Supercritical working fluid circuit with a turbo pump and a start pump in series configuration

Information

  • Patent Grant
  • 9091278
  • Patent Number
    9,091,278
  • Date Filed
    Monday, August 19, 2013
    11 years ago
  • Date Issued
    Tuesday, July 28, 2015
    9 years ago
Abstract
Aspects of the invention provided herein include heat engine systems, methods for generating electricity, and methods for starting a turbo pump. In some configurations, the heat engine system contains a start pump and a turbo pump disposed in series along a working fluid circuit and configured to circulate a working fluid within the working fluid circuit. The start pump may have a pump portion coupled to a motor-driven portion and the turbo pump may have a pump portion coupled to a drive turbine. In one configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump. In another configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump.
Description
BACKGROUND

Waste heat is often created as a byproduct of industrial processes where flowing streams of high-temperature liquids, gases, or fluids must be exhausted into the environment or removed in some way in an effort to maintain the operating temperatures of the industrial process equipment. Some industrial processes utilize heat exchanger devices to capture and recycle waste heat back into the process via other process streams. However, the capturing and recycling of waste heat is generally infeasible by industrial processes that utilize high temperatures or have insufficient mass flow or other unfavorable conditions.


Waste heat can be converted into useful energy by a variety of turbine generator or heat engine systems that employ thermodynamic methods, such as Rankine cycles. Rankine cycles and similar thermodynamic methods are typically steam-based processes that recover and utilize waste heat to generate steam for driving a turbine, turbo, or other expander connected to an electric generator, a pump, or other device.


An organic Rankine cycle utilizes a lower boiling-point working fluid, instead of water, during a traditional Rankine cycle. Exemplary lower boiling-point working fluids include hydrocarbons, such as light hydrocarbons (e.g., propane or butane) and halogenated hydrocarbon, such as hydrochlorofluorocarbons (HCFCs) or hydrofluorocarbons (HFCs) (e.g., R245fa). More recently, in view of issues such as thermal instability, toxicity, flammability, and production cost of the lower boiling-point working fluids, some thermodynamic cycles have been modified to circulate non-hydrocarbon working fluids, such as ammonia.


A pump or compressor is generally required to pressurize and circulate the working fluid throughout the working fluid circuit. The pump is typically a motor-driven pump, however, such pumps require costly shaft seals to prevent working fluid leakage and often require the implementation of a gearbox and a variable frequency drive, which add to the overall cost and complexity of the system. A turbo pump is a device that utilizes a drive turbine to power a rotodynamic pump. Replacing the motor-driven pump with a turbo pump eliminates one or more of these issues, but at the same time introduces problems of starting and achieving steady-state operation the turbo pump, which relies on the circulation of heated working fluid through the drive turbine for proper operation. Unless the turbo pump is provided with a successful start sequence, the turbo pump will not be able to circulate enough fluid to properly function and attain steady-state operation.


What is needed, therefore, is a heat engine system and method of operating a waste heat recovery thermodynamic cycle that provides a successful start sequence adapted to start a turbo pump and reach a steady-state of operating the system with the turbo pump.


SUMMARY

Embodiments of the invention generally provide a heat engine system and a method for generating electricity. In some embodiments, the heat engine system contains a start pump and a turbo pump disposed in series along a working fluid circuit and configured to circulate a working fluid within the working fluid circuit. The start pump may have a pump portion coupled to a motor-driven portion (e.g., mechanical or electric motor) and the turbo pump may have a pump portion coupled to a drive turbine. In one embodiment, the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump. In another embodiment, the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump.


The heat engine system and the method for generating electricity are configured to efficiently generate valuable electrical energy from thermal energy, such as a heated stream (e.g., a waste heat stream). The heat engine system utilizes a working fluid in a supercritical state (e.g., sc-CO2) and/or a subcritical state (e.g., sub-CO2) contained within a working fluid circuit for capturing or otherwise absorbing thermal energy of the waste heat stream with one or more heat exchangers. The thermal energy is transformed to mechanical energy by a power turbine and subsequently transformed to electrical energy by the power generator coupled to the power turbine. The heat engine system contains several integrated sub-systems managed by a process control system for maximizing the efficiency of the heat engine system while generating electricity.


In one embodiment disclosed herein, a heat engine system for generating electricity contains a turbo pump having a pump portion operatively coupled to a drive turbine, such that the pump portion may be fluidly coupled to a working fluid circuit and configured to circulate a working fluid through the working fluid circuit and the working fluid has a first mass flow and a second mass flow within the working fluid circuit. The heat engine system further contains a first heat exchanger fluidly coupled to and in thermal communication with the working fluid circuit, fluidly coupled to and in thermal communication with a heat source stream, and configured to transfer thermal energy from the heat source stream to the first mass flow of the working fluid. The heat engine system also contains a power turbine fluidly coupled to and in thermal communication with the working fluid circuit, disposed downstream of the first heat exchanger, and configured to convert thermal energy to mechanical energy by a pressure drop in the first mass flow of the working fluid flowing through the power turbine and a power generator coupled to the power turbine and configured to convert the mechanical energy into electrical energy. The heat engine system further contains a start pump having a pump portion operatively coupled to a motor and configured to circulate the working fluid within the working fluid circuit, such that the pump portion of the start pump and the pump portion of the turbo pump are fluidly coupled in series to the working fluid circuit.


In one exemplary configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump. Therefore, an outlet of the pump portion of the turbo pump may be fluidly coupled to and serially upstream of an inlet of the pump portion of the start pump. In another exemplary configuration, the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump. Therefore, an inlet of the pump portion of the turbo pump may be fluidly coupled to and serially downstream of an outlet of the pump portion of the start pump.


In some embodiments, the heat engine system further contains a first recuperator fluidly coupled to the power turbine and configured to receive the first mass flow discharged from the power turbine and a second recuperator fluidly coupled to the drive turbine, the drive turbine being configured to receive and expand the second mass flow and discharge the second mass flow into the second recuperator. In some examples, the first recuperator may be configured to transfer residual thermal energy from the first mass flow to the second mass flow before the second mass flow is expanded in the drive turbine. The first recuperator may be configured to transfer residual thermal energy from the first mass flow discharged from the power turbine to the first mass flow directed to the first heat exchanger. The second recuperator may be configured to transfer residual thermal energy from the second mass flow discharged from the drive turbine to the second mass flow directed to a second heat exchanger.


In some embodiments, the heat engine system further contains a second heat exchanger fluidly coupled to and in thermal communication with the working fluid circuit, disposed in series with the first heat exchanger along the working fluid circuit, fluidly coupled to and in thermal communication with the heat source stream, and configured to transfer thermal energy from the heat source stream to the second mass flow of the working fluid. The second heat exchanger may be in thermal communication with the heat source stream and in fluid communication with the pump portion of the turbo pump and the pump portion of the start pump. In many examples described herein, the working fluid contains carbon dioxide and at least a portion of the working fluid circuit contains the working fluid in a supercritical state.


In another embodiment, the heat engine system further contains a first recirculation line fluidly coupling the pump portion of the turbo pump with a low pressure side of the working fluid circuit, a second recirculation line fluidly coupling the pump portion of the start pump with the low pressure side of the working fluid circuit, a first bypass valve arranged in the first recirculation line, and a second bypass valve arranged in the second recirculation line.


In other embodiments disclosed herein, a heat engine system for generating electricity contains a turbo pump configured to circulate a working fluid throughout the working fluid circuit and contains a pump portion operatively coupled to a drive turbine. In some examples, the turbo pump is hermetically-sealed within a casing. The heat engine system also contains a start pump arranged in series with the turbo pump along the working fluid circuit. The heat engine system further contains a first check valve arranged in the working fluid circuit downstream of the pump portion of the turbo pump, and a second check valve arranged in the working fluid circuit downstream of the pump portion of the start pump and fluidly coupled to the first check valve.


The heat engine system further contains a power turbine fluidly coupled to both the pump portion of the turbo pump and the pump portion of the start pump, a first recirculation line fluidly coupling the pump portion of the turbo pump with a low pressure side of the working fluid circuit, and a second recirculation line fluidly coupling the pump portion of the start pump with the low pressure side of the working fluid circuit. In some configurations, the heat engine system contains a first recuperator fluidly coupled to the power turbine and a second recuperator fluidly coupled to the drive turbine. In some examples, the heat engine system contains a third recuperator fluidly coupled to the second recuperator, wherein the first, second, and third recuperators are disposed in series along the working fluid circuit.


The heat engine system further contains a condenser fluidly coupled to both the pump portion of the turbo pump and the pump portion of the start pump. Also, the heat engine system further contains first, second, and third heat exchangers disposed in series and in thermal communication with a heat source stream and disposed in series and in thermal communication with the working fluid circuit.


