The present invention relates to superconducting radio frequency (SRF) cells and methods of producing SRF cells.
RF cavities are used to accelerate groups of charged particles towards a target. For many applications, the benefits of using cavities with superconducting internal surfaces outweigh the increased costs associated with cooling the cavities to cryogenic temperatures. The cavities are judged by their quality factor and acceleration gradient. Quality factor (Q0) gives the inverse of the amount of energy lost in each cycle of the system. High quality factors reduce operating costs by requiring less cryogenic cooling. The acceleration gradient of the cavity describes its ability to accelerate particles. Acceleration gradients for superconducting RF (SRF) cavities are usually given in millions of volts/meter. Higher gradients require fewer cavities to run a system at the same accelerating field, reducing start-up and operating costs. However, higher gradients require higher internal fields, pushing the performance limits for the superconducting interior surfaces.
SRF cavities are limited by any factor which causes a breakdown in the superconducting field. Commonly this transition out of the superconducting state is referred to as a “quench”. High voltages along the interior of the cavity can cause electrons to be emitted from the surface, producing X-rays and heating the cavity. This is commonly known as field emission. High intensity magnetic fields around the equator of a cavity can reach a level that exceeds the critical magnetic field of the niobium used to form the cavity or a coating of an interior of the cavity. Exceeding the critical magnetic field of the niobium breaks down the superconducting state and causes a quench. Moreover, variations in the surface can increase the amount of magnetic field to which the surface of the cavity is exposed, leading to a premature quench. The increase in the magnetic flux experienced by the cavity due to these variations is known as field enhancement.
For maximum quality factors and acceleration gradients in a given cavity, the interior surface of the cavity is desirably smooth, clean, and uninterrupted. Even microscopic contaminants in the surface break down the superconducting state by exposing non-superconducting phases to high RF fields. Impurities can act as points of field emission due to their concentration of the electric field. Surface roughness in areas of high magnetic field can cause an enhancement of the local magnetic field to a level beyond the critical value of the niobium which can lead to a breakdown in the superconducting state. Surface roughness in areas of high electric field can cause field emission, heating the surface and causing a breakdown in the superconducting state.
Developments in the field of SRF cavity manufacture have largely eliminated the failure of cavities due to contamination and field emission. The limitations of Q0 and accelerating gradient are largely due to exceeding the critical magnetic field at the equator of the cavity. The critical magnetic field is the field at which the cavity begins to transition out of its superconducting state.
The design of cavities to-date places the greatest magnetic field along the ‘equator’ of the cavity where first- and second-half cells forming the cavity are joined together by a weld seam, sometimes called an “equatorial weld seam”. The shape of the cavities can also be adjusted to optimize different performance characteristics.
The welding of niobium for SRF cavities is currently a “blind” process where the weld along the equator is done in a vacuum with an electron beam oscillated around the exterior of the cell equator. This process, while well studied and controlled, still gives inconsistent results. Post-processing of the surface is limited to “grinder-on-a-stick” and “camera-on-a-stick” inspection before chemical etching of the weld.
With reference to
With reference to
With reference to
In one preferred and non-limiting embodiment or example, in similarity to an equator of a sphere or planet (such as the earth), equator 18 is a line of latitude, or circle of latitude, that is halfway between irises 12-1 and 12-2 which, in analogy to a sphere or planet, correspond to the north and south poles of said sphere or planet. In similarity to the equator of a sphere or planet dividing the surface into northern and southern hemispheres, equator 18 of cell 4 is the dividing line between first half-cell 14 and second half-cell 16. In an example, equator 18 of cell 4 is at the 0° latitude of cell 4. Finally, cell 4 defines an axis 20 that, in an example, defines an axis of symmetry, e.g., a rotational axis of symmetry, of cell 4 that which runs between the centers of irises 12-1 and 12-2.
It would be desirable to provide a SRF cavity and method of producing a SRF cavity having improved performance over existing SRF cavity designs that, in use, experience the highest intensity magnetic fields near their equator.
Generally, provided is a method of forming niobium superconducting radio frequency (SRF) cells with weld seams relocated to less performance critical areas of the superconducting (interior) surface of the cell. This relocation can enable better treatment of the inner surface of the cell's equator.
These and other features of the present invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
Various non-limiting examples will now be described with reference to the accompanying figures where like reference numbers correspond to like or functionally equivalent elements.
For purposes of the description hereinafter, the terms “end,” “upper,” “lower,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” “lateral,” “longitudinal,” and derivatives thereof shall relate to the example(s) as oriented in the drawing figures. However, it is to be understood that the example(s) may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific example(s) illustrated in the attached drawings, and described in the following specification, are simply exemplary examples or aspects of the invention. Hence, the specific examples or aspects disclosed herein are not to be construed as limiting.
