening and closing the exhaust passage, it is possible to reduce costs.
In one embodiment of the supercharging system of the present invention comprising the supercharging control device, the supercharging system may further comprise an pressure accumulation tank which is capable of leading gas from the exhaust passage at the upstream side of the turbine, capable of supplying gas to the exhaust passage at the upstream side of the turbine, and capable of storing pressurized gas inside thereof; and a valve device which is capable of switching between a connection position where the pressure accumulation tank is connected to the exhaust passage, and a disconnection position where the connection in the connection position is disconnected, wherein the supercharging control device may switch the valve device to the connection position when the rotation number of the internal combustion engine changes from the low rotation range to the high rotation range and the turbocharger is started. In this case, it is possible to assist in the operation of the turbocharger by the gas supplied from the pressure accumulation tank. Thus, it is possible to increase the rotation number of the turbine of the turbocharger quickly. Thereby, it is possible to suppress a variation of the supercharging pressure when a supercharger used for supercharging is switched from the pressure wave supercharger to the turbocharger. Accordingly, it is possible to suppress a variation of the torque of the internal combustion engine during the changeover.
In one embodiment of the supercharging system of the present invention, the supercharging system may further comprise an pressure accumulation tank which is capable of leading gas from the exhaust passage at the upstream side of the turbine, capable of supplying gas to the exhaust passage at the upstream side of the turbine, and capable of storing pressurized gas inside thereof; a valve device which is capable of switching between a connection position where the pressure accumulation tank is connected to the exhaust passage and a disconnection position where the connection in the connection position is disconnected; and, a start assist control device which switches the valve device to the connection position when a predetermined engine stop condition is satisfied in order to stop the internal combustion engine. In this case, it is possible to increase the pressure in the cylinder by assisting the operation of the pressure wave supercharger by gas in the pressure accumulation tank when the internal combustion engine is stopped. By stopping the internal combustion engine in this state, it is possible to stop the internal combustion engine while the pressure in the cylinder remains high. Thereby, since it is possible to increase the pressure in the cylinder quickly at the next startup, it is possible to start the internal combustion engine quickly.
The intake passage 3 includes a first branch passage 5, a second branch passage 6, and a common passage 7 to which the branch passages 5 and 6 are connected. The intake passage 3 is provided with an air cleaner 8 that filters the intake gas. The branch passages 5, 6 diverge from the air cleaner 8. The first branch passage 5 is provided with an intake-side end 20a of a pressure wave supercharger 20 and a first control valve 9 that can open and close the first branch passage 5. The second branch passage 6 is provided with a compressor 10a of a turbocharger 10 and a second control valve 11 that can open and close the second branch passage 6. The common passage 7 is provided with an inter-cooler 12 for cooling intake gas and a surge tank 13. As shown in this figure, the intake passage 3 diverges again after passing through the surge tank 13 and is connected to the cylinders 2a.
The exhaust passage 4 is provided with a turbine 10b of the turbocharger 10, a catalyst 14 for cleaning the exhaust gas, an exhaust-side end 20b of the pressure wave supercharger 20, an exhaust gas control valve 15 that can open and close the exhaust passage 4, and a muffler 16 for sound deadening in order from the upstream of an exhaust gas flow direction. The exhaust passage 4 is provided with a bypass passage 17 and a switching valve 18. The bypass passage 17 leads the exhaust gas to flow by bypassing the pressure wave supercharger 20 and the exhaust gas control valve 15. The switching valve 18 selectively switches an exhaust gas flow to the pressure wave supercharger 20 or the bypass passage 17. By switching the exhaust gas flow in this manner, the switching valve 18 functions as a bypass valve according to the present invention.