In other embodiments disclosed herein, a method for starting a turbo pump in a heat engine system and/or generating electricity with the heat engine system is provided and includes circulating a working fluid within a working fluid circuit by a start pump and transferring thermal energy from a heat source stream to the working fluid by a first heat exchanger fluidly coupled to and in thermal communication with the working fluid circuit. Generally, the working fluid has a first mass flow and a second mass flow within the working fluid circuit and at least a portion of the working fluid circuit contains the working fluid in a supercritical state. The method further includes flowing the working fluid into a drive turbine of a turbo pump and expanding the working fluid while converting the thermal energy from the working fluid to mechanical energy of the drive turbine and driving a pump portion of the turbo pump by the mechanical energy of the drive turbine. The pump portion may be coupled to the drive turbine and the working fluid may be circulated within the working fluid circuit by the turbo pump. The method also includes diverting the working fluid discharged from the pump portion of the turbo pump into a first recirculation line fluidly communicating the pump portion of the turbo pump with a low pressure side of the working fluid circuit and closing a first bypass valve arranged in the first recirculation line as the turbo pump reaches a self-sustaining speed of operation. The method further includes deactivating the start pump and opening a second bypass valve arranged in a second recirculation line fluidly communicating the start pump with the low pressure side of the working fluid circuit, and diverting the working fluid discharged from the start pump into the second recirculation line. Also, the method includes flowing the working fluid into a power turbine and converting the thermal energy from the working fluid to mechanical energy of the power turbine and converting the mechanical energy of the power turbine into electrical energy by a power generator coupled to the power turbine.


In some embodiments, the method includes circulating the working fluid in the working fluid circuit with the start pump is preceded by closing a shut-off valve to divert the working fluid around a power turbine arranged in the working fluid circuit. In other embodiments, the method further includes opening the shut-off valve once the turbo pump reaches the self-sustaining speed of operation, thereby directing the working fluid into the power turbine, expanding the working fluid in the power turbine, and driving a power generator operatively coupled to the power turbine to generate electrical power. In other embodiments, the method further includes opening the shut-off valve once the turbo pump reaches the self-sustaining speed of operation, directing the working fluid into a second heat exchanger fluidly coupled to the power turbine and in thermal communication with the heat source stream, transferring additional thermal energy from the heat source stream to the working fluid in the second heat exchanger, expanding the working fluid received from the second heat exchanger in the power turbine, and driving a power generator operatively coupled to the power turbine, whereby the power generator is operable to generate electrical power.


In some embodiments, the method also includes opening the shut-off valve once the turbo pump reaches the self-sustaining speed of operation, directing the working fluid into a second heat exchanger in thermal communication with the heat source stream, the first and second heat exchangers being arranged in series in the heat source stream, directing the working fluid from the second heat exchanger into a third heat exchanger fluidly coupled to the power turbine and in thermal communication with the heat source stream, the first, second, and third heat exchangers being arranged in series in the heat source stream, transferring additional thermal energy from the heat source stream to the working fluid in the third heat exchanger, expanding the working fluid received from the third heat exchanger in the power turbine, and driving a power generator operatively coupled to the power turbine, whereby the power generator is operable to generate electrical power.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1A illustrates a schematic of a heat engine system, according to one or more embodiments disclosed herein.



FIG. 1B illustrates a schematic of another heat engine system, according to one or more embodiments disclosed herein.



FIG. 2 illustrates a schematic of a heat engine system configured with a cascade thermodynamic waste heat recovery cycle, according to one or more embodiments disclosed herein.



FIG. 3 illustrates a schematic of a heat engine system configured with a parallel heat engine cycle, according to one or more embodiments disclosed herein.



FIG. 4 illustrates a schematic of another heat engine system configured with another parallel heat engine cycle, according to one or more embodiments disclosed herein.



FIG. 5 illustrates a schematic of another heat engine system configured with another parallel heat engine cycle, according to one or more embodiments disclosed herein.



FIG. 6 is a flowchart of a method for starting a turbo pump in a heat engine system having a thermodynamic working fluid circuit, according to one or more embodiments disclosed herein.





DETAILED DESCRIPTION


FIGS. 1A and 1B depict simplified schematics of heat engine systems 100a and 100b, respectively, which may also be referred to as thermal heat engines, power generation devices, heat recovery systems, and/or heat to electricity systems. Heat engine systems 100a and 100b may encompass one or more elements of a Rankine thermodynamic cycle configured to produce power (e.g., electricity) from a wide range of thermal sources. The terms “thermal engine” or “heat engine” as used herein generally refer to an equipment set that executes the various thermodynamic cycle embodiments described herein. The term “heat recovery system” generally refers to the thermal engine in cooperation with other equipment to deliver/remove heat to and from the thermal engine.


Heat engine systems 100a and 100b generally have at least one heat exchanger 103 and a power turbine 110 fluidly coupled to and in thermal communication with a working fluid circuit 102 containing a working fluid. In some configurations, the heat engine systems 100a and 100b contain a single heat exchanger 103. However, in other configurations, the heat engine systems 100a and 100b contain two, three, or more heat exchangers 103 fluidly coupled to the working fluid circuit 102 and configured to be fluidly coupled to a heat source stream 90 (e.g., waste heat stream flowing from a waste heat source). The power turbine 110 may be any type of expansion device, such as an expander or a turbine, and may be operatively coupled to an alternator, a power generator 112, or other device or system configured to receive shaft work produced by the power turbine 110 and generate electricity. The power turbine 110 has an inlet for receiving the working fluid flowing through a control valve 133 from the heat exchangers 103 in the high pressure side of the working fluid circuit 102. The power turbine 110 also has an outlet for releasing the working fluid into the low pressure side of the working fluid circuit 102. The control valve 133 may be operatively configured to control the flow of working fluid from the heat exchangers 103 to an inlet of the power turbine 110.


The heat engine systems 100a and 100b further contain several pumps, such as a turbo pump 124 and a start pump 129, disposed within the working fluid circuit 102. Each of the turbo pump 124 and the start pump 129 is fluidly coupled between the low pressure side and the high pressure side of the working fluid circuit 102. Specifically, a pump portion 104 and a drive turbine 116 of the turbo pump 124 and a pump portion 128 of the start pump 129 are each fluidly coupled independently between the low pressure side and the high pressure side of the working fluid circuit 102. The turbo pump 124 and the start pump 129 may be operative to circulate and pressurize the working fluid throughout the working fluid circuit 102. The start pump 129 may be utilized to initially pressurize and circulate the working fluid in the working fluid circuit 102. Once a predetermined pressure, temperature, and/or flowrate of the working fluid is obtained within the working fluid circuit 102, the start pump 129 may be taken off line, idled, or turned off and the turbo pump 124 utilized to circulate the working fluid while generating electricity.



FIGS. 1A and 1B depict the turbo pump 124 and the start pump 129 fluidly coupled in series to the working fluid circuit 102, such that the pump portion 104 of the turbo pump 124 and the pump portion 128 of the start pump 129 are fluidly coupled in series to the working fluid circuit 102. In one embodiment, FIG. 1A depicts the pump portion 104 of the turbo pump 124 fluidly coupled upstream of the pump portion 128 of the start pump 129, such that the working fluid may flow from the condenser 122, through the pump portion 104 of the turbo pump 124, then serially through the pump portion 128 of the start pump 129, and subsequently to the power turbine 110. In another embodiment, FIG. 1B depicts the pump portion 128 of the start pump 129 fluidly coupled upstream of the pump portion 104 of the turbo pump 124, such that the working fluid may flow from the condenser 122, through the pump portion 128 of the start pump 129, then serially through the pump portion 104 of the turbo pump 124, and subsequently to the power turbine 110.


The start pump 129 may be a motorized pump, such as an electric motorized pump, a mechanical motorized pump, or other type of pump. Generally, the start pump 129 may be a variable frequency motorized drive pump and contains the pump portion 128 and a motor-driven portion 130. The motor-driven portion 130 of the start pump 129 contains a motor and a drive including a drive shaft and optional gears (not shown). In some examples, the motor-driven portion 130 has a variable frequency drive, such that the speed of the motor may be regulated by the drive. The motor-driven portion 130 may be powered by an external electric source.


The pump portion 128 of the start pump 129 may be driven by the motor-driven portion 130 coupled thereto. In one embodiment, as depicted in FIG. 1A, the pump portion 128 of the start pump 129 has an inlet for receiving the working fluid from an outlet of the pump portion 104 of the turbo pump 124. The pump portion 128 of the start pump 129 also has an outlet for releasing the working fluid into the working fluid circuit 102 upstream of the power turbine 110. In another embodiment, as depicted in FIG. 1B, the pump portion 128 of the start pump 129 has an inlet for receiving the working fluid from the low pressure side of the working fluid circuit 102, such as from the condenser 122. The pump portion 128 of the start pump 129 also has an outlet for releasing the working fluid into the working fluid circuit 102 upstream of the pump portion 104 of the turbo pump 124.


The turbo pump 124 is generally a turbo/turbine-driven pump or compressor and utilized to pressurize and circulate the working fluid throughout the working fluid circuit 102. The turbo pump 124 contains the pump portion 104 and the drive turbine 116 coupled together by a drive shaft 123 and optional gearbox. The pump portion 104 of the turbo pump 124 may be driven by the drive shaft 123 coupled to the drive turbine 116.


The drive turbine 116 of the turbo pump 124 may be any type of expansion device, such as an expander or a turbine, and may be operatively coupled to the pump portion 104, or other compressor/pump device configured to receive shaft work produced by the drive turbine 116. The drive turbine 116 may be driven by heated and pressurized working fluid, such as the working fluid heated by the heat exchangers 103. The drive turbine 116 has an inlet for receiving the working fluid flowing through a control valve 143 from the heat exchangers 103 in the high pressure side of the working fluid circuit 102. The drive turbine 116 also has an outlet for releasing the working fluid into the low pressure side of the working fluid circuit 102. The control valve 143 may be operatively configured to control the flow of working fluid from the heat exchangers 103 to the inlet of the drive turbine 116.


