Supercritical pressure regulation of vapor compression system by use of gas cooler fluid pumping device

Information

  • Patent Grant
  • 6739141
  • Patent Number
    6,739,141
  • Date Filed
    Wednesday, February 12, 2003
    21 years ago
  • Date Issued
    Tuesday, May 25, 2004
    20 years ago
Abstract
Refrigerant is circulated through a vapor compression system including a compressor, a gas cooler, an expansion device, and an evaporator. Preferably, carbon dioxide is used as the refrigerant. The expansion device is a work recovery device which extracts energy from the expansion process and is coupled with a fluid pumping device that cools the refrigerant flowing through the gas cooler. The fluid pumping device pumps fluid through the gas cooler at a flow rate related to the energy extracted from the expansion process. The system provides a self-controlling mechanism to regulate the pressure in the gas cooler. If the pressure in the gas cooler increases, more energy is extracted from the expansion process, increasing the flowrate of the fluid pumping device, and decreasing the pressure of the refrigerant in the gas cooler. If the pressure in the gas cooler decreases, less energy is extracted from the expansion process, decreasing the flowrate of the fluid pumping device, and increasing the pressure of the refrigerant in the gas cooler.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to a system for regulating the high pressure component of a transcritical vapor compression system by employing an expander coupled to a fluid pumping device, such as a fan or a pump.




Chlorine containing refrigerants have been phased out in most of the world due to their ozone destroying potential. Hydrofluoro carbons (HFCs) have been used as replacement refrigerants, but these refrigerants still have high global warming potential. “Natural” refrigerants, such as carbon dioxide and propane, have been proposed as replacement fluids. Unfortunately, there are problems with the use of many of these fluids as well. Carbon dioxide has a low critical point, which causes most air conditioning systems utilizing carbon dioxide to run partially above the critical point, or to run transcritical, under most conditions. The pressure of any subcritical fluid is a function of temperature under saturated conditions (when both liquid and vapor are present). However, when the temperature of the fluid is higher than the critical temperature (supercritical), the pressure becomes a function of the density of the fluid.




When a vapor compression system is run transcritical, it is advantageous to regulate the high pressure component of the system. By regulating the high pressure of the system, the capacity and/or efficiency of the system can be controlled and optimized.




In the prior art, the high pressure component of a vapor compression system has been regulated by adjusting an expansion valve located at the exit of the gas cooler, allowing for control of system capacity and efficiency. Suction line heat exchangers and storage tanks have also been employed to increase system capacity and efficiency.




SUMMARY OF THE INVENTION




A transcritical vapor compression system includes a compressor, a gas cooler, an expansion device, and an evaporator. Refrigerant is circulated though the closed circuit system. Preferably, carbon dioxide is used as the refrigerant. As carbon dioxide has a low critical point, systems utilizing carbon dioxide as a refrigerant usually require the vapor compression system to run transcritical. When the system is run transcritical, it is advantageous to regulate the high pressure component of the system to control and optimize the capacity and/or efficiency of the system.




An expansion machine is a work recovery device which extracts energy from the expansion process. The amount of energy available for extraction by the expansion machine is generally proportional to the refrigerant pressure drop between the gas cooler and the evaporator.




The expansion device is coupled to a fluid pumping device that pumps the heat exchange fluid (typically air or water) through the gas cooler. The heat exchange fluid is used to cool the refrigerant in the gas cooler. The fluid pumping device pumps fluid through the gas cooler at a rate which is related to the amount of energy extracted from the expansion process.




The system provides a self-controlling mechanism to regulate the refrigerant pressure in the gas cooler. When the refrigerant pressure in the gas cooler increases, the refrigerant pressure drop between the gas cooler and the evaporator increases, and the expansion machine extracts more energy from the expansion process. As the energy increases, the flowrate of the fluid pumping device increases, increasing the effectiveness of the gas cooler and decreasing the pressure of the refrigerant in the gas cooler. When the refrigerant pressure in the gas cooler decreases, the refrigerant pressure drop between the gas cooler and the evaporator decreases, and the expansion machine extracts less energy from the expansion process. As the energy decreases, the flowrate of the fluid pumping device decreases, decreasing the effectiveness of the gas cooler and increasing the pressure of the refrigerant in the gas cooler