The turbocharger 10 and the pressure wave supercharger 20 will be described. The turbocharger 10 is a well known turbocharger. The turbocharger 10 rotates the compressor 10a by rotating the turbine 10b provided in the exhaust passage 3 using exhaust gas, and thereby performs supercharging. The pressure wave supercharger 20 is a supercharger which increases a pressure of the intake gas led inside from the intake-side end 20a by using a pressure wave of exhaust gas led inside from the exhaust-side end 20b and thereby performs supercharging. As shown in an enlarged view in
As shown in
As shown in
The pressure wave supercharger 20 is operated in two operation modes, that is, a normal mode and an EGR mode. In the normal mode, the pressure wave supercharger 20 is operated so as to discharge only intake gas to the intake passage 3. In the EGR mode, the pressure wave supercharger 20 is operated so as to discharge the intake gas and exhaust gas to the intake passage 3. These operation modes are switched by adjusting the rotational speed (rotation number) of the rotor 22 and positions of the valve plate 28. The operation modes will be described with reference to
The normal mode will be described with reference to
Next, the EGR mode will be described with reference to
The turbocharger 10 and the pressure wave supercharger 20 are selectively used in accordance with operation states of the engine 1. Moreover, the normal mode and the EGR mode of the pressure wave supercharger 20 are also selectively used in accordance with operation states of the engine 1. The engine 1 is supercharged in three supercharging modes, that is, a PW supercharging mode, an EGR supercharging mode, and a TC supercharging mode. In the PW supercharging mode, the pressure wave supercharger 20 is operated in the normal mode. In the EGR supercharging mode, the pressure wave supercharger 20 is operated in the EGR mode. In the TC supercharging mode, the engine 1 is supercharged by the turbocharger 10. The three supercharging modes are switched in accordance with an operation state of the engine 1 to be specified by the rotation number and the torque of the engine 1.
Correspondence relationships among the operation states of the engine 1 and the three supercharging modes will be described with reference to
An engine control unit (ECU) 40 controls switching between the supercharging modes. The ECU 40 is a well-known computer unit which is configured as a computer including a microprocessor and peripheral devices, such as a RAM and a ROM, which are necessary for the operation of the microprocessor. The ECU 40 controls operation states of the engine 1 based on output signals from various sensors provided to the engine 1. For example, the ECU 40 calculates an amount of fuel to be injected into the cylinder 2a in accordance with operation states of the engine 1. The ECU 40 controls a fuel injection valve (not shown) so as to inject the calculated amount of fuel into the cylinder 2a. The ECU 40 connects with a crank angle sensor 41, an air flow meter 42, a supercharging pressure sensor 43, and an accelerator opening sensor 44. The crank angle sensor 41 outputs a signal corresponding to the rotational speed (rotation number) of the engine 1. The air flow meter 42 outputs a signal corresponding to an amount of the intake air of the engine 1. The supercharging pressure sensor 43 outputs a signal corresponding to the pressure in the surge tank 13, that is, the supercharging pressure. The accelerator opening sensor 44 outputs a signal corresponding to an accelerator opening. The ECU 40 also connects with a vehicle speed sensor 45 which outputs a signal corresponding to the speed of a vehicle mounted with the engine 1. In addition to the above sensors, various sensors are further connected to the ECU 40, but they are omitted in the figure.