In one embodiment, as depicted in FIG. 1A, the pump portion 104 of the turbo pump 124 has an inlet configured to receive the working fluid from the low pressure side of the working fluid circuit 102, such as downstream of the condenser 122. The pump portion 104 of the turbo pump 124 has an outlet for releasing the working fluid into the working fluid circuit 102 upstream of the pump portion 128 of the start pump 129. In addition, the pump portion 128 of the start pump 129 has an inlet configured to receive the working fluid from an outlet of the pump portion 104 of the turbo pump 124.


In another embodiment, as depicted in FIG. 1B, the pump portion 128 of the start pump 129 has an inlet configured to receive the working fluid from the low pressure side of the working fluid circuit 102, such as downstream of the condenser 122. The pump portion 128 of the start pump 129 has an outlet for releasing the working fluid into the working fluid circuit 102 upstream of the pump portion 104 of the turbo pump 124. Also, the pump portion 104 of the turbo pump 124 has an inlet configured to receive the working fluid from an outlet of the pump portion 128 of the start pump 129.


The pump portion 128 of the start pump 129 is configured to circulate and/or pressurize the working fluid within the working fluid circuit 102 during a warm-up process. The pump portion 128 of the start pump 129 is configured in series with the pump portion 104 of the turbo pump 124. In one example, illustrated in FIG. 1A, the heat engine system 100a has a suction line 127 fluidly coupled to and disposed between the discharge line 105 of the pump portion 104 and the pump portion 128. The suction line 127 provides flow from the pump portion 104 and the pump portion 128. In another example, illustrated in FIG. 1B, the heat engine system 100b has a line 131 fluidly coupled to and disposed between the pump portion 104 and the pump portion 128. The line 131 provides flow from the pump portion 104 and the pump portion 128. Start pump 129 may operate until the mass flow rate and temperature of the second mass flow m2 is sufficient to operate the turbo pump 124 in a self-sustaining mode.


In one embodiment, the turbo pump 124 is hermetically-sealed within housing or casing 126 such that shaft seals are not needed along the drive shaft 123 between the pump portion 104 and drive turbine 116. Eliminating shaft seals may be advantageous since it contributes to a decrease in capital costs for the heat engine system 100a or 100b. Also, hermetically-sealing the turbo pump 124 with the casing 126 presents significant savings by eliminating overboard working fluid leakage. In other embodiments, however, the turbo pump 124 need not be hermetically-sealed.


In one or more embodiments, the working fluid within the working fluid circuit 102 of the heat engine system 100a or 100b contains carbon dioxide. It should be noted that use of the term carbon dioxide is not intended to be limited to carbon dioxide of any particular type, purity, or grade. For example, industrial grade carbon dioxide may be used without departing from the scope of the disclosure. In other embodiments, the working fluid may a binary, ternary, or other working fluid blend. For example, a working fluid combination can be selected for the unique attributes possessed by the combination within a heat recovery system, as described herein. One such fluid combination includes a liquid absorbent and carbon dioxide mixture enabling the combination to be pumped in a liquid state to high pressure with less energy input than required to compress carbon dioxide. In other embodiments, the working fluid may be a combination of carbon dioxide and one or more other miscible fluids. In yet other embodiments, the working fluid may be a combination of carbon dioxide and propane, or carbon dioxide and ammonia, without departing from the scope of the disclosure.


The use of the term “working fluid” is not intended to limit the state or phase of matter of the working fluid. For instance, the working fluid or portions of the working fluid may be in a liquid phase, a gas phase, a fluid phase, a subcritical state, a supercritical state, or any other phase or state at any one or more points within the working fluid circuit 102, the heat engine systems 100a or 100b, or thermodynamic cycle. In one or more embodiments, the working fluid may be in a supercritical state over certain portions of the working fluid circuit 102 (e.g., a high pressure side), and may be in a supercritical state or a subcritical state at other portions the working fluid circuit 102 (e.g., a low pressure side). In other embodiments, the entire thermodynamic cycle may be operated such that the working fluid is maintained in either a supercritical or subcritical state throughout the entire working fluid circuit 102.


In a combined state, and as will be used herein, the working fluid may be characterized as m1+m2, where m1 is a first mass flow and m2 is a second mass flow, but where each mass flow m1, m2 is part of the same working fluid mass being circulated throughout the working fluid circuit 102. The combined working fluids m1+m2 from pump portion 104 of the turbo pump 124 are directed to the heat exchangers 103. The first mass flow m1 is directed to power turbine 110 to drive power generator 112. The second mass flow m2 is directed from the heat exchangers 102 back to the drive turbine 116 of the turbo pump 124 to provide the energy needed to drive the pump portion 104. After passing through the power turbine 110 and the drive turbine 116, the first and second mass flows are combined and directed to the condenser 122 and back to the turbo pump 124 and the cycle is started anew.


Steady-state operation of the turbo pump 124 is at least partially dependent on the mass flow and temperature of the second mass flow m2 expanded within the drive turbine 116. Until the mass flow rate and temperature of the second mass flow m2 is sufficiently increased, the drive turbine 116 cannot adequately drive the pump portion 104 in self-sustaining operation. Accordingly, at start-up of the heat engine system 100a, and until the turbo pump 124 “ramps-up” and is able to adequately circulate the working fluid, the heat engine system 100a or 100b utilizes a start pump 129 to circulate the working fluid within the working fluid circuit 102.


To facilitate the start sequence of the turbo pump 124, heat engine systems 100a and 100b may further include a series of check valves, bypass valves, and/or shut-off valves arranged at predetermined locations throughout the working fluid circuit 102. These valves may work in concert to direct the working fluid into the appropriate conduits until steady-state operation of turbo pump 124 can be maintained. In one or more embodiments, the various valves may be automated or semi-automated motor-driven valves coupled to an automated control system (not shown). In other embodiments, the valves may be manually-adjustable or may be a combination of automated and manually-adjustable.



FIG. 1A depicts a first check valve 146 arranged downstream of the pump portion 104 and a second check valve 148 arranged downstream of the pump portion 128, as described in one embodiment. FIG. 1B depicts the first check valve 146 arranged downstream of the pump portion 104, as described in one embodiment. The check valves 146, 148 may be configured to prevent the working fluid from flowing upstream ofward the respective pump portions 104, 128 during various stages of operation of the heat engine system 100a. For instance, during start-up and ramp-up of the heat engine system 100a, the start pump 129 creates an elevated head pressure downstream of the first check valve 146 (e.g., at point 150) as compared to the low pressure at discharge line 105 of the pump portion 104 and the suction line 127 of the pump portion 128, as depicted in FIG. 1A. Thus, the first check valve 146 prevents the high pressure working fluid discharged from the pump portion 128 from re-circulating toward the pump portion 104 and ensures that the working fluid flows into heat exchangers 103.


Until the turbo pump 124 accelerates past the stall speed of the turbo pump 124, where the pump portion 104 can adequately pump against the head pressure created by the start pump 129, a first recirculation line 152 may be used to divert a portion of the low pressure working fluid discharged from the pump portion 104. A first bypass valve 154 may be arranged in the first recirculation line 152 and may be fully or partially opened while the turbo pump 124 ramps up or otherwise increases speed to allow the low pressure working fluid to recirculate back to the working fluid circuit 102, such as any point in the working fluid circuit 102 downstream of the heat exchangers 103 and before the pump portions 104, 128. In one embodiment, the first recirculation line 152 may fluidly couple the discharge of the pump portion 104 to the inlet of the condenser 122.


Once the turbo pump 124 attains a self-sustaining speed, the bypass valve 154 in the first recirculation line 152 can be gradually closed. Gradually closing the bypass valve 154 will increase the fluid pressure at the discharge from the pump portion 104 and decrease the flow rate through the first recirculation line 152. Eventually, once the turbo pump 124 reaches steady-state operating speeds, the bypass valve 154 may be fully closed and the entirety of the working fluid discharged from the pump portion 104 may be directed through the first check valve 146. Also, once steady-state operating speeds are achieved, the start pump 129 becomes redundant and can therefore be deactivated. The heat engine systems 100a and 100b may have an automated control system (not shown) configured to regulate, operate, or otherwise control the valves and other components therein.


In another embodiment, as depicted in FIG. 1A, to facilitate the deactivation of the start pump 129 without causing damage to the start pump 129, a second recirculation line 158 having a second bypass valve 160 is arranged therein may direct lower pressure working fluid discharged from the pump portion 128 to a low pressure side of the working fluid circuit 102 in the heat engine system 100a. The low pressure side of the working fluid circuit 102 may be any point in the working fluid circuit 102 downstream of the heat exchangers 103 and before the pump portions 104, 128. The second bypass valve 160 is generally closed during start-up and ramp-up so as to direct all the working fluid discharged from the pump portion 128 through the second check valve 148. However, as the start pump 129 powers down, the head pressure past the second check valve 148 becomes greater than the pump portion 128 discharge pressure. In order to provide relief to the pump portion 128, the second bypass valve 160 may be gradually opened to allow working fluid to escape to the low pressure side of the working fluid circuit. Eventually the second bypass valve 160 may be completely opened as the speed of the pump portion 128 slows to a stop.