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of the invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:





FIG. 1

illustrates a schematic diagram of a prior art vapor compression system;





FIG. 2

illustrates a thermodynamic diagram of a transcritical vapor compression system;





FIG. 3

illustrates a schematic diagram of the transcritical vapor compression system of the present invention including an expansion device that is coupled to a fluid pumping device that pumps refrigerant through a gas cooler; and





FIG. 4

illustrates a schematic diagram of the transcritical vapor compression system of the present invention including a fluid pumping device that is coupled to a motor.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

illustrates a prior art vapor compression system


20




a


including a compressor


22


, a heat rejecting heat exchanger (a gas cooler in transcritical cycles)


24


, an expansion device


26


, and a heat accepting heat exchanger (an evaporator)


28


.




Refrigerant circulates though the closed circuit cycle


20




a


. Preferably, carbon dioxide is used as the refrigerant. While carbon dioxide is illustrated, other refrigerants may be used. Because carbon dioxide has a low critical point, systems utilizing carbon dioxide as a refrigerant usually require the vapor compression system


20




a


to run transcritical. When the system


20




a


is run transcritical, it is advantageous to regulate the high pressure component of the system


20




a


. By regulating the high pressure of the system


20




a


, the capacity and/or efficiency of the system


20




a


can be controlled and optimized.




The refrigerant exits the compressor


22


at high pressure and enthalpy, shown by point A in FIG.


2


. As the refrigerant flows through the gas cooler


24


at high pressure, it loses heat and enthalpy to the heat exchanger fluid, exiting the gas cooler


24


with low enthalpy and high pressure, indicated as point B. As the refrigerant passes through the expansion valve


26


, the pressure drops, shown by point C. After expansion, the refrigerant passes through the evaporator


28


and exits at a high enthalpy and low pressure, represented by point D. After the refrigerant passes through the compressor


22


, it is again at high pressure and enthalpy, completing the cycle.





FIG. 3

schematically illustrates the transcritical vapor compression system


20




b


of the present invention including an expansion machine


27


. An expansion machine


27


is a work recovery device which extracts energy from the expansion process and makes the system


20




b


more efficient due to a more isentropic expansion process and the efficient use of the extracted energy. The amount of energy available for extraction by the expansion machine


27


is generally proportional to the pressure drop across the expansion machine


27


, or the pressure drop between the gas cooler


24


and the evaporator


28


.




As shown in

FIG. 3

, the expansion machine


27


is coupled with a fluid pumping device


30


. The expansion machine


27


can be linked to the fluid pumping device


30


either mechanically or electrically. In one example, the expansion machine


27


and the fluid pumping device


30


are linked by a shaft


36


. The fluid pumping device


30


pumps the fluid that exchanges heat to cool the refrigerant flowing through the gas cooler


24


. If the fluid that exchanges heat with the refrigerant in the gas cooler


24


is air, the fluid pumping device


30


is generally a fan or blower. If the fluid that exchanges heat with the refrigerant in the gas cooler


24


is a liquid, the fluid pumping device


30


is generally a pump.




The fluid pumping device


30


pumps fluid through the gas cooler


24


at a rate related to the energy extracted from the expansion machine


27


during the expansion process. As more energy is extracted, the flowrate of the fluid flowing through the fluid pumping device


30


increases. Conversely, as less energy is extracted during the expansion process, the flow rate of the fluid flowing through the fluid pumping device decreases.




The system


20




b


provides a self-controlling mechanism to regulate the high pressure of the refrigerant in the gas cooler


24


. As the high pressure in the gas cooler


24


increases, the expansion machine


27


extracts more energy from the expansion process. More energy is extracted from the expansion process as there is a greater pressure drop between the high pressure in the gas cooler


24


and the low pressure in the evaporator


28


, resulting in a greater pressure drop across the expansion machine


27


. This increase in extracted energy increases the flowrate of the fluid pumping device


30


, and more fluid is pumped across the gas cooler


24


. As more fluid pumps across the gas cooler


24


, the heat transfer between the fluid and the refrigerant increases, and the temperature of the refrigerant in the gas cooler


24


decreases. As the temperature of the refrigerant in the gas cooler


24


decreases, the pressure of the refrigerant in the gas cooler


24


decreases.