In next step S12, the ECU 40 determines whether or not the operation state of the engine 1 is within the high rotation range A1. This determination may be performed by storing the map of
On the other hand, if the ECU 40 determines that the operation state of the engine 1 is outside the high rotation range A1, the ECU 40 proceeds to step S14 and determines whether or not the operation state of the engine 1 is within the EGR range Aegr. This determination may also be performed by referring the map of the
On the other hand, if the ECU 40 determines that the operation state of the engine 1 is within the EGR range Aegr, the ECU 40 proceeds to step S16 and switches the supercharging mode to the EGR supercharging mode. Specifically, the ECU 40 controls the first control valve 9 to be fully opened and controls the second control valve 11 to be fully closed. The ECU 40 also controls the switching valve 18 so as to lead the exhaust gas into the pressure wave supercharger 20 and controls the exhaust gas control valve 15 to be fully opened. And, the ECU 40 controls the first motor 29 and the second motor 30 so that the pressure wave supercharger 20 operates in the EGR mode. Thereby, supercharging by the turbocharger 10 is prevented. The engine 1 is supercharged by the pressure wave supercharger 20 while the exhaust gas is circulated to the intake passage 3. Thereby, the EGR supercharging mode also allows the gas to flow through the intake passage 3 and the exhaust passage 4 as shown in
According to the first embodiment, since the turbocharger 10 and the pressure wave supercharger 20 are arranged in parallel to each other on the intake gas side, it is possible to prevent that the exhaust gas flows into the compressor 10a even though the exhaust gas is circulated from the pressure wave supercharger 20 to the intake passage 3. Thereby, it is possible to prevent the inside of the compressor 10a from being contaminated with particulate materials in the exhaust gas. On the other hand, the turbocharger 10 and the pressure wave supercharger 20 are arranged in series on the exhaust gas side so that the turbocharger 10 is positioned upstream of the pressure wave supercharger 20. Thereby, the turbine 10b can fully collect the exhaust gas energy.
In the present embodiment, it is possible to supercharge the engine 1 by using the turbocharger 10 and the pressure wave supercharger 20. As shown in
In addition, in the present embodiment, since the exhaust gas is circulated to the intake passage 3 via the pressure wave supercharger 20, it is possible to omit a passage for circulating the exhaust gas and a control valve for adjusting the flow rate of circulating exhaust gas. Furthermore, since it is possible to decrease a pressure loss in a flow path for circulating the exhaust gas, it is possible to increase an amount of the exhaust gas which is circulated to the intake passage 3 from the low rotation range as compared with the conventional technique. Thereby, it is possible to reduce exhaust emissions. In addition, it is possible to increase the pressure of the exhaust gas circulated by the pressure wave supercharger 20.
A second embodiment of the present invention will be described with reference to
In the present embodiment, similarly to the first embodiment, the supercharging mode is switched to the PW supercharging mode, the EGR supercharging mode, and the TC supercharging mode. These supercharging modes are also switched by the control routine in
In the TC supercharging mode, the second control valve 11 is fully opened and the valve plate 28 is switched to the disconnection state. Thereby, since it is possible to prevent the inflow of the intake gas into the pressure wave supercharger 20, it is possible to supercharge the engine 1 by only the turbocharger 10. Moreover, in the TC supercharging mode, the rotor 22 is stopped. By controlling the valve plate 28 as mentioned above, the ECU40 functions as a connection control device of the present invention.
According to the second embodiment, since it is possible to omit the first control valve 9, the exhaust gas control valve 15, and the switching valve 18, it is possible to reduce the costs. In the present embodiment, the rotor 22 may rotate in the TC supercharging mode. In this case, it is possible to start the operating of the pressure wave supercharger 20 quickly when the supercharging mode is switched from the TC supercharging mode to the PW supercharging mode or the EGR supercharging mode.
A third embodiment of the present invention will be described with reference to
According to the present embodiment, since the other end of the PCV passage 50 is connected to the intake passage 3 at the upstream side of the compressor 10a. Thereby, it is possible to vacuum the blow-by gas generated in the engine main body 2 by the negative pressure of the inlet of the compressor 10a sufficiently. Accordingly, it is possible to perform the ventilation of the blow-by gas in the crankcase sufficiently. Furthermore, since the other end of the PCV passage 50 is connected to the second branch passage 6, it is possible to prevent that the blow-by gas flows into the pressure wave supercharger 20. Accordingly, it is possible to prevent that the rotor 22 is locked by oil contained in the blow-by gas. The other end of the PCV passage 50 may be connected to a section of the intake passage 3 that is located downstream of the branch point of the first branch passage 5 and upstream of the compressor 10a. Thereby, it is possible to prevent that the blow-by gas flows into the pressure wave supercharger 20. While the second control valve 11 is omitted in the embodiment in
A fourth embodiment of the present invention will be described with reference to
The low supercharging mode will be described with reference to
In this embodiment, the supercharging modes are switched in accordance with the operation state of the engine 1.