Connecting the start pump 129 in series with the turbo pump 124 allows the pressure generated by the start pump 129 to act cumulatively with the pressure generated by the turbo pump 124 until self-sustaining conditions are achieved. When compared to a start pump connected in parallel with a turbo pump, the start pump 129 connected in series supplies the same flow rate but at a much lower pressure differential. The start pump 129 does not have to generate as much pressure differential as the turbo pump 124. Therefore, the power requirement to operate the pump portion 128 is reduced such that a smaller motor-driven portion 130 may be utilized to operate the pump portion 128.


In some embodiments disclosed herein, the start pump 129 and the turbo pump 124 may be fluidly coupled in series along the working fluid circuit 202, whereas the pump portion 104 of the turbo pump 124 is disposed upstream of the pump portion 128 of the start pump 129, as depicted in FIG. 1A. Such serial configuration of the turbo pump 124 and the start pump 129 provides a reduction of the power demand for the start pump 129 by efficiently increasing the pressure within the working fluid circuit 102 while self-sustaining the turbo pump 124 during a warm-up or start-up process.


In other embodiments disclosed herein, the start pump 129 and the turbo pump 124 are fluidly coupled in series along the working fluid circuit 202, whereas the pump portion 128 of the start pump 129 is disposed upstream of the pump portion 104 of the turbo pump 124, as depicted in FIG. 1B. Such serial configuration of the start pump 129 and the turbo pump 124 provides a reduction of the pressure demand for the start pump 129. Therefore, the start pump 129 may also function as a low speed booster pump to mitigate risk of cavitation to the turbo pump 124. The functionality of a low speed booster pump enables higher cycle power by operating closer to saturation without cavitation thus increasing the turbine pressure ratio.


In one or more embodiments disclosed herein, both of the heat engine systems 100a (FIG. 1A) and the heat engine system 100b (FIG. 1B) contain the turbo pump 124 having the pump portion 104 operatively coupled to the drive turbine 116, such that the pump portion 104 is fluidly coupled to the working fluid circuit 102 and configured to circulate a working fluid through the working fluid circuit 102. The working fluid may have a first mass flow, m1, and a second mass flow, m2, within the working fluid circuit 102. The heat engine systems 100a and 100b may have one, two, three, or more heat exchangers 103 fluidly coupled to and in thermal communication with the working fluid circuit 102, fluidly coupled to and in thermal communication with the heat source stream 90 (e.g., waste heat stream flowing from a waste heat source), and configured to transfer thermal energy from the heat source stream 90 to the first mass flow of the working fluid within the working fluid circuit 102. The heat engine systems 100a and 100b also have the power generator 112 coupled to the power turbine 110. The power turbine 110 is fluidly coupled to and in thermal communication with the working fluid circuit 102 and disposed downstream of the first heat exchanger 103. The power turbine 110 is generally configured to convert thermal energy to mechanical energy by a pressure drop in the first mass flow of the working fluid flowing through the power turbine 110. The power generator 112 may be substituted with an alternator other device configured to convert the mechanical energy into electrical energy.


The heat engine systems 100a and 100b further contain the start pump 129 having the pump portion 128 operatively coupled to the motor-driven portion 130 and configured to circulate the working fluid within the working fluid circuit 102. For example, the pump portion 128 of the start pump 129 and the pump portion 104 of the turbo pump 124 may be fluidly coupled in series to the working fluid circuit 102.


In one exemplary configuration, as depicted in FIG. 1A, the pump portion 128 of the start pump 129 is fluidly coupled to the working fluid circuit 102 downstream of and in series with the pump portion 104 of the turbo pump 124. Therefore, the heat engine system 100a has an outlet of the pump portion 104 of the turbo pump 124 that may be fluidly coupled to and serially upstream of an inlet of the pump portion 128 of the start pump 129. In another exemplary configuration, as depicted in FIG. 1B, the pump portion 128 of the start pump 129 is fluidly coupled to the working fluid circuit 102 upstream of and in series with the pump portion 104 of the turbo pump 124. Therefore, the heat engine system 100b has an inlet of the pump portion 104 of the turbo pump 124 that may be fluidly coupled to and serially downstream of an outlet of the pump portion 128 of the start pump 129.


In some embodiments, the heat engine systems 100a and 100b further contain a first recuperator or condenser, such as condenser 122, fluidly coupled to the power turbine 110 and configured to receive the first mass flow discharged from the power turbine 110. The heat engine systems 100a and 100b may also contain a second recuperator or condenser (not shown) fluidly coupled to the drive turbine 116, such that the drive turbine 116 may be configured to receive and expand the second mass flow and discharge the second mass flow into the additional recuperator or condenser. In some examples, the recuperator or condenser 122 may be configured to transfer residual thermal energy from the first mass flow to the second mass flow before the second mass flow is expanded in the drive turbine 116. The recuperator or condenser 122 may be configured to transfer residual thermal energy from the first mass flow discharged from the power turbine 110 to the first mass flow directed to the first heat exchanger 103. The additional recuperator or condenser may be configured to transfer residual thermal energy from the second mass flow discharged from the drive turbine 116 to the second mass flow directed to a second heat exchanger, such as contained within the first heat exchanger 103.


In some embodiments, the heat engine system 100a and 100b further contain a second heat exchanger 103 fluidly coupled to and in thermal communication with the working fluid circuit 102 and disposed in series with the first heat exchanger 103 along the working fluid circuit 102. The second heat exchanger 103 may be fluidly coupled to and in thermal communication with the heat source stream 90 and configured to transfer thermal energy from the heat source stream 90 to the second mass flow of the working fluid. The second heat exchanger 103 may be in thermal communication with the heat source stream 90 and in fluid communication with the pump portion 104 of the turbo pump 124 and the pump portion 128 of the start pump 129. In some embodiments described herein, the heat engine system 100a or 100b contains first, second, and third heat exchangers, such as the heat exchangers 103, disposed in series and in thermal communication with the heat source stream 90 by the working fluid within the working fluid circuit 102. Also, the heat exchangers 103 may be disposed in series, parallel, or a combination thereof and in thermal communication by the working fluid within the working fluid circuit 102. In many examples described herein, the working fluid contains carbon dioxide and at least a portion of the working fluid circuit 102, such as the high pressure side, contains the working fluid in a supercritical state.


In another embodiment, the heat engine systems 100a and 100b further contain a first recirculation line 152 and a first bypass valve 154 disposed therein. The first recirculation line 152 may be fluidly coupled to the pump portion 104 of the turbo pump 124 on the low pressure side of the working fluid circuit 102. Also, the heat engine system 100a has a second recirculation line 158 and a second bypass valve 160 disposed therein, as depicted in FIG. 1A. The second recirculation line 158 may be fluidly coupled to the pump portion 128 of the start pump 129 on the low pressure side of the working fluid circuit 102.


In other embodiments disclosed herein, the heat engine systems 100a and 100b contain the turbo pump 124 configured to circulate a working fluid throughout the working fluid circuit 102 and the pump portion 104 operatively coupled to the drive turbine 116. In some examples, the turbo pump 124 is hermetically-sealed within a casing. The heat engine systems 100a and 100b also contain the start pump 129 arranged in series with the turbo pump 124 along the working fluid circuit 102. The heat engine systems 100a and 100b generally have a first check valve 146 arranged in the working fluid circuit 102 downstream of the pump portion 104 of the turbo pump 124. The heat engine system 100a also has a second check valve 148 arranged in the working fluid circuit 102 downstream of the pump portion 128 of the start pump 129 and fluidly coupled to the first check valve 146.


The heat engine systems 100a and 100b further contain the power turbine 110 fluidly coupled to both the pump portion 104 of the turbo pump 124 and the pump portion 128 of the start pump 129, a first recirculation line 152 fluidly coupling the pump portion 104 with a low pressure side of the working fluid circuit 102. In some configurations, the heat engine system 100a or 100b may contain a recuperator or condenser 122 fluidly coupled downstream of the power turbine 110 and an additional recuperator or condenser (not shown) fluidly coupled to the drive turbine 116. In other configurations, the heat engine system 100a or 100b may contain a third recuperator or condenser fluidly coupled to the additional recuperator or condenser, wherein the first, second, and third recuperator or condensers are disposed in series along the working fluid circuit 102.


In other embodiments disclosed herein, a method for starting the turbo pump 124 in the heat engine system 100a, 100b and/or generating electricity with the heat engine system 100a, 100b is provided and includes circulating a working fluid within the working fluid circuit 102 by a start pump and transferring thermal energy from the heat source stream 90 to the working fluid by the first heat exchanger 103 fluidly coupled to and in thermal communication with the working fluid circuit 102. Generally, the working fluid has a first mass flow and a second mass flow within the working fluid circuit 102 and at least a portion of the working fluid circuit contains the working fluid in a supercritical state. The method further includes flowing the working fluid into the drive turbine 116 of the turbo pump 124 and expanding the working fluid while converting the thermal energy from the working fluid to mechanical energy of the drive turbine 116 and driving the pump portion 104 of the turbo pump 124 by the mechanical energy of the drive turbine 116. The pump portion 104 may be coupled to the drive turbine 116 and the working fluid may be circulated within the working fluid circuit 102 by the turbo pump 124. The method also includes diverting the working fluid discharged from the pump portion 104 of the turbo pump 124 into a first recirculation line 152 fluidly communicating the pump portion 104 of the turbo pump 124 with a low pressure side of the working fluid circuit 102 and closing a first bypass valve 154 arranged in the first recirculation line 152 as the turbo pump 124 reaches a self-sustaining speed of operation.


