This application claims the benefit of priority from European Patent Application No. 10 305 216.3, filed on Mar. 4, 2010, the entirety of which is incorporated by reference.
The invention relates to a superconductive electric direct current cable in accordance with the preamble of claim 1.
Such a cable is disclosed in WO 2008/148390 A1
In today's technology, superconductive cables include electric conductors of a composite material which includes ceramic material that changes into the superconductive state when the temperature is sufficiently low. The electric direct current resistance of an appropriately constructed conductor is zero when cooled appropriately, as long as a certain current strength is not exceeded. Suitable ceramic materials are, for example, BSCCO (Bismuth-Strontium-Calcium-Copper-Oxide) as material of the first generation, or ReBCO (Rare-earth-Barium-Copper-Oxide), particularly YBCO (Yttrium-Barium-Copper-Oxide), as material of the second generation. Sufficiently low temperatures for bringing these types of materials into the superconductive state are between 67 K and 90 K. Suitable cooling agents are, for example, Nitrogen, Helium, Neon and Hydrogen or mixtures of these materials.
A direct current cable, in the following called “cable”, as they are described hereinabove, may, for example, be used as a current supply cable on ships or as connecting cable between points of intersection within a transmission network as well as a connecting cable between different transmission networks. The cable can be, for example, an arrangement for a high-voltage direct current transmission (HVTCT), which can be used for bridging longer distances, for example, as sea cable. Compared to superconductive alternating current cables, superconductive direct current cables have the advantage that there are no electric direct current losses. In addition, the direct current cables are not burdened with charging currents and there are no undesired inductive voltage drops.
The above-mentioned WO 2008/148390 A1 discloses a two-phase electric cable for the current supply of users of electrical current. The cable is constructed as a superconductive cable with two-phase conductors which are combined with each other to form a unit by an inner dielectric and are combined into unit by an inner dielectric from each other. The cable is arranged in a cryostat which is composed of two concentric tubes between which a vacuum insulation is arranged. The cooling agent for producing the superconductive state of the phase conductors is conducted through the cryostat. The cooling of such a cable is problematic because the dielectric constitutes a thermal insulation for the cooling of the superconductive phase conductor.
The invention is based on the object of constructing the above-described cable in such a way that in a simplified construction a good cooling of the superconductive conductor is possible.
This object is met in accordance with the characterizing features of claim 1.
This cable is of simple and compact construction. Each conductor is composed of a plurality of superconductive elements which are located in the outer area of the support, so that these elements or their respective conductors are cooled directly by a cooling agent moved through the cryostat. The number of superconductive elements is easily changeable, so that the cable can be adapted in a simple manner to different current strengths with an appropriately variable requirement of superconductive materials. The construction of the cable can be changed in the manner of a module by a different number of grooves in which a respective plurality of superconductive elements are accommodated. An increased number of grooves is always a whole number multiple of “2”. The external magnetic field of the cable is minimized by the spatial proximity of the conductors. The cable is in its totality thermally insulated by the cryostat.
In a preferred embodiment, the grooves extend in the longitudinal direction of the support helically around the support.
Embodiments of the subject matter of the invention are illustrated in the drawings.
In the drawings:
In
In the embodiment according to
The carrier 4 is illustrated with a circular cross section. However, the carrier form may also have a different cross sectional shape, for example, a polygonal shape. In the carrier 4, two outwardly open grooves 5 and 6 are provided which are located diametrically opposite each other. They advantageously extend helically around the carrier 4.
Arranged in the grooves 5 and 6 of the carrier 4 are as phase conductors of a superconductive cable electric conductors 7 and 8 of superconductive material. The construction thereof is apparent from the more detailed illustration of
The carrier 4 is illustrated in
The conductors 7 and 8 of the cable are each composed of a plurality of superconductive elements with small cross sectional dimensions, as can be seen in
The superconductive elements 12 of the conductors 7 and 8 can be constructed in accordance with
The description provided above is also applicable, as already mentioned, to cables with more than two superconductive conductors 7 and 8, wherein the number of conductors is always a whole number multiple of “2”.
Number | Date | Country | Kind |
---|---|---|---|
10 305 216.3 | Mar 2010 | EP | regional |