On the other hand, if the ECU 40 determines that the preparation flag is ON, the ECU 40 proceeds to step S23 and switches the supercharging mode to the re-acceleration preparation mode. Specifically, the first control valve 9 is fully opened. The second control valve 11 is fully closed. The switching valve 18 is controlled so that the exhaust gas is led to the pressure wave supercharger 20. The exhaust gas control valve 15 is fully opened. The first motor 29 and the second motor 30 are controlled so that the pressure wave supercharger 20 operates in the low supercharging mode. At this time, the motors 29 and 30 are controlled so that the rotor 22 rotates at the rotation number calculated preliminarily, and the offset angle θ is changed to an angle calculated preliminarily. By executing this process, the ECU 40 functions as a re-acceleration preparation device of the present invention.
In next step S24, the ECU 40 determines whether or not the operation state of the engine 1 is outside the changeover range Ac. If the ECU 40 determines that the operation state of the engine 1 is within the changeover range Ac, the ECU 40 returns to step S23. The ECU 40 repeats the steps S23 and S24 until the operation state of the engine 1 becomes outside the changeover range Ac. On the other hand, if the ECU 40 determines that the operation state of the engine 1 is outside the changeover range Ac, the ECU 40 proceeds to step S25 and turns off the preparation flag. Thereafter, the ECU 40 proceeds to step S26 in
In step S26, the ECU 40 determines whether or not the operation state of the engine 1 is within the high rotation range Ah. If the ECU 40 determines that the operation state of the engine 1 is within the low rotation range Al, the ECU 40 proceeds to step S15 and switches the supercharging mode to the PW supercharging mode. In step S27, the ECU 40 turns off the preparation flag. Thereafter, the ECU 40 ends the current control routine.
On the other hand, if the ECU 40 determines that the operation state of the engine 1 is within the high rotation range Ah, the ECU 40 proceeds to step S13 and switches the supercharging mode to the TC supercharging mode. In step S28, the ECU 40 determines whether or not the operation state of the engine 1 is within a changeover preparation range Ap. The changeover preparation range Ap is provided as a reference to determine whether or not the pressure wave supercharger 20 is prepared to operate in the low supercharging mode. As shown in
On the other hand, if the ECU 40 determines that the operation state of the engine 1 is within the changeover preparation range Ap, the ECU 40 proceeds to step S29 and determines whether or not the engine 1 is decelerating. This determination may be performed on the basis of a change of the rotation number of the engine 1, for example. If the ECU 40 determines that the engine 1 is not decelerating, the ECU 40 ends the current control routine.
On the other hand, the ECU 40 determines that the engine 1 is decelerating, the ECU 40 proceeds to step S30 and calculates the rotation number of the rotor 22 and the offset angle θ in order to operate the pressure wave supercharger 20 in the low supercharging mode. These values correspond to target values of the present invention. The rotation number of the rotor 22 is calculated on the basis of the rotation number of the engine 1 so that the supercharging pressure does not decrease suddenly even though the supercharging mode is switched from the TC supercharging mode to the re-acceleration preparation mode. Specifically, the rotation number of the rotor 22 increases as the rotation number of the engine 1 increases. The offset angle θ is calculated in accordance with the amount (hereafter referred to as the bypass amount) of the intake gas to be discharged from the pressure wave supercharger 20 to the exhaust passage 4 in the low supercharging mode. The bypass amount increases as the rotation number of the engine 1 increases. The bypass amount increases as the offset angle θ decreases. The offset angle θ decreases as the rotation number of the engine 1 increases and the bypass amount increases. By executing this process, the ECU 40 functions as a calculation device of the present invention. In step S31, the ECU 40 turns on the preparation flag. Thereafter, the ECU 40 ends the current control routine.