In other embodiments, the heat engine system 100a may be utilized while performing several methods disclosed herein. The method may further include deactivating the start pump 129 in the heat engine system 100a and opening the second bypass valve 160 arranged in the second recirculation line 158 fluidly communicating the start pump 129 with the low pressure side of the working fluid circuit 102 and diverting the working fluid discharged from the start pump 129 into the second recirculation line 158. Also, the method further includes flowing the working fluid into the power turbine 110 and converting the thermal energy from the working fluid to mechanical energy of the power turbine 110 and converting the mechanical energy of the power turbine 110 into electrical energy by the power generator 112 coupled to the power turbine 110.


In some embodiments, the method includes circulating the working fluid in the working fluid circuit 102 with the start pump 129 is preceded by closing a shut-off valve to divert the working fluid around the power turbine 110 arranged in the working fluid circuit 102. In other embodiments, the method further includes opening the shut-off valve once the turbo pump 124 reaches the self-sustaining speed of operation, thereby directing the working fluid into the power turbine 110, expanding the working fluid in the power turbine 110, and driving the power generator 112 operatively coupled to the power turbine 110 to generate electrical power. In other embodiments, the method further includes opening the shut-off valve or the control valve 133 once the turbo pump 124 reaches the self-sustaining speed of operation, directing the working fluid into the second heat exchanger 103 fluidly coupled to the power turbine 110 and in thermal communication with the heat source stream 90, transferring additional thermal energy from the heat source stream 90 to the working fluid in the second heat exchanger 103, expanding the working fluid received from the second heat exchanger 103 in the power turbine 110, and driving the power generator 112 operatively coupled to the power turbine 110, whereby the power generator 112 is operable to generate electrical power.


In some embodiments, the method also includes opening the shut-off valve once the turbo pump 124 reaches the self-sustaining speed of operation, directing the working fluid into a second heat exchanger in thermal communication with the heat source stream 90, the first and second heat exchangers, within the heat exchangers 103, being arranged in series in the heat source stream 90, directing the working fluid from the second heat exchanger into a third heat exchanger fluidly coupled to the power turbine 110 and in thermal communication with the heat source stream 90, the first, second, and third heat exchangers, within the heat exchangers 103, being arranged in series in the heat source stream 90, transferring additional thermal energy from the heat source stream 90 to the working fluid in the third heat exchanger, expanding the working fluid received from the third heat exchanger in the power turbine 110, and driving the power generator 112 operatively coupled to the power turbine 110, whereby the power generator 112 is operable to generate electrical power.



FIG. 2 depicts an exemplary heat engine system 101 configured as a closed-loop thermodynamic cycle and operated to circulate a working fluid throughout a working fluid circuit 105. Heat engine system 101 illustrates further detail and may be similar in several respects to the heat engine system 100a described above. Accordingly, the heat engine system 101 may be further understood with reference to FIGS. 1A-1B, where like numerals indicate like components that will not be described again in detail. The heat engine system 101 may be characterized as a “cascade” thermodynamic cycle, where residual thermal energy from expanded working fluid is used to preheat additional working fluid before its respective expansion. Other exemplary cascade thermodynamic cycles that may also be implemented into the present disclosure may be found in PCT Appl. No. PCT/US11/29486, entitled “Heat Engines with Cascade Cycles,” filed on Mar. 22, 2011, and published as WO 2011/119650, the contents of which are hereby incorporated by reference. The working fluid circuit 105 generally contains a variety of conduits adapted to interconnect the various components of the heat engine system 101. Although the heat engine system 101 may be characterized as a closed-loop cycle, the heat engine system 101 as a whole may or may not be hermetically-sealed such that no amount of working fluid is leaked into the surrounding environment. The heat engine system 101 generally has an automated control system (not shown) configured to regulate, operate, or otherwise control the valves and other components therein.


Heat engine system 101 includes a heat exchanger 108 that is in thermal communication with a heat source stream Qin. The heat source stream Qin may derive thermal energy from a variety of high temperature sources. For example, the heat source stream Qin may be a waste heat stream such as, but not limited to, gas turbine exhaust, process stream exhaust, other combustion product exhaust streams, such as furnace or boiler exhaust streams, or other heated stream flowing from a one or more heat sources. Accordingly, the thermodynamic cycle or heat engine system 101 may be configured to transform waste heat into electricity for applications ranging from bottom cycling in gas turbines, stationary diesel engine gensets, industrial waste heat recovery (e.g., in refineries and compression stations), and hybrid alternatives to the internal combustion engine. In other embodiments, the heat source stream Qin may derive thermal energy from renewable sources of thermal energy such as, but not limited to, solar thermal and geothermal sources.


While the heat source stream Qin may be a fluid stream of the high temperature source itself, in other embodiments the heat source stream Qin may be a thermal fluid in contact with the high temperature source. The thermal fluid may deliver the thermal energy to the waste heat exchanger 108 to transfer the energy to the working fluid in the circuit 105.


After being discharged from the pump portion 104, the combined working fluid m1+m2 is split into the first and second mass flows m1 and m2, respectively, at point 106 in the working fluid circuit 105. The first mass flow m1 is directed to a heat exchanger 108 in thermal communication with a heat source stream Qin. The respective mass flows m1 and m2 may be controlled by the user, control system, or by the configuration of the system, as desired.


A power turbine 110 is arranged downstream of the heat exchanger 108 for receiving and expanding the first mass flow m1 discharged from the heat exchanger 108. The power turbine 110 is operatively coupled to an alternator, power generator 112, or other device or system configured to receive shaft work. The power generator 112 converts the mechanical work generated by the power turbine 110 into usable electrical power.


The power turbine 110 discharges the first mass flow m1 into a first recuperator 114 fluidly coupled downstream thereof. The first recuperator 114 may be configured to transfer residual thermal energy in the first mass flow m1 to the second mass flow m2 which also passes through the first recuperator 114. Consequently, the temperature of the first mass flow m1 is decreased and the temperature of the second mass flow m2 is increased. The second mass flow m2 may be subsequently expanded in a drive turbine 116.


The drive turbine 116 discharges the second mass flow m2 into a second recuperator 118 fluidly coupled downstream thereof. The second recuperator 118 may be configured to transfer residual thermal energy from the second mass flow m2 to the combined working fluid m1+m2 originally discharged from the pump portion 104. The mass flows m1, m2 discharged from each recuperator 114, 118, respectively, are recombined at point 120 in the working fluid circuit 102 and then returned to a lower temperature state at a condenser 122. After passing through the condenser 122, the combined working fluid m1+m2 is returned to the pump portion 104 and the cycle is started anew.


The recuperators 114, 118 and the condenser 122 may be any device adapted to reduce the temperature of the working fluid such as, but not limited to, a direct contact heat exchanger, a trim cooler, a mechanical refrigeration unit, and/or any combination thereof. The heat exchanger 108, recuperators 114, 118, and/or the condenser 122 may include or employ one or more printed circuit heat exchange panels. Such heat exchangers and/or panels are known in the art, and are described in U.S. Pat. Nos. 6,921,518; 7,022,294; and 7,033,553, the contents of which are incorporated by reference to the extent consistent with the present disclosure.


In one or more embodiments, the heat source stream Qin may be at a temperature of approximately 200° C., or a temperature at which the turbo pump 124 is able to achieve self-sustaining operation. As can be appreciated, higher heat source stream temperatures can be utilized, without departing from the scope of the disclosure. To keep thermally-induced stresses in a manageable range, however, the working fluid temperature can be “tempered” through the use of liquid carbon dioxide injection upstream of the drive turbine 116.


To facilitate the start sequence of the turbo pump 124, the heat engine system 101 may further include a series of check valves, bypass valves, and/or shut-off valves arranged at predetermined locations throughout the circuit 105. These valves may work in concert to direct the working fluid into the appropriate conduits until the steady-state operation of turbo pump 124 is maintained. In one or more embodiments, the various valves may be automated or semi-automated motor-driven valves coupled to an automated control system (not shown). In other embodiments, the valves may be manually-adjustable or may be a combination of automated and manually-adjustable.


For example, a shut-off valve 132 arranged upstream from the power turbine 110 may be closed during the start-up and/or ramp-up of the heat engine system 101. Consequently, after being heated in the heat exchanger 108, the first mass flow m1 is diverted around the power turbine 110 via a first diverter line 134 and a second diverter line 138. A bypass valve 140 is arranged in the second diverter line 138 and a check valve 142 is arranged in the first diverter line 134. The portion of working fluid circulated through the first diverter line 134 may be used to preheat the second mass flow m2 in the first recuperator 114. A check valve 144 allows the second mass flow m2 to flow through to the first recuperator 114. The portion of the working fluid circulated through the second diverter line 138 is combined with the second mass flow m2 discharged from the first recuperator 114 and injected into the drive turbine 116 in a high-temperature condition.


Once the turbo pump 124 reaches steady-state operating speeds, and even once a self-sustaining speed is achieved, the shut-off valve 132 arranged upstream from the power turbine 110 may be opened and the bypass valve 140 may be simultaneously closed. As a result, the heated stream of first mass flow m1 may be directed through the power turbine 110 to commence generation of electrical power.