Conversely, as the high pressure in the gas cooler


24


decreases, the expansion machine


27


extracts less energy from the expansion process. Less energy is extracted from the expansion process as there is a lower pressure drop between the high pressure in the gas cooler


24


and the low pressure in the evaporator


28


, resulting in a lower pressure drop across the expansion machine


27


. This decrease in extracted energy decreases the flowrate of the fluid pumping device


30


, and less fluid is pumped across the gas cooler


24


. As less fluid pumps across the gas cooler


24


, the heat transfer between the fluid and the refrigerant decreases, and the temperature of the refrigerant in the gas cooler


24


increases. As the temperature of the refrigerant increases, the pressure of the refrigerant in the gas cooler


24


increases.




The system


20




b


provides for the automatic self-control of the high pressure of the refrigerant in the gas cooler


24


. As the high pressure changes, the flowrate of the fluid pumping device


30


changes, modifying the heat transfer between the refrigerant and the fluid and therefore the high pressure of the refrigerant in the gas cooler


24


.




The expansion machine


27


and the fluid pumping device


30


do not need to be directly linked by the shaft


36


. The power from the expansion machine


27


can be transmitted to the fluid pumping device


30


through a generator and motor.




As illustrated in

FIG. 4

, the flow rate of the fluid flowing through the fluid pumping device


30


can also be directly controlled by a motor


34


, allowing for regulation of the high pressure in the gas cooler


24


. A control


32


monitors the high pressure in the gas cooler


24


. In this example, the expansion device


25


can be either an expansion valve, as in

FIG. 1

, or an expansion machine, as in FIG.


3


.




If the control


32


detects an increase in the high pressure in the gas cooler


24


, the control


32


actuates the fluid pumping device


30


to increase its flowrate and increase the flow rate of fluid flowing across the gas cooler


24


that exchanges heat with the refrigerant flowing through the gas cooler


24


. As more fluid pumps across the gas cooler


24


, the heat transfer between the fluid and the refrigerant increases, and the temperature of the refrigerant in the gas cooler decreases


24


. As the temperature of the refrigerant decreases, the pressure of the refrigerant in the gas cooler


24


decreases.




Conversely, if the control


32


detects a decrease in the high pressure in the gas cooler


24


, the control


32


actuates the fluid pumping device


30


to decrease its flowrate and decrease the flow rate of fluid flowing across the gas cooler


24


that exchanges heat with the refrigerant flowing through the gas cooler


24


. As less fluid pumps across the gas cooler


24


, the heat between the fluid and the refrigerant decreases, and the temperature of the refrigerant in the gas cooler


24


increase. As the temperature of the refrigerant increases, the pressure of the refrigerant in the gas cooler


24


increases.




