1. Field of the Invention
The invention described herein relates to the field of superconductivity, and more specifically relates to circuits and techniques for implementing digital quadrature mixers using Josephson junctions.
2. Related Art
Josephson junctions are quantum-mechanical circuit elements of superconducting devices. The Josephson effect in particular results from two superconductors acting to preserve long-range order across a barrier, such as an insulating barrier. With a thin enough barrier, the phase of the electron wave function in one superconductor maintains a fixed relationship with the phase of the wave function in another superconductor. This linking up of phases is called phase coherence.
A Josephson junction is the interface between two superconducting materials separated by a non-superconducting barrier. A current may flow freely within the superconductors but the barrier prevents the current from flowing freely between them. However, a supercurrent may tunnel through the barrier depending on the quantum phase of the superconductors. The amount of supercurrent that may tunnel through the barriers is restricted by the size and substance of the barrier. The maximum value the supercurrent may obtain is called a critical current of the Josephson junction.
Josephson junctions have two basic electrical properties. The first is that the junctions have inductive reactance. That is, similar to inductors, the voltage difference across the junction is related to the time rate of change of the current. The second is that a constant voltage across the junction will produce an oscillating current through the barrier, and vice versa. Thus, Josephson junctions convert a direct current voltage to an alternating current.
A family of logic/memory devices were proposed using Josephson junctions the IEEE Transactions on Applied Superconductivity, Volume 1, Number 1, March 1991, by K. K. Likharev and V. K. Semenov in an article entitled, RSFQ Logic/Memory Family: A New Josephson junction Technology For Sub-Terahertz-Clock-Frequency Digital Systems. That article is hereby incorporated by reference in its entirety into specification of this application.
RSFQ circuits are widely recognized as the fastest digital circuits in any electronic technology, and this is also true of RSFQ digital mixers. The digital mixers described in the present invention constitute the first practical circuits for the implementation of digital mixers in a complete RSFQ digital receiver system, and have been demonstrated for clock speeds up to 40 GHz.
Prior art attempts at producing digital mixers in the superconducting domain required synchronism between an incoming signal and a reference signal.
The invention described herein is related to circuits and techniques for implementing digital mixers utilizing Josephson junction technology, which don't require synchronism between the incoming signal and a reference signal.
The purpose of the invention is to provide a digital quadrature mixer, which overcomes the problems of the prior art.
An important component of any digital receiver is a digital I/Q Mixer for converting narrowband (about 5 MHz) signals down from a few GHz. To achieve this goal with maximum efficiency the invention uses a circuit that is similar in principle to the Gilbert quadrature mixer. See article by B. Gilbert, “A Precise Four Quadrant Multiplier With Sub nanosecond Response,” IEEE. J. Solid-State Circuits, Vol. SC-3, pp. 365-373, December 1968. The basic idea of this mixer is to use square waves as a local oscillator signal instead of sine waves. The mathematical representation of a square wave is G(t)=sign[sin(ωLO·t)], where ωLO·t is a local oscillator frequency. The digital version of such a mixer is comparably easy to implement in RSFQ in case of single-bit coding, such as at the output of a delta-sigma modulator.
The first implementation of a square wave digital mixer in RSFQ is shown in
To avoid this problem, we have designed a second novel mixer performing single-bit-stream XOR multiplication (
The multiplexer cell is shown in
We have designed and fabricated the
The multiplexing is done by two 2×1 RSFQ switches. The basic switch cell shown in
Both switches are controlled by a resettable T flip-flip binary tree. See description of T1 cell in S. Polonsky, et al., “Single Flux Quantum T flip-flop and its possible applications”, IEEE trans. On Appl. Supercond., vol. 4, p. 9, 1994, for the schematics and optimal parameters of the resettable TFF. The TFF tree converts a periodic reference signal into a control sequence of the switches, effectively creating two 90-degree phase-shifted Local Oscillator square-wave signals of a half reference signal frequency.