FIG. 3 depicts an exemplary heat engine system 200 configured with a parallel-type heat engine cycle, according to one or more embodiments disclosed herein. The heat engine system 200 may be similar in several respects to the heat engine systems 100a, 100b, and 101 described above. Accordingly, the heat engine system 200 may be further understood with reference to FIGS. 1A, 1B, and 2, where like numerals indicate like components that will not be described again in detail. As with the heat engine system 100a described above, the heat engine system 200 in FIG. 3 may be used to convert thermal energy to work by thermal expansion of a working fluid mass flowing through a working fluid circuit 202. The heat engine system 200, however, may be characterized as a parallel-type Rankine thermodynamic cycle.


Specifically, the working fluid circuit 202 may include a first heat exchanger 204 and a second heat exchanger 206 arranged in thermal communication with the heat source stream Qin. The first and second heat exchangers 204, 206 may correspond generally to the heat exchanger 108 described above with reference to FIG. 2. For example, in one embodiment, the first and second heat exchangers 204, 206 may be first and second stages, respectively, of a single or combined heat exchanger. The first heat exchanger 204 may serve as a high temperature heat exchanger (e.g., a higher temperature relative to the second heat exchanger 206) adapted to receive initial thermal energy from the heat source stream Qin. The second heat exchanger 206 may then receive additional thermal energy from the heat source stream Qin via a serial connection downstream of the first heat exchanger 204. The heat exchangers 204, 206 are arranged in series with the heat source stream Qin, but in parallel in the working fluid circuit 202.


The first heat exchanger 204 may be fluidly coupled to the power turbine 110 and the second heat exchanger 206 may be fluidly coupled to the drive turbine 116. In turn, the power turbine 110 is fluidly coupled to the first recuperator 114 and the drive turbine 116 is fluidly coupled to the second recuperator 118. The recuperators 114, 118 may be arranged in series on a low temperature side of the circuit 202 and in parallel on a high temperature side of the circuit 202. For example, the high temperature side of the circuit 202 includes the portions of the circuit 202 arranged downstream of each recuperator 114, 118 where the working fluid is directed to the heat exchangers 204, 206. The low temperature side of the circuit 202 includes the portions of the circuit 202 downstream of each recuperator 114, 118 where the working fluid is directed away from the heat exchangers 204, 206.


The turbo pump 124 is also included in the working fluid circuit 202, where the pump portion 104 is operatively coupled to the drive turbine 116 via the drive shaft 123 (indicated by the dashed line), as described above. The pump portion 104 is shown separated from the drive turbine 116 only for ease of viewing and describing the circuit 202. Indeed, although not specifically illustrated, it will be appreciated that both the pump portion 104 and the drive turbine 116 may be hermetically-sealed within the casing 126 (FIG. 1). The start pump 129 facilitates the start sequence for the turbo pump 124 during start-up of the heat engine system 200 and ramp-up of the turbo pump 124. Once steady-state operation of the turbo pump 124 is reached, the start pump 129 may be deactivated.


The power turbine 110 may operate at a higher relative temperature (e.g., higher turbine inlet temperature) than the drive turbine 116, due to the temperature drop of the heat source stream Qin experienced across the first heat exchanger 204. The power turbine 110 and the drive turbine 116 may each be configured to operate at the same or substantially the same inlet pressure. The low-pressure discharge mass flow exiting each recuperator 114, 118 may be directed through the condenser 122 to be cooled for return to the low temperature side of the circuit 202 and to either the main or start pump portions 104, 128, depending on the stage of operation.


During steady-state operation of the heat engine system 200, the turbo pump 124 circulates all of the working fluid throughout the circuit 202 using the pump portion 104, and the start pump 129 does not generally operate nor is needed. The first bypass valve 154 in the first recirculation line 152 is fully closed and the working fluid is separated into the first and second mass flows m1, m2 at point 210. The first mass flow m1 is directed through the first heat exchanger 204 and subsequently expanded in the power turbine 110 to generate electrical power via the power generator 112. Following the power turbine 110, the first mass flow m1 passes through the first recuperator 114 and transfers residual thermal energy to the first mass flow m1 as the first mass flow m1 is directed toward the first heat exchanger 204.


The second mass flow m2 is directed through the second heat exchanger 206 and subsequently expanded in the drive turbine 116 to drive the pump portion 104 via the drive shaft 123. Following the drive turbine 116, the second mass flow m2 passes through the second recuperator 118 to transfer residual thermal energy to the second mass flow m2 as the second mass flow m2 courses toward the second heat exchanger 206. The second mass flow m2 is then re-combined with the first mass flow m1 and the combined mass flow m1+m2 is subsequently cooled in the condenser 122 and directed back to the pump portion 104 to commence the fluid loop anew.


During the start-up of the heat engine system 200 or ramp-up of the turbo pump 124, the start pump 129 may be engaged and operated to start spinning the turbo pump 124. To help facilitate this start-up or ramp-up, a shut-off valve 214 arranged downstream of point 210 is initially closed such that no working fluid is directed to the first heat exchanger 204 or otherwise expanded in the power turbine 110. Rather, all the working fluid discharged from the pump portion 128 is directed through a valve 215 to the second heat exchanger 206 and the drive turbine 116. The heated working fluid expands in the drive turbine 116 and drives the pump portion 104, thereby commencing operation of the turbo pump 124.


The head pressure generated by the pump portion 128 of the turbo pump 124 near point 210 prevents the low pressure working fluid discharged from the pump portion 104 during ramp-up from traversing the first check valve 146. Until the pump portion 104 is able to accelerate past the stall speed of the turbo pump 124, the first bypass valve 154 in the first recirculation line 152 may be fully opened to recirculate the low pressure working fluid back to a low pressure point in the working fluid circuit 202, such as at point 156 adjacent the inlet of the condenser 122. The inlet of pump portion 128 is in fluid communication with the first recirculation line 152 at a point upstream of the first bypass valve 154. Once the turbo pump 124 reaches a self-sustaining speed, the bypass valve 154 may be gradually closed to increase the discharge pressure of the pump portion 104 and also decrease the flow rate through the first recirculation line 152. Once the turbo pump 124 reaches steady-state operation, and even once a self-sustaining speed is achieved, the shut-off valve 214 may be gradually opened, thereby allowing the first mass flow m1 to be expanded in the power turbine 110 to commence generating electrical energy. The heat engine system 200 generally has an automated control system (not shown) configured to regulate, operate, or otherwise control the valves and other components therein.


The start pump 129 can gradually be powered down and deactivated with the turbo pump 124 operating at steady-state operating speeds. Deactivating the start pump 129 may include simultaneously opening the second bypass valve 160 arranged in the second recirculation line 158. The second bypass valve 160 allows the increasingly lower pressure working fluid discharged from the pump portion 128 to escape to the low pressure side of the working fluid circuit (e.g., point 156). Eventually the second bypass valve 160 may be completely opened as the speed of the pump portion 128 slows to a stop and the second check valve 148 prevents working fluid discharged by the pump portion 104 from advancing toward the discharge of the pump portion 128. At steady-state, the turbo pump 124 continuously pressurizes the working fluid circuit 202 in order to drive both the drive turbine 116 and the power turbine 110.



FIG. 4 depicts a schematic of a heat engine system 300 configured with a parallel-type heat engine cycle, according to one or more embodiments disclosed herein. The heat engine system 300 may be similar in some respects to the above-described the heat engine systems 100a, 100b, 101, and 200, and therefore, may be best understood with reference to FIGS. 1A, 1B, 2, and 3, respectively, where like numerals correspond to like elements that will not be described again. The heat engine system 300 includes a working fluid circuit 302 utilizing a third heat exchanger 304 also in thermal communication with the heat source stream Qin. The heat exchangers 204, 206, and 304 are arranged in series with the heat source stream Qin, but arranged in parallel in the working fluid circuit 302.


The turbo pump 124 (e.g., the combination of the pump portion 104 and the drive turbine 116 operatively coupled via the drive shaft 123) is arranged and configured to operate in series with the start pump 129, especially during the start-up of the heat engine system 300 and the ramp-up of the turbo pump 124. During steady-state operation of the heat engine system 300, the start pump 129 does not generally operate. Instead, the pump portion 104 solely discharges the working fluid that is subsequently separated into first and second mass flows m1, m2, respectively, at point 306. The third heat exchanger 304 may be configured to transfer thermal energy from the heat source stream Qin to the first mass flow m1 flowing therethrough. The first mass flow m1 is then directed to the first heat exchanger 204 and the power turbine 110 for expansion power generation. Following expansion in the power turbine 110, the first mass flow m1 passes through the first recuperator 114 to transfer residual thermal energy to the first mass flow m1 discharged from the third heat exchanger 304 and coursing toward the first heat exchanger 204.


The second mass flow m2 is directed through the valve 215, the second recuperator 118, the second heat exchanger 206, and subsequently expanded in the drive turbine 116 to drive the pump portion 104. After being discharged from the drive turbine 116, the second mass flow m2 merges with the first mass flow m1 at point 308. The combined mass flow m1+m2 thereafter passes through the second recuperator 118 to provide residual thermal energy to the second mass flow m2 as the second mass flow m2 courses toward the second heat exchanger 206.