According to this embodiment, the supercharging mode is switched to the re-acceleration preparation mode when the engine 1 decelerates and the operation state of the engine 1 transitions from the high rotation range Ah to the low rotation range A1. Thereby, the rotor 22 of the pressure wave supercharger 20 rotates faster than the normal mode. In this case, it is possible to increase the supercharging pressure by only changing the offset angle θ when the engine 1 is requested re-acceleration. Accordingly, it is possible to re-accelerate the engine 1 quickly. In the low supercharging mode, the ECU 40 may not control both the rotation number of the rotor 22 and the offset angle θ. The ECU 40 may switch the supercharging mode to the low supercharging mode by controlling only one of them.
A fifth embodiment of the present invention will be described with reference to
The second control valve 11 is opened when the supercharging mode is switched from the PW supercharging mode to the PW+TC supercharging mode. Thereby, since both the first control valve 9 and the second control valve 11 are opened, the amount of the intake gas supplied to the cylinders 2a increases suddenly. Hereinafter, the increased amount in this case will be also referred to as the increased air amount because air flows through the second branch passage 6. In this embodiment, the amount of air which is supplied to the cylinders 2a via the pressure wave supercharger 20 is decreased preliminarily by the increased air amount before the second control valve 11 is opened. Thereafter, the second control valve 11 is opened. Hereinafter, this control will be referred to as a mode switching control.
On the other hand, if the ECU 40 determines that the operation state of the engine 1 is outside the low rotation range Apw, the ECU 40 proceeds to step S43 and determines whether or not the second control valve 11 is opened. If the ECU 40 determines that the second control valve 11 is opened, the ECU 40 proceeds to step S48 by skipping steps S44 to S47. On the other hand, if the ECU 40 determines that the second control valve 11 is closed, the ECU 40 proceeds to step S44 and estimates the increased air amount. As well known, since the compressor 10a is driven by the turbine 10b, the increased air amount depends on the flow rate of exhaust gas. Since the flow rate of exhaust gas varies with the rotation number and the load of the engine 1, it is possible to estimate the increased air amount based on the rotation number and the load of the engine 1. For example, the relations among the rotation number and the load of the engine 1, and the increased air amount are obtained in advance through experiments or the like and stored as a map in the ROM of the ECU 40. The increased air amount may be estimated by referring the map.
In next step S45, the ECU 40 calculates a target rotation number of the rotor 22 and a target angle of the offset angle θ for the mode switching control. As mentioned above, in the mode switching control, the amount of air which is supplied to the cylinders 2a via the pressure wave supercharger 20 is decreased by the increased air amount. In this case, by increasing the amount of the exhaust gas circulated from the pressure wave supercharger 20, the amount of the air is decreased. The amount of the exhaust gas circulated from the pressure wave supercharger 20 is increased as the rotation number of the rotor 22 is decreased. Moreover, the amount of the circulated exhaust gas is increased as the offset angle θ is decreased when the rotation number of the rotor 22 is decreased. Thereby, the target rotation number may be calculated based on the increased air amount so that the target rotation number is decreased as the increased air quantity is increased. The target angle may be calculated based on the increased air amount so that the target angle is decreased as the increased air amount is increased. For example, the relation between the increased air amount and the target rotation number and relation between the increased air amount and the target angle are obtained in advance through experiments or the like and stored as maps in the ROM of the ECU 40. The ECU 40 may calculate the target rotation number and the target angle by referring the maps. If the pressure wave supercharger 20 is operated in the EGR mode, the calculation results may be corrected so that the ratio of the exhaust gas in the intake gas is not changed.
In next step S46, the ECU 40 executes the mode switching control using the target rotation number and the target angle calculated as above. Specifically, the first motor 29 is controlled so that the rotation number of the rotor 22 reaches the target rotation number. The second motor 30 is controlled so that the offset angle θ reaches the target angle. The second control valve 11 is then fully opened. In next step S47, the ECU 40 determines whether or not a predetermined termination condition is satisfied. The predetermined termination condition is determined to be satisfied if a predetermined time elapses after the mode switching control is performed, for example. If the ECU 40 determines that the predetermined termination condition is not satisfied, the ECU 40 returns to step S46 and repeats steps S46 and S47 until the predetermined termination condition is satisfied.