Each of the three mixers described heretofore have their advantages and drawbacks. The circuit shown in
The digital I/Q Mixer employing XOR operation shown in
The streaming I/Q Mixer shown in
The XOR mixer shown in
The streaming I/Q Mixer shown in
The AND gate mixer shown in
The normalized “Personal Superconducting Circuit ANalayzer” (Polonsky, S.; Shevchenko, P.; Kirichenko, A.; Zinoviev, D.; Rylyakoy, A., “PSCAN'96: New Software for Simulation and Optimization of Complex RSFQ Circuits”, IEEE Transactions on Applied Superconductivity, Volume 7, Issue 2, June 1997 Page(s): 2685-2689) (PSCAN) units are normalized to 125 pA for junction critical currents in and bias current values I, and to 2.63 pA for inductance values L.
This cell functions as a Non-Destructive Read-Out with a single bit memory. One can change the state of the NDRO by applying the Reset or Set inputs. If the cell is in state “1”, then the Read input pulse goes to the Output. If the cell is in state “0”, then the Read input pulse is prevented from going to the Output.
The normalized PSCAN values for the circuit of
J1=3.15, J2=2.19, J3=2.21, J4=2.63, J5=1.32, J6=2.34, J7=2.39, J8=2.54, J9=2.02, J10=2.13,
I1=1.80, I2=2.42, I3=1.93,
LQ1=0.16, LQ2=0.16,
L1=1.37, L2=0.48, L3=0.10, L4=0.80, L5=0.53, L6=1.68, L7=0.66, L8=0.61, L9=0.32,
LJ2=0.80, LJ3=0.49, LJ4=0.21, LJ5=0.16, LJ6=0.25, LJ7=0.19,
XN=1.00.
This RSFQ logic circuit functions as a multiplexer or demultiplexer, combining two input pulse streams into a single output stream or conversely. This was described in the U.S. Pat. No. 5,982,219, invented by A. Kirichenko (1999).
The normalized PSCAN values for the circuit of
The normalized PSCAN values for the circuit of
I1=2.04, I2=4.45, I3=0.83,
J2=1.41, J3=1.41, J4=1.96, J5=2.42, J6=2.94, J7=2.82, J8=2.43, J9=1.96, J10=1.00,
L1=1.50, L2=0.30, L3=0.31, L4=0.74, L5=0.70, L6=2.28, L7=1.20, L8=1.20, L9=0.94, L10=2.00, L13=1.00,
LJ2=0.08, LJ3=0.29, LJ4=0.19, LJ5=0.09, LJ7=0.45,
LQ=0.23, LQ2=0.02.
Turning to
While various embodiments of the present invention have been illustrated herein in detail, it should be apparent that modifications and adaptations to those embodiments may occur to those skilled in the art without departing from the scope of the present invention as set forth in the following claims.
The present application is a continuation of U.S. application Ser. No. 11/243,019, filed Oct. 4, 2005, now U.S. Pat. No. 7,680,474, the entirety of which is expressly incorporated herein by reference.
This invention was made with Government support under Contract Numbers N00014-02-C-0005, N00014-03-C-0082 and N00014-03-C-0370 awarded by the Department of the Navy. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5406216 | Millman et al. | Apr 1995 | A |
5631929 | Jones et al. | May 1997 | A |
5818373 | Semenov et al. | Oct 1998 | A |
5963351 | Kaplounenko et al. | Oct 1999 | A |
6420895 | Herr et al. | Jul 2002 | B1 |
6724216 | Suzuki et al. | Apr 2004 | B2 |
6836154 | Fredriksson | Dec 2004 | B2 |
6917537 | Bunyk | Jul 2005 | B2 |
7257609 | Kosunen et al. | Aug 2007 | B1 |
7944253 | Kirichenko | May 2011 | B1 |
20040022332 | Gupta et al. | Feb 2004 | A1 |
20040120299 | Kidiyarova-Shevchenko et al. | Jun 2004 | A1 |
20050235027 | Jung et al. | Oct 2005 | A1 |
20070021933 | Sanduleanu et al. | Jan 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11243019 | Oct 2005 | US |
Child | 12725426 | US |