During the start-up of the heat engine system 300 and/or the ramp-up of the turbo pump 124, the pump portion 128 draws working fluid from the first bypass line 152 and circulates the working fluid to commence spinning of the turbo pump 124. The shut-off valve 214 may be initially closed to prevent working fluid from circulating through the first and third heat exchangers 204, 304 and being expanded in the power turbine 110. The working fluid discharged from the pump portion 128 is directed through the second heat exchanger 206 and drive turbine 116. The heated working fluid expands in the drive turbine 116 and drives the pump portion 104, thereby commencing operation of the turbo pump 124.


Until the discharge pressure of the pump portion 104 of the turbo pump 124 accelerates past the stall speed of the turbo pump 124 and can withstand the head pressure generated by the pump portion 128 of the start pump 129, any working fluid discharged from the pump portion 104 is either directed toward the pump portion 128 or recirculated via the first recirculation line 152 back to a low pressure point in the working fluid circuit 202 (e.g., point 156). Once the turbo pump 124 becomes self-sustaining, the bypass valve 154 may be gradually closed to increase the pump portion 104 discharge pressure and decrease the flow rate in the first recirculation line 152. Then, the shut-off valve 214 may also be gradually opened to begin circulation of the first mass flow m1 through the power turbine 110 to generate electrical energy. Subsequently, the start pump 129 in the heat engine system 300 may be gradually deactivated while simultaneously opening the second bypass valve 160 arranged in the second recirculation line 158. Eventually the second bypass valve 160 is completely opened and the pump portion 128 can be slowed to a stop. The heat engine system 300 generally has an automated control system (not shown) configured to regulate, operate, or otherwise control the valves and other components therein.



FIG. 5 depicts a schematic of a heat engine system 400 configured with another parallel-type heat engine cycle, according to one or more embodiments disclosed herein. The heat engine system 400 may be similar to the heat engine system 300, and as such, may be best understood with reference to FIG. 3 where like numerals correspond to like elements that will not be described again. The working fluid circuit 402 depicted in FIG. 5 is substantially similar to the working fluid circuit 302 depicted in FIG. 4 but with the exception of an additional, third recuperator 404. The third recuperator 404 may be adapted to extract additional thermal energy from the combined mass flow m1+m2 discharged from the second recuperator 118. Accordingly, the working fluid in the first mass flow m1 entering the third heat exchanger 304 may be preheated in the third recuperator 404 prior to receiving thermal energy transferred from the heat source stream Qin.


As illustrated, the recuperators 114, 118, and 404 may operate as separate heat exchanging devices. In other embodiments, however, the recuperators 114, 118, and 404 may be combined as a single, integral recuperator. Steady-state operation, system start-up, and turbo pump 124 ramp-up may operate substantially similar as described above in FIG. 3, and therefore will not be described again.


Each of the described systems in FIGS. 1A-5 may be implemented in a variety of physical embodiments, including but not limited to fixed or integrated installations, or as a self-contained device such as a portable waste heat engine “skid”. The waste heat engine skid may be configured to arrange each working fluid circuit and related components (e.g., turbines 110, 116, recuperators 114, 118, 404, condensers 122, pump portions 104, 128, and/or other components) in a consolidated, single unit. An exemplary waste heat engine skid is described and illustrated in commonly assigned U.S. application Ser. No. 12/631,412, entitled “Thermal Energy Conversion Device,” filed on Dec. 9, 2009, and published as US 2011-0185729, wherein the contents are hereby incorporated by reference to the extent consistent with the present disclosure.



FIG. 6 is a flowchart of a method 500 for starting a turbo pump in a heat engine system having a thermodynamic working fluid circuit utilized during operation, according to one or more embodiments disclosed herein. The method 500 includes circulating a working fluid in the working fluid circuit with a start pump that is connected in series with the turbo pump, as at 502. The start pump may be in fluid communication with a first heat exchanger, and the first heat exchanger may be in thermal communication with a heat source stream. Thermal energy is transferred to the working fluid from the heat source stream in the first heat exchanger, as at 504. The method 500 further includes expanding the working fluid in a drive turbine, as at 506. The drive turbine is fluidly coupled to the first heat exchanger, and the drive turbine is operatively coupled to a pump portion, such that the combination of the drive turbine and pump portion is the turbo pump.


The pump portion is driven with the drive turbine, as at 508. Until the pump portion accelerates past the stall point of the pump, the working fluid discharged from the pump portion is diverted to the start pump or into a first recirculation line, as at 510. The first recirculation line may fluidly communicate the pump portion with a low pressure side of the working fluid circuit. Moreover, a first bypass valve may be arranged in the first recirculation line. As the turbo pump reaches a self-sustaining speed of operation, the first bypass valve may gradually begin to close, as at 512. Consequently, the pump portion begins circulating the working fluid discharged from the pump portion through the working fluid circuit, as at 514.


The method 500 may also include deactivating the start pump and opening a second bypass valve arranged in a second recirculation line, as at 516. The second recirculation line may fluidly communicate the start pump with the low pressure side of the working fluid circuit. The low pressure working fluid discharged from the start pump may be diverted into the second recirculation line until the start pump comes to a stop, as at 518.


It is to be understood that the present disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the disclosure. Exemplary embodiments of components, arrangements, and configurations are described herein to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the present disclosure may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments described herein may be combined in any combination of ways, e.g., any element from one exemplary embodiment may be used in any other exemplary embodiment without departing from the scope of the disclosure.


Additionally, certain terms are used throughout the written description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the disclosure, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Further, in the written description and in the claims, the terms “including”, “containing”, and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to”. All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B”, unless otherwise expressly specified herein.


The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A heat engine system, comprising: a working fluid circuit containing a working fluid comprising carbon dioxide, wherein the working fluid circuit contains a first mass flow of the working fluid and a second mass flow of the working fluid;a turbo pump having a pump portion operatively coupled to a drive turbine, wherein the pump portion is fluidly coupled to the working fluid circuit and configured to circulate the working fluid through the working fluid circuit;a start pump having a pump portion operatively coupled to a motor and configured to circulate the working fluid within the working fluid circuit, wherein the pump portion of the start pump and the pump portion of the turbo pump are fluidly coupled in series to the working fluid circuit;a first heat exchanger fluidly coupled to and in thermal communication with the working fluid circuit, configured to be fluidly coupled to and in thermal communication with a heat source stream, and configured to transfer thermal energy from the heat source stream to the first mass flow of the working fluid within the working fluid circuit;a power turbine fluidly coupled to the working fluid circuit, disposed downstream of the first heat exchanger, and configured to convert thermal energy to mechanical energy by a pressure drop in the first mass flow of the working fluid flowing through the power turbine; anda first recuperator fluidly coupled to the power turbine and configured to receive the first mass flow discharged from the power turbine.
  • 2. The heat engine system of claim 1, wherein the pump portion of the start pump is fluidly coupled to the working fluid circuit downstream of and in series with the pump portion of the turbo pump.
  • 3. The heat engine system of claim 2, wherein an outlet of the pump portion of the turbo pump is fluidly coupled to an inlet of the pump portion of the start pump.
  • 4. The heat engine system of claim 1, wherein the pump portion of the start pump is fluidly coupled to the working fluid circuit upstream of and in series with the pump portion of the turbo pump.
  • 5. The heat engine system of claim 4, wherein an outlet of the pump portion of the start pump is fluidly coupled to an inlet of the pump portion of the turbo pump.
  • 6. The heat engine system of claim 1, further comprising a second recuperator fluidly coupled to the drive turbine, the drive turbine being configured to receive and expand the second mass flow and discharge the second mass flow into the second recuperator.
  • 7. The heat engine system of claim 6, wherein the first recuperator transfers residual thermal energy from the first mass flow to the second mass flow before the second mass flow is expanded in the drive turbine.
  • 8. The heat engine system of claim 6, wherein the first recuperator transfers residual thermal energy from the first mass flow discharged from the power turbine to the first mass flow directed to the first heat exchanger.
  • 9. The heat engine system of claim 1, further comprising a second heat exchanger fluidly coupled to and in thermal communication with the working fluid circuit, disposed in series with the first heat exchanger along the working fluid circuit, fluidly coupled to and in thermal communication with the heat source stream, and configured to transfer thermal energy from the heat source stream to the second mass flow of the working fluid.
  • 10. The heat engine system of claim 9, wherein the second heat exchanger is in thermal communication with the heat source stream and in fluid communication with the pump portion of the turbo pump and the pump portion of the start pump.
  • 11. The heat engine system of claim 1, further comprising a power generator coupled to the power turbine and configured to convert the mechanical energy into electrical energy, and at least a portion of the working fluid circuit contains the working fluid in a supercritical state.
  • 12. The heat engine system of claim 1, further comprising: a first recirculation line fluidly coupling the pump portion with a low pressure side of the working fluid circuit;a second recirculation line fluidly coupling the start pump with the low pressure side of the working fluid circuit;a first bypass valve arranged in the first recirculation line; anda second bypass valve arranged in the second recirculation line.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Appl. No. 61/684,933, entitled “Supercritical Working Fluid Circuit with a Turbo Pump and a Start Pump in Series Configuration,” and filed Aug. 20, 2012, which is incorporated herein by reference in its entirety, to the extent consistent with the present disclosure.