The Background having thus described a prior art cell 4 and a SRF cavity 2 where one or a number of said cells 4 are used, the following description will describe examples of cells in accordance with some preferred and non-limiting embodiments or examples in accordance with the principles of the present invention.
In one preferred and non-limiting embodiment or example, the cross-sections of the cells shown in the various figures are TESLA-shaped. However, this is not to be construed in a limiting sense since use of the present invention in connection with other shaped cells is envisioned. Examples of other shaped cells include a Low Loss-shape and a Reentrant-shape.
With reference to
In one preferred and non-limiting embodiment or example, first partial cell 24 and second partial cell 26 can have different shapes/sizes. For example, the distance from iris 32-2 of second partial cell 26 to weld seam 28 can be greater than the distance of iris 32-1 of first partial cell 24 to weld seam 28.
In one preferred and non-limiting embodiment or example, each iris described herein can be circular. However, this is not to be construed in a limiting sense. Moreover, herein, each reference to a distance or location of a weld seam from another element is to be understood as the center of the weld seam from said element. This is because, in practice, each weld seam can have a width (as measured in a direction of axis 34) that is formed during the welding operation, wherein said width can vary within a single weld seam or between different weld seams depending on welding conditions at the time each weld seam or portion thereof is formed.
In one preferred and non-limiting embodiment or example, the weld seam 28 of cell 22 shown in
With reference to
In one preferred and non-limiting embodiment or example, to complete the formation of cell 22 shown in
In one preferred and non-limiting embodiment or example, second weld seam 48 can be positioned on equator 30 of cell 22 positioned at a 0° latitude coordinate of the body of cell 22 between irises 32-1 and 32-2. First weld seam 46 can be formed at a latitude other than equator 30. In an example, first weld seam 46 can be located in a direction along axis 34 toward iris 32-1 at least 5 mm from equator 30.
With reference to
In one preferred and non-limiting embodiment or example, in the example cell 22 shown in
With reference to
In this example, first weld seam 56 and second weld seam 58 can be formed in the manner described above in connection with first and second weld seams 56 and 58 shown in
In one preferred and non-limiting embodiment or example, third weld seam 76 can be offset from equator 30 of cell 22. Alternatively, third weld seam 76 can lie on equator 30. The widths 78 and 80 of first pipe section 72 and second pipe section 74 can be selected as deemed suitable and/or desirable depending on whether third weld seam 76 is to lie on equator 30 of cell 22 or if third weld seam 76 is to be spaced from equator 30 in a direction along axis 34 toward iris 32-1 or iris 32-2. In an example, the interior surfaces of first-partial cell 24, second-partial cell 26, first pipe section 72, and second pipe section 74 proximate weld seams 56, 58, and 76 can form a continuous or substantially continuous, smooth, and uninterrupted interior surface of cell 22.
Referring to
In one preferred and non-limiting embodiment or example, equator 30 of cell 22 is located between first and second weld seams 92 and 94. For example, equator 30 of cell 22 can be positioned halfway between first and second weld seams 92 and 94. In an example, equator 30 of cell 22 can be positioned halfway between irises 32-1 and 32-2. In an example, the interior surfaces of pipe section 84, first partial-cell 22 and second-partial cell 24 proximate weld seams 92 and 94 can form a continuous on substantially continuous, smooth, and uninterrupted interior surface of cell 22.
With reference to
In one preferred and non-limiting embodiment or example, it may be desirable to form third weld seem 100 before joining pipe section 84 to first-partial cell 24 and second-partial cell 26. For example, by forming third weld seam 100 before joining pipe section 84 to first partial cell 24 and second-partial cell 26, access to third weld seam 100 for the purpose of reducing roughness and contamination caused by the formation of third weld seem 100 can be more readily accomplished than would be the case if third weld seam 100 were formed following the formations of first and second weld seams 92 and 94. Similar comments apply in respect of forming third weld seam 76 of pipe section 70 in
In one preferred and non-limiting embodiment or example, in the foregoing examples where a pipe was included between first partial cell 24 and second partial cell 26, it may be desirable to first connect said pipe to one of the partial cells 24 or 26 via a weld seam, and thereafter, process the weld seam to reduce roughness and contamination prior to joining said pipe to the other partial cell. In this manner, access to the weld seam formed first can be enhanced.
