The present invention relates to the field of superconductor fault current limiters and, in particular, discloses a High Temperature Superconductor (HTS) Fault Current Limiter (FCL) having a compact design utilising either split or solid limb cores or a combination of both.
The discovery of high temperature superconductors has lead to the development of a number of applications for their use. Superconductors are known to have the property that they have zero direct current (DC) resistance below a critical temperature Tc. They also have zero DC resistance below a critical current Ic and a critical magnetic field Bc.
One potential use of HTS is in FCLs. HTS can be used in FCLs in a number of ways, and the use of HTS to limit fault currents is an elegant solution to the ever-present short circuit threat in power networks.
There are several different methods to incorporate HTS in an FCL design.
Similarly, two series of alternating current (AC) linkage windings, including a first winding having sectional portions 10, 11 and a second winding having portions 12, 13 are also provided, with each of the windings having n turns.
Each of the iron cores structures has a given height h and a given width w. During operation, each core is saturated to a predetermined flux density value φdc of opposite sense, with the opposite sense being indicated by standard dot notation 16, 17. The DC current flows out of the page 16 in the positive cycle saturated core 5, 6, and into the page 17 in the negative cycle saturated core 7, 8. These points on the DC magnetisation curve of the cores are represented as ±Bdc and ±Hdc, respectively.
The required ampere-turns of each HTS DC coil 5, 6 and 7, 8 is given by
NI=2(2w+2h)Hdc (1)
where N is the number of DC turns, I is the HTS coil excitation DC current, w is the effective core structure width in the plane of the paper of
The AC windings 10, 11 and 12, 13 are then arranged such that the differential permeability μdiff from each AC coil is in the opposite sense to each windings' core magnetisation. The variable, μdiff is defined by
μdiff=(dB/dH)|average=ΔB/ΔH (2)
where ΔB and ΔH are the maximum extents of the minor hysteresis loop at the DC bias points ±Bdc and ±Hdc, respectively.
In addition, the relative differential permeability may be defined as
μdiff=μdiff/4π*10−7.
For reference, the magnetic reluctance of the iron core presented to the DC coil is
R=(Hl)/(BA)=l/μA (3)
where R is the magnetic reluctance [H−1], B is the magnetic field [T], A is the cross-sectional area of the iron core (not including any insulation or varnished area) [m2], μ is the magnetic permeability of the iron core [Hm−1], l is the magnetic length of each core that is approximately equal to 2w+2h [m], and H is the magnetic induction (NI/l) [Am−1].
The steady state AC impedance presented to the network line in which the core is in series may be expressed in phasor notation as
Z=R+2πf(n2A/l)μdiffi (4)
where R is the resistance of the AC coils, f is the frequency of operation (i.e. 50 Hz), i is the square root of −1 (the imaginary number), and n is the number of turns of the AC winding. R is normally negligible compared to the imaginary part of the impedance. For an effective HTS FCL, the normal operating inductance of the core must be small so as not to impose any unnecessary regulation of the line or impedance to the current flow. This is normally achieved by ensuring that Bdc is greater than 1.5 T, and thereby ensuring that μdiff is approximately 1, the device thereby behaving effectively as an air core inductor.
In operation, the DC field is chosen such that an oscillatory fault current of peak value If, determined by the network impedance and surge characteristics, increases the differential permeability to that of the maximum DC value. The size of the cores, DC current, and DC turns can be calculated based on the fault level and the permeability of the iron so that
nIf(max)/l=Hdc (5)
and
nIf(min)/l=Hdc−Hdc(sat) (6)
where n is the number of AC turns, l is the length of the magnetic circuit, Hdc is the DC field intensity at which the iron core has a maximum μdiff, Hdc(sat) is the field intensity required to saturate the core, If(max) is the maximum fault current that the HTS FCL is required to limit and If(min) is the minimum fault current that the HTS FCL is required to limit.
Owing to the oscillatory nature of a fault current, two separate cores 20, 21, as shown in
It is an object of the present invention to provide for an improved form of superconducting FCL design.
In accordance with a further aspect of the present invention, there is provided a superconducting current limiting device comprising an interconnected high magnetic permeability structure including a central core interconnected to at least a first and second arm branching off there from; a superconductive coil surrounding the central core for biasing the central core; a first alternating current coil surrounding the first arm and interconnected to an alternating current source; and a second alternating current coil surrounding a second arm and interconnected to an alternating current load; the first and second alternating current coils being magnetically coupled to the central core wherein the device operates so as to limit the current passing through the device upon the occurrence of a fault condition in the load.
Preferably, the first and second arms substantially form a loop interconnecting a first and second end of the central core. In one embodiment, each of the loops can include an air gap separating one portion of the loop from a second portion. The high magnetic permeability structure can be formed from a ferrous material. Preferably, the cross-sectional width of the high magnetic permeability material forming the core is substantially twice the cross-sectional width of the high magnetic permeability material forming the arms.
In accordance with a first aspect of the present invention, there is provided a superconducting current limiter device comprising a central core formed from a high magnetic permeability material; a superconducting coil surrounding the central core for biasing the central core; an alternating current coil interconnected to an alternating current source; and being magnetically coupled to the central core wherein the device operates so as to limit the current passing through the device upon the occurrence of a fault condition in the load.
