This disclosure relates to superconducting fault current limiters, and more particularly to a superconducting fault current limiter recovery system.
A superconducting fault current limiter (SCFCL) is a device that limits fault currents in a power system. The power system may include transmission and distribution networks to deliver power to differing industrial, commercial, and residential loads. A fault current is an abnormal current in an electrical circuit due to a fault such as a short circuit resulting in a short circuit current. A fault current may occur due to any number of events or failures such as severe weather damaging power lines and components, e.g., lighting striking the power system. When faults occur, a large load appears instantaneously. The network, in response, delivers a large amount of current (i.e. fault current) to this load or, in this case, the faults. This surge or fault current condition is undesirable since it may damage the network or equipment connected to the network.
A SCFCL includes a superconductor positioned in a cryogenic tank. The superconductor is in a superconducting state having zero resistance during a steady state condition. To maintain the superconductor in the superconducting state, the superconductor is operated below its critical temperature, critical current density, and critical magnetic field. If any one of these three is exceeded, the superconductor quenches from its superconducting state to a normal state and exhibits a resistance. To maintain the superconductor at a temperature below its critical temperature, a refrigeration system provides a cryogenic cooling fluid to the cryogenic tank housing the superconductor.
Although the power system 100 is effective, it is sometimes necessary for the power system 100 to quickly recover from fault conditions. However, the SCFCL 106 may not be prepared to quickly return to normal protective operations. For instance, the superconductor of the SCFCL 106 may increase in temperature to a level above its critical temperature during the fault condition. The temperature of the superconductor must be returned to a level below its critical temperature in order to return to its superconducting state. An associated refrigeration system takes time to cool the superconductor back to a temperature below its critical temperature. This delays return to the steady state condition and may delay closing of the circuit breaker 108 after recovery from a fault condition.
Accordingly, there is a need in the art for an SCFCL recovery system that overcomes the above-described inadequacies and shortcomings.
According to a one aspect of the disclosure, a superconducting fault current limiter recovery system is provided. The superconducting fault current limiter recovery system includes a superconducting fault current limiter, a shunt electrically coupled in parallel with the superconducting fault current limiter, and a bypass path also electrically coupled in parallel with the superconducting fault current limiter.
According to another aspect of the disclosure, another superconducting fault current limiter recovery system is provided. The superconducting fault current limiter recovery system includes a superconducting fault current limiter, a shunt electrically coupled in parallel with the superconducting fault current limiter, a bypass path also electrically coupled in parallel with the superconducting fault current limiter, the bypass path having a first switch, a second switch electrically coupled in series with the superconducting fault current limiter, the second switch also electrically coupled in parallel with the bypass path, and a controller. The controller is configured to control a state of the first switch and the second switch to open the first switch and close the second switch during a steady state condition so a load current flows through the superconducting fault current limiter during the steady state condition, and to close the first switch and open the second switch during a bypass condition occurring after a fault condition so the load current flows through the bypass path during the bypass condition.
For a better understanding of the present disclosure, reference is made to the accompanying drawings, in which like elements are referenced with like numerals, and in which:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention, however, may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout.
Turning to
Only selected portions of the SCFCL 206 are illustrated and those skilled in the art will recognize the SCFCL 206 may include other components. The SCFCL 206 may include a cryogenic tank 202 defining a chamber 203, a superconductor 209 positioned in the chamber 203, a refrigeration system 212, a temperature sensor 208, and a current sensor 226. For clarity of illustration, only one SCFCL 206 for one phase is illustrated. Those skilled in the art will recognize that there may be three SCFCLs (one for each phase) of a three phase AC power system.
The cryogenic tank 202 may be fabricated of differing materials such as dielectric materials and/or thermally insulating materials. The superconductor 209 may be any type of superconducting material such as yttrium barium copper oxide (YBCO) that exhibits superconducting properties when held below its critical temperature, critical current density, and critical magnetic field. The superconductor 209 may have different modules depending on the amount of superconducting material required. The refrigeration system 212 is configured to provide a cryogenic liquid to the cryogenic tank 202 via a supply conduit 216 and to receive the same via a return conduit 214. The refrigeration system 212 may include a cryogenic cooling unit to cool the input cryogenic fluid received from the return conduit 214 before providing cooled cryogenic fluid back via the supply conduit 216. The refrigeration system 212 may include valves, pumps, and sensors. The refrigeration system 212 may also include a storage tank to store additional cryogenic cooling fluid. The cryogenic cooling fluid may be liquid nitrogen, liquid helium, liquid argon, liquid neon, etc. and/or mixtures of the same.