Finally, referring to
As can be seen, disclosed here in is a method for producing a superconducting radio frequency (SRF) cell 22 defined by a hollow body having first and second irises 32-1 and 32-2 spaced from each other along an axis 34 of the body and a cell equator 30 at a 0° latitude coordinate of the body between the first and second irises 32-1 and 32-2. The method includes providing a first-partial cell 24 including a first cell welding edge 36 and a first iris 32-1 on opposite sides of the first-partial cell 24, and providing a second-partial cell 26 including a second cell welding edge 38 and a second iris 32-2 on opposite sides of the second-partial cell 26. The first- and second-partial cells 24, 26 are positioned with the first and second cell welding edges 36, 38 facing toward each other. The first- and second-partial cells 24, 26 are welded together, thereby forming a weld seam 28 at a latitude other than the equator 30.
The weld seam 28 can be perpendicular to the axis 34. The weld seam 28 can be located along the axis 34 toward the first or second iris 32-1 or 32-2 ≥5 mm from the equator 30.
The weld seam 28 can be formed by welding the first and second cell welding edges 36, 38 together.
The method can further include positioning between the first- and second-partial cells 24, 26 a pipe section 40 that includes first and second pipe welding edges 42, 44 facing the respective first and second cell welding edges 36, 38. The first and second pipe welding edges 42, 44 can be welded to the respective first and second cell welding edges 36, 38. The weld seam 28/46 can be formed by welding the first pipe welding edge 42 and the first cell welding edge 36. A second weld seam 48 can be formed by welding the second pipe welding edge 44 and the second cell welding edge 38.
The second weld seam 48 can be positioned on the equator 30.
The weld seam 56 and the second weld seam 58 can be positioned on opposite sides of the equator 30.
The method can include welding first- and second-partial pipe sections 72, 74 together to form the pipe section 70 including a third weld seam 76 which, following step (d), is positioned on or proximate to the equator 30.
The weld seam 46/56 and the second weld seam 48/58 can be perpendicular to the axis 34. The weld seam 46/56 can be located along the axis 34 toward the first iris 32-1 ≥5 mm from the equator 30. The second weld seam 48/58 can be located along the axis 34 toward the second iris 32-1 ≥5 mm from the equator 30.
The weld seam 46/56 can be perpendicular to the axis. The weld seam 46/56 can be located along the axis 34 ≥5 mm from the first iris and ≥5 mm from the equator 30.
The second weld seam 48/58 can be perpendicular to the axis. The second weld seam 48/58 can be located along the axis 34 ≥5 mm from the second iris and ≥5 mm from the equator 30.
Also disclosed is a superconducting radio frequency (SRF) cell 22 comprising a body defining a hollow cavity having first and second opposite ends. A first iris 32-1 is at a first end of the body and a second iris 32-2 is at a second end of the body. The body defines an axis 34 that extends between the first and second irises 32-1 and 32-2 and an equator 30 around the axis 34 between the first and second irises. The body includes a first weld seam 28/46/56 around the axis 34 at a location on the body spaced from the equator 30.
The axis 34 can be an axis of symmetry. The equator 30 and the axis 34 can be perpendicular. The first weld seam and the axis 34 can be perpendicular.
The body can include a second weld seam 58 around the axis 34. The first and second weld seams 56 and 58 can be on opposite sides of the equator.
Each weld seam can be positioned ≥5 mm from the equator, ≥5 mm from an iris proximate to the weld seam, or both.
The body can comprise first and second partial cells 24, 26 having different shapes.
The body can include a pipe section 40 between the first and second partial cells.
The body can include second and third weld seam 56, 58 joining the pipe section to the first and second partial cells.
The first and third weld seams 92, 94 can be proximate the first and second irises 32-1 and 32-2. The first weld seam 92 can be ≥5 mm from the first iris 32-1. The third weld seam 94 can be ≥5 mm from the second iris 32-2.
As can be seen, the present invention overcomes, at least partially, the problem of having the electric field or magnetic field with the largest variation on the region of the cell (weld seam) with the greatest sensitivity to the variation. While moving one or more weld seams to different areas of the cell increases costs and complexity of production, it reduces the negative impact of one or more of the weld seams on the performance of the cell. In an example, the impact of a weld seam on a cell performance can be minimized by locating the weld seam at the combined minimum of the electric field and the magnetic field, weighted for the impact that the weld seam would have on the limit of the cell performance.
In addition to increasing the upper bounds of cell performance, moving one or more weld seams off of the equator of the cell opens up a number of processing options to take advantage of the greater accessibility of the center of the cell on or proximate to the equator. For example, prior to completing/forming any or all of the weld seams for each example cell 22 shown in
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.