The foregoing description is only exemplary of the principles of the invention. Many modification and variation of the present invention are possible in light of the above teaching. The preferred embodiments of this invention have been disclosed, however, so that one of ordinary skill in the art would recognize that certain modification would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. A transcritical vapor compression system comprising:a compression device to compress a refrigerant to a high pressure; a heat rejecting heat exchanger for cooling said refrigerant; a fluid pumping device to pump a fluid at a pumping flowrate, said fluid exchanging heat with said refrigerant in said heat rejecting heat exchanger and adjustment of said pumping flowrate of said fluid regulates said high pressure in said system; an expansion device for reducing said refrigerant to a low pressure; and said expansion device is linked to said fluid pumping device; a sensor to sense said high pressure of the system; a motor to adjust said pumping flowrate of said fluid pumping device based on said high pressure sensed by said sensor; and a heat accepting heat exchanger for evaporating said refrigerant.
  • 2. The system as recited in claim 1 wherein said pumping flowrate of said fluid pumping device is related to said pressure difference between said high pressure and said low pressure of the system.
  • 3. The system as recited in claim 1 wherein said expansion device is an expansion valve.
  • 4. The system as recited in claim 1 wherein said motor increases said pumping flowrate when said sensor detects an increase in said high pressure to decrease said high pressure of the system to a desired high pressure.
  • 5. The system as recited in claim 1 said motor decreases said pumping flowrate when said sensor detects a decrease in said high pressure to increase said high pressure of the system to a desired high pressure.
  • 6. A transcritical vapor compression system comprising:a compression device to compress a refrigerant to a high pressure; a heat rejecting heat exchanger for cooling said refrigerant; a fluid pumping device to pump a fluid at a pumping flowrate said fluid exchanging heat with said refrigerant in said heat rejecting heat exchanger and adjustment of said pumping flowrate of said fluid regulates said high pressure in said system; an expansion machine for reducing said refrigerant to a low pressure, and said fluid pumping device is linked to said expansion machine; and a heat accepting heat exchanger for evaporating said refrigerant.
  • 7. The system as recited in claim 6 wherein said fluid pumping device is mechanically linked to said expansion machine.
  • 8. The system as recited in claim 6 wherein said fluid pumping device is electrically linked to said expansion machine.
  • 9. The system as recited in claim 6 wherein said expansion machine extracts an amount of energy, and said pumping flowrate of said fluid pumping device is related to said amount of energy.
  • 10. The system as recited in claim 9 wherein said amount of energy extracted is generally related to a difference between said high pressure and said low pressure of the system.
  • 11. The system as recited in claim 9 wherein said expansion machine extracts an increase in said amount of energy when said high pressure increases, increasing said pumping flowrate of said fluid pumping device, decreasing a temperature of said refrigerant in said heat rejecting heat exchanger and decreasing said high pressure of the system.
  • 12. The system as recited in claim 7 wherein said expansion machine extracts a decrease in said amount of energy when said high pressure decreases, decreasing said pumping flowrate of said fluid pumping device, increasing a temperature of said refrigerant in said heat rejecting heat exchanger and increasing said high pressure of the system.
  • 13. The system as recited in claim 6 wherein said expansion machine and said fluid pumping device are coupled by a shaft.
  • 14. The system as recited in claim 6 wherein said refrigerant is carbon dioxide.
  • 15. The system as recited in claim 6 wherein said fluid pumping device is one of a fan and a blower when said fluid is a vapor.
  • 16. The system as recited in claim 6 wherein said fluid pumping device is a pump when said fluid is a liquid.
  • 17. A method of regulating a high pressure of a transcritical vapor compression system comprising the steps of:compressing a refrigerant to said high pressure; cooling said refrigerant by exchanging heat with a fluid; pumping said fluid at a pumping flowrate; adjusting said pumping flowrate of said fluid to regulate said high pressure; expanding said refrigerant to a low pressure; coupling the step of expanding with the step of pumping; and evaporating said refrigerant.
  • 18. A method of regulating a high pressure of a transcritical vapor compression system comprising the steps of:compressing a refrigerant to said high pressure; sensing said high pressure of the system; cooling said refrigerant by exchanging heat with a fluid; pumping said fluid at a pumping flowrate; adjusting said pumping flowrate of said fluid based on the step of sensing to regulate said high pressure; expanding said refrigerant to a low pressure “coupling the step of expanding with the step of pumping;” and evaporating said refrigerant.
US Referenced Citations (15)
Number Name Date Kind
4595344 Briley Jun 1986 A
5245836 Lorentzen et al. Sep 1993 A
5685160 Abersfelder et al. Nov 1997 A
5769610 Paul et al. Jun 1998 A
6272871 Eisenhour Aug 2001 B1
6276153 Skupin et al. Aug 2001 B1
6418735 Sienel Jul 2002 B1
6418738 Yamashita Jul 2002 B1
6430949 Noro et al. Aug 2002 B2
6484519 Hesse et al. Nov 2002 B1
6530426 Kishita et al. Mar 2003 B1
6584796 Itoh et al. Jul 2003 B2
6604378 Clodic Aug 2003 B2
6637229 Forrest et al. Oct 2003 B1
6647742 Neiter et al. Nov 2003 B1
Foreign Referenced Citations (6)
Number Date Country
08238923 Sep 1996 JP
10-019421 Jan 1998 JP
JP410038392 Feb 1998 JP
JP410166851 Jun 1998 JP
WO 9908053 Feb 1999 WO
WO 9934156 Jul 1999 WO