On the other hand, if the ECU 40 determines that the predetermined termination condition is satisfied, the ECU 40 proceeds to step S48 and determines whether or not the operation state of the engine 1 is within the high rotation range Atc. If the ECU 40 determines that the operation state of the engine 1 is within the high rotation range Atc, the ECU 40 proceeds to step S49 and switches the supercharging mode to the TC supercharging mode. Thereafter, the ECU 40 ends the current control routine. On the other hand, if the ECU 40 determines that the operation state of the engine 1 is not within the high rotation range Atc, the ECU 40 proceeds to step S50 and switches the supercharging mode to the PW+TC supercharging mode. In this case, if the operation state of the engine 1 is within the EGR range Aegr, the first motor 29 and the second motor 30 are controlled so that the pressure wave supercharger 20 is operated in the EGR mode. Thereafter, the ECU 40 ends the current control routine.
As mentioned above, according to this embodiment, if the second control valve 11 is opened, the amount of air supplied to the cylinder 2a is first decreased by the increased air amount. Thereafter, the second control valve 11 is opened. Thereby, it is possible to suppress the sudden increase of the amount of air supplied to the cylinder 2a when the second control valve 11 is opened. Accordingly, it is possible to suppress increasing of nitrogen oxides (NOx) in the exhaust gas when the second control valve 11 is opened. In the mode switching control, the ECU 40 may not control both the rotation number of the rotor 22 and the offset angle θ. The ECU 40 may control only one of them.
A sixth embodiment of the present invention will be described with reference to
The pressure wave supercharger 20 of this embodiment is the same to that described in the second embodiment. Accordingly, by switching the valve plate 28 to the disconnection state and stopping the rotor 22, it is possible to prevent the exhaust gas from flowing to downstream of the pressure wave supercharger 20.
In this embodiment, the exhaust gas is pressurized and stored in the in the pressure accumulation tank 64 if a predetermined charging condition is satisfied. The stored exhaust gas is used if a predetermined assist condition for assisting in operations of the turbocharger 10 is satisfied, if the engine 1 stops, or the like.
In step S11 of this control routine, the ECU 40 first obtains the operation state of the engine 1. In next step S61, the ECU 40 determines whether or not the predetermined charging condition is satisfied. The predetermined charging condition is determined to be satisfied if the vehicle mounted with the engine 1 is decelerating and the pressure in the pressure accumulation tank 64 is less than a predetermined charging pressure, for example. If the ECU 40 determines that the charging condition is not satisfied, the ECU 40 proceeds to step S64 by skipping steps S62 and S63.
On the other hand, if the ECU 40 determines that the charging condition is satisfied, the ECU 40 proceeds to step S62 and executes a charging control for storing the exhaust gas in the pressure accumulation tank 64. In the charging control, the EGR valve 63 and the bypass valve 67 are closed. The first motor 29 is controlled so as to stop the rotor 22. The second motor 30 is controlled so as to switch the state of the valve plate 28 to the disconnection state. The assist valve 66 is opened. As a result, it is possible to store the exhaust gas discharged from the cylinder 2a in the pressure accumulation tank 64.
In next step S63, the ECU 40 determines whether or not a predetermined charging termination condition is satisfied. The charging termination condition is determined to be satisfied if the running state of the vehicle changes to any other state than deceleration or if the pressure in the pressure accumulation tank 64 exceeds the charging pressure, for example. If the ECU 40 determines that the charging termination condition is not satisfied, the ECU 40 returns to step S62 and repeats steps S62 and S63 until the charging termination condition is satisfied.