The controller 230 can be or include a general-purpose computer or network of general-purpose computers that may be programmed to perform desired input/output functions. The controller 230 can also include other electronic circuitry or components, such as application specific integrated circuits, other hardwired or programmable electronic devices, discrete element circuits, etc. The controller 230 may also include communication devices, data storage devices, and software. The controller 230 may receive input signals from a variety of systems and components such as the first switch S1, the second switch S2, the refrigeration system 212, the temperature sensor 208, the current sensor 226, etc. to determine a condition of one or more components and also to control the same. The temperature sensor 208 is illustrated as being on the outside of the cryogenic tank 202 but may be positioned in other locations as well to monitor the temperature of the superconductor 209 and/or the cryogenic cooling fluid inside the chamber 203. The current sensor 226 may be positioned to monitor in real time the current draw on conductor 105. Any type of current sensor may be utilized such as a current transformer positioned about the conductor 105. The fuse 232 may be an electrical protection device selected to provide protection to loads when current is bypassing the SCFCL 206. In one embodiment, the fuse 232 may include a superconductor that electrically opens if a fault occurs during a bypass condition when load current is flowing through the bypass path 250.
In operation, during a steady state condition the superconductor 209 is in a superconducting state. The refrigeration system 212 provides a cryogenic liquid to the cryogenic tank 202 via the supply conduit 216 and receives return cryogenic liquid to be re-cooled via the return conduit 214. The temperature of the superconductor 209 remains below its critical temperature. The critical temperature may be between about 77° K and 93° K for high temperature superconductors.
During this steady state condition, the controller 230 maintains the first switch S1 (normally open) in an open state and the second switch S2 (normally closed) in a closed state as illustrated in
During a fault condition, a fault current causes the temperature of the superconductor 209 to nearly instantaneously exceed its critical temperature, and hence the superconductor 209 quenches. The superconductor 209 in this state exhibits a much higher resistance than the shunt 114. Hence, the fault current is commutated through the shunt 114 which effectively limits the peak to peak value of the fault current before the circuit breaker 108 is opened.
Turning to
During this bypass condition (with the first switch S1 closed and the second switch S2 open as illustrated in
If a fault occurs during the bypass condition when the first switch S1 is closed and the second switch S2 is open, the fuse 232 may blow or open causing fault current to be commutated back through the shunt 114 before the circuit breaker 108 re-opens. As earlier detailed, in one embodiment the fuse 232 may be an electrical protection device selected to provide protection to loads during this bypass condition. In one embodiment, the fuse 232 may include a superconductor that electrically opens if a fault occurs during the bypass condition.
Accordingly, there has been provided a SCFCL recovery system having a bypass path electrically coupled in parallel with a SCFCL. The bypass path may include a first switch S1 operable to selectively employ the bypass path. Advantageously, the bypass path enables the SCFCL to be bypassed for a recovery time interval as it returns the superconductor to a superconducting state after a fault condition. In this way, the time for recovery after a fault condition is minimized. In one example, the time to recover from a fault condition may be on the order of only milliseconds as opposed to seconds. While the bypass path is utilized, the a refrigeration system of the SCFCL may cool a heated superconductor back down below its critical temperature before the SCFCL recovery system returns to a steady state condition.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes.
This application claims the benefit of provisional patent application No. 61/495,192, filed Jun. 9, 2011, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20080103051 | Park et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
0926797 | Jun 1999 | EP |
0926797 | Jun 1999 | EP |
2439764 | Jan 2008 | GB |
2439764 | Jan 2008 | GB |
2010081162 | Jul 2010 | WO |
WO2010081162 | Jul 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120316069 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61495192 | Jun 2011 | US |