In accordance with a further aspect of the present invention, there is provided a multiphase superconducting current limiter device including: a central core formed from a high magnetic permeability material; a superconductive coil surrounding the central core for biasing the central core; a first series of alternating current phase coils each interconnected to a phase of an alternating current source; a second series of alternating current coils interconnected to a phase of at least one alternating current load; the first and second series of alternating current coils being magnetically coupled to the central core wherein the device operates so as to limit the current passing through the device upon the occurrence of a fault condition in the load.
In accordance with a further aspect of the present invention, there is provided a multi-stage superconducting fault current limiter device comprising: at least a first and second superconducting fault current limiters, the first superconducting fault current limiter designed to current limit a first portion of a transient fault and the second superconducting fault current limiter being designed to current limit a second portion of a transient fault
Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
In the preferred embodiment, there are disclosed methods for the construction of a compact HTS FCL. Both single phase and three phase arrangements are disclosed.
Turning initially to
The design of the arrangement 30 and, in particular, the dimensions of the core 50 are in accordance with certain rules. The design is a compromise between the DC current and the level of saturation required. In an example case, the central limb 50 is designed to have twice the cross sectional area of the outer limbs. Depending on the fault level to be limited, the optimal area of the central limb would be a value situated between one and two times that of the outer limb area. Generally the following formulas can be used:
2φ1=φ2+φ3 (7)
and
B1A1=B2A2+B3A3 (8)
where B is the magnetic flux density in each limb [T], A is the cross sectional area of each limb [m2], and Φ is the magnetic flux in each limb [Wb]. In one example design, B2=B3 and A2=A3.
The AC coils 36, 39 are connected to the AC line such that, the flux density of each coil is of opposite sense relative to the main DC flux, as indicated by the dot notation 40, 43 of
It should be noted that this arrangement has a number of advantages including:
Split limbs are commonly manufactured and available from transformer manufacturers. For example, in the case where a large core size necessitates an oil-cooling duct to ensure efficient cooling of the core, or, for five limb cores, where the central limb is divided into two to save on corner losses in the cores.
One form of extension of the arrangement of
Equations 7 and 8 will still apply in the three-phase case in each phase section by the principle of superposition. The advantages of the three-phase FCL design as shown in
Other arrangements of the split core and phase coils arranged in a rectangle are possible, depending on the footprint available. For example,
In a high voltage (HV) FCL design, an appropriate arrangement of the cores can be as shown
A number of other modifications can be made to the arrangements disclosed. For example, the core 31, 32 of
Preferably, the iron core will be constructed from thin laminations of cold rolled silicon steel transformer plate that are electrically insulated from each other by a thin insulation coating, and arranged in the same manner as in a normal transformer core. Amorphous cores, ferrite cores, and any other low-loss material capable of being magnetically saturated at flux densities in excess of 1.5 T are suitable, provided they exhibit a characteristic high incremental permeability region and a low incremental permeability region.
Further, the iron core may contain an air gap to allow for a reduction of the size of the FCL. The magnetic length of the iron core determines the amount of superconductor required to bias the core. The inclusion of an air gap in the iron core gives the designer another degree of freedom, which can reduce the volume of superconductor required. An air gap helps to minimize the linear dimensions of the iron required to bias the core in the DC state, and therefore, provides a smaller and lighter device.
Further, in alternative designs, multiple FCL devices can be used to deal with transient faults. Typically, a fault current consists of an initial transient with an initial peak in the first half wave cycle many times that of the rated current. This transient decays away over a relatively short time period, however, circuit breakers must be rated to cope with the initial peak. The fault current also contains a decaying DC offset, and a steady state response. Each of the three components will have a magnitude dependent on the network characteristics or item being protected. The transient response and DC offset decay away in a time period determined by the impedance and resistance of the network. Turning now to
Single or three phase overall fault current limiters can then be constructed consisting of two DC biased FCLs 111, 112 employing any of the above methods, connected electrically in series, and each biased differently on the B-H curve to deal with the different parts of the fault waveform. This allows for the limitation of both the transient and steady state parts of the fault current waveform. Generally, the FCL required to deal with the transient part of the waveform will require a larger core area with less copper linkage and superconductor ampere turns. The steady state part of the waveform will require an FCL with a significantly reduced iron cross sectional area, but a larger number of linkage turns. A single biased FCL that could deal with the entire waveform would be larger than two smaller ones designed to deal with each part of the waveform. This is because the superconductor turns must encircle the iron core, so a larger core requires more superconductor material. By trying to limit both parts of the waveform with one device, the length of superconductor increases unnecessarily.
In using liquid nitrogen to cool the HTS coils, the possible operating temperature range of the superconducting coils can be 63-77 K, although there is no restriction on the operational temperature of the superconducting coils, as long as it is below the critical temperature of the superconductor. The method used to cool the coils can be varied in accordance with available requirements. Different alternative can include immersion in a liquid cryogen, e.g. nitrogen, immersion in a gaseous atmosphere, e.g. helium gas at 5-77 K or neon at 30-77 K, or by conduction cooling using a cryocooler.
Further, it would be evident to those skilled in the art of manufacture of superconductor fault current limiters that the device could operate in the case where the HTS is dispensed with. Although such a device is likely to be large, the principle of operation would be the same. Hence, the DC coil could be formed from a Low Temperature superconductor or even a copper coil.
The foregoing description describes the preferred embodiments of the invention. Modifications, obvious to those skilled in the art, can be made thereto without departing from the scope of the Invention.
Number | Date | Country | Kind |
---|---|---|---|
2002952197 | Oct 2002 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU03/01395 | 10/21/2003 | WO | 4/18/2005 |