On the other hand, if the ECU 40 determines that the charging termination condition is satisfied, the ECU 40 proceeds to step S64 and executes a charging termination control. In the charging termination control, first, the assist valve 66 is fully closed. Thereafter, the EGR valve 63 and the bypass valve 67 are released from the control that keeps these valves fully closed. Furthermore, the first motor 29 and the second motor 30 are released from the control that these motors 29, are kept in stopped state so as to be able to supercharge the engine 1 by the pressure wave supercharger 30. Thereafter, the ECU 40 ends the current control routine.
If the ECU 40 determines that the assist condition is satisfied, the ECU 40 proceeds to step S72 and executes an assist control. In the assist control, first, the EGR valve 63 is closed. Then, the assist valve 66 is opened. Thereafter, the ECU 40 ends the current control routine. On the other hand, if the ECU 40 determines that the assist condition is not satisfied, the ECU 40 proceeds to step S73 and stops the assist control. In this process, first the assist valve 66 is closed. Then, the EGR valve 63 is released from the control that keeps this valve fully closed. Thereafter, the ECU 40 ends the current control routine.
On the other hand, the ECU 40 determines that the engine stop condition is satisfied, the ECU 40 proceeds to step S82 and executes a cylinder pressure increase control. In the cylinder pressure increase control, first, the second control valve 11 and the EGR valve 63 are closed. Then, the assist valve 66 is opened. Thereby, since the exhaust gas in the pressure accumulation tank 64 assists in operations of the pressure wave supercharger 20, the pressure in each cylinder 2a increases. In next step S83, the ECU 40 determines whether or not the rotation number of the engine 1 is lower than or equal to a predetermined rotation number. This predetermined rotation number is set as a criterion to determine whether or not the engine 1 stops. If the ECU 40 determines that the rotation number of the engine 1 is higher than the predetermined rotation number, the ECU 40 returns to step S82 and repeats steps S82 and S83 until the rotation number of the engine 1 becomes lower than or equal to the predetermined rotation number.
On the other hand, the ECU 40 determines that the rotation number of the engine 1 is lower than or equal to the predetermined rotation number, the ECU 40 proceeds to step S84 and stops the cylinder pressure increase control. In this process, first, the assist valve 66 is closed. Then, the second control valve 11 and the EGR valve 63 are released from the control that keeps these valves fully closed. Thereafter, the ECU 40 ends the current control routine.
According to this embodiment, it is possible to assist the turbocharger 10 by the exhaust gas stored in the pressure accumulation tank 64. Thereby, it is possible to start the turbocharger 10 quickly when the supercharging mode is switched. Accordingly, it is possible to switch the supercharging modes to each other smoothly. Furthermore, in this embodiment, since the pressure in the cylinder 2a is increased when the engine 1 stops, the engine 1 stops while the pressure in the cylinder 2a remains high. Thereby, since it is possible to increase the pressure in the cylinder 2a quickly at the next startup, it is possible to start the engine 1 quickly.
In addition, in this embodiment, the valve plate 28 may switch to the disconnection state and the rotor 22 may stop when starting the engine 1 of the engine body 2 whose temperature approximates to the ambient temperature. Thereby, since it is possible to increase the temperature of the exhaust gas in the exhaust passage 4, it is possible to warm up the catalyst 14 quickly.
The present invention is not limited to the above-described embodiments, and may be executed in various modes. For example, the engine to which the supercharging system of the present invention is applied is not limited to the diesel engine. The present invention may be applied to a spark-ignited internal combustion engine that uses a spark plug to ignite air-fuel mixture led into the cylinder. The turbocharger may be provided with a variable nozzle that changes a flow passage area of an inlet of the turbine. The turbocharger may also be provided with a waste gate valve that decreases an amount of exhaust gas flowing into the turbine.
The above described embodiments may be combined appropriately with each other, as long as they do not bother each other. For example, the third embodiment may be combined with the other embodiments.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/067419 | 10/6/2009 | WO | 00 | 4/5/2012 |