US Referenced Citations (398)
Number Name Date Kind
2575478 Wilson Nov 1951 A
2634375 Guimbal Apr 1953 A
2691280 Albert Oct 1954 A
3095274 Crawford Jun 1963 A
3105748 Stahl Oct 1963 A
3237403 Feher Mar 1966 A
3277955 Heller Oct 1966 A
3401277 Larson Sep 1968 A
3511046 Schabert May 1970 A
3622767 Koepcke Nov 1971 A
3630022 Jubb Dec 1971 A
3736745 Karig Jun 1973 A
3772879 Engdahl Nov 1973 A
3791137 Jubb Feb 1974 A
3830062 Morgan et al. Aug 1974 A
3939328 Davis Feb 1976 A
3971211 Wethe Jul 1976 A
3982379 Gilli Sep 1976 A
3998058 Park Dec 1976 A
4009575 Hartman, Jr. Mar 1977 A
4029255 Heiser Jun 1977 A
4030312 Wallin Jun 1977 A
4049407 Bottum Sep 1977 A
4070870 Bahel Jan 1978 A
4099381 Rappoport Jul 1978 A
4119140 Cates Oct 1978 A
4150547 Hobson Apr 1979 A
4152901 Munters May 1979 A
4164848 Gilli et al. Aug 1979 A
4164849 Mangus Aug 1979 A
4170435 Swearingen Oct 1979 A
4182960 Reuyl Jan 1980 A
4183220 Shaw Jan 1980 A
4198827 Terry et al. Apr 1980 A
4208882 Lopes Jun 1980 A
4221185 Scholes Sep 1980 A
4233085 Roderick Nov 1980 A
4236869 Laurello Dec 1980 A
4248049 Briley Feb 1981 A
4257232 Bell Mar 1981 A
4287430 Guido Sep 1981 A
4336692 Ecker Jun 1982 A
4347711 Noe Sep 1982 A
4347714 Kinsell Sep 1982 A
4372125 Dickenson Feb 1983 A
4384568 Palmatier May 1983 A
4391101 Labbe Jul 1983 A
4420947 Yoshino Dec 1983 A
4428190 Bronicki Jan 1984 A
4433554 Rojey Feb 1984 A
4439687 Wood Mar 1984 A
4439994 Briley Apr 1984 A
4448033 Briccetti May 1984 A
4450363 Russell May 1984 A
4455836 Binstock Jun 1984 A
4467609 Loomis Aug 1984 A
4467621 O'Brien Aug 1984 A
4475353 Lazare Oct 1984 A
4489562 Snyder Dec 1984 A
4489563 Kalina Dec 1984 A
4498289 Osgerby Feb 1985 A
4516403 Tanaka May 1985 A
4538960 Iino et al. Sep 1985 A
4549401 Spliethoff Oct 1985 A
4555905 Endou Dec 1985 A
4558228 Larjola Dec 1985 A
4573321 Knaebel Mar 1986 A
4578953 Krieger Apr 1986 A
4589255 Martens May 1986 A
4636578 Feinberg Jan 1987 A
4674297 Vobach Jun 1987 A
4694189 Haraguchi Sep 1987 A
4697981 Brown et al. Oct 1987 A
4700543 Krieger Oct 1987 A
4730977 Haaser Mar 1988 A
4756162 Dayan Jul 1988 A
4765143 Crawford et al. Aug 1988 A
4773212 Griffin Sep 1988 A
4798056 Franklin Jan 1989 A
4813242 Wicks Mar 1989 A
4821514 Schmidt Apr 1989 A
4867633 Gravelle Sep 1989 A
4892459 Guelich Jan 1990 A
4986071 Voss Jan 1991 A
4993483 Harris Feb 1991 A
5000003 Wicks Mar 1991 A
5050375 Dickinson Sep 1991 A
5083425 Hendriks et al. Jan 1992 A
5098194 Kuo Mar 1992 A
5102295 Pope Apr 1992 A
5104284 Hustak, Jr. Apr 1992 A
5164020 Wagner Nov 1992 A
5176321 Doherty Jan 1993 A
5203159 Koizumi et al. Apr 1993 A
5228310 Vandenberg Jul 1993 A
5291960 Brandenburg Mar 1994 A
5320482 Palmer et al. Jun 1994 A
5335510 Rockenfeller Aug 1994 A
5358378 Holscher Oct 1994 A
5360057 Rockenfeller Nov 1994 A
5392606 Labinov Feb 1995 A
5440882 Kalina Aug 1995 A
5444972 Moore Aug 1995 A
5488828 Brossard Feb 1996 A
5490386 Keller Feb 1996 A
5503222 Dunne Apr 1996 A
5531073 Bronicki Jul 1996 A
5538564 Kaschmitter Jul 1996 A
5542203 Luoma Aug 1996 A
5570578 Saujet Nov 1996 A
5588298 Kalina Dec 1996 A
5600967 Meckler Feb 1997 A
5634340 Grennan Jun 1997 A
5647221 Garris, Jr. Jul 1997 A
5649426 Kalina Jul 1997 A
5676382 Dahlheimer Oct 1997 A
5680753 Hollinger Oct 1997 A
5694764 Blain et al. Dec 1997 A
5738164 Hildebrand Apr 1998 A
5754613 Hashiguchi May 1998 A
5771700 Cochran Jun 1998 A
5789822 Calistrat Aug 1998 A
5813215 Weisser Sep 1998 A
5833876 Schnur Nov 1998 A
5862666 Liu Jan 1999 A
5873260 Linhardt Feb 1999 A
5874039 Edelson Feb 1999 A
5894836 Wu Apr 1999 A
5899067 Hageman May 1999 A
5903060 Norton May 1999 A
5918460 Connell Jul 1999 A
5941238 Tracy Aug 1999 A
5943869 Cheng Aug 1999 A
5946931 Lomax Sep 1999 A
5973050 Johnson Oct 1999 A
6037683 Lulay Mar 2000 A
6041604 Nicodemus Mar 2000 A
6058930 Shingleton May 2000 A
6062815 Holt May 2000 A
6065280 Ranasinghe May 2000 A
6066797 Toyomura May 2000 A
6070405 Jerye Jun 2000 A
6082110 Rosenblatt Jul 2000 A
6105368 Hansen Aug 2000 A
6112547 Spauschus Sep 2000 A
6129507 Ganelin Oct 2000 A
6158237 Riffat Dec 2000 A
6164655 Bothien Dec 2000 A
6202782 Hatanaka Mar 2001 B1
6223846 Schechter May 2001 B1
6233938 Nicodemus May 2001 B1
6282900 Bell Sep 2001 B1
6282917 Mongan Sep 2001 B1
6295818 Ansley Oct 2001 B1
6299690 Mongeon Oct 2001 B1
6341781 Matz Jan 2002 B1
6374630 Jones Apr 2002 B1
6393851 Wightman May 2002 B1
6432320 Bonsignore Aug 2002 B1
6434955 Ng Aug 2002 B1
6442951 Maeda Sep 2002 B1
6446425 Lawlor Sep 2002 B1
6446465 Dubar Sep 2002 B1
6463730 Keller Oct 2002 B1
6484490 Olsen Nov 2002 B1
6539720 Rouse et al. Apr 2003 B2
6539728 Korin Apr 2003 B2
6571548 Bronicki Jun 2003 B1
6581384 Benson Jun 2003 B1
6598397 Hanna Jul 2003 B2
6644062 Hays Nov 2003 B1
6657849 Andresakis Dec 2003 B1
6668554 Brown Dec 2003 B1
6684625 Kline Feb 2004 B2
6695974 Withers Feb 2004 B2
6715294 Anderson Apr 2004 B2
6734585 Tornquist May 2004 B2
6735948 Kalina May 2004 B1
6739142 Korin May 2004 B2
6751959 McClanahan et al. Jun 2004 B1
6769256 Kalina Aug 2004 B1
6799892 Leuthold Oct 2004 B2
6808179 Bhattacharyya Oct 2004 B1
6810335 Lysaght Oct 2004 B2
6817185 Coney Nov 2004 B2
6857268 Stinger Feb 2005 B2
6910334 Kalina Jun 2005 B2
6918254 Baker Jul 2005 B2
6921518 Johnston Jul 2005 B2
6941757 Kalina Sep 2005 B2
6960839 Zimron Nov 2005 B2
6960840 Willis Nov 2005 B2
6962054 Linney Nov 2005 B1
6964168 Pierson Nov 2005 B1
6968690 Kalina Nov 2005 B2
6986251 Radcliff Jan 2006 B2
7013205 Hafner et al. Mar 2006 B1
7021060 Kalina Apr 2006 B1
7022294 Johnston Apr 2006 B2
7033533 Lewis-Aburn et al. Apr 2006 B2
7036315 Kang May 2006 B2
7041272 Keefer May 2006 B2
7047744 Robertson May 2006 B1
7048782 Couch May 2006 B1
7062913 Christensen Jun 2006 B2
7096665 Stinger Aug 2006 B2
7096679 Manole Aug 2006 B2
7124587 Linney Oct 2006 B1
7174715 Armitage Feb 2007 B2
7194863 Ganev Mar 2007 B2
7197876 Kalina Apr 2007 B1
7200996 Cogswell Apr 2007 B2
7234314 Wiggs Jun 2007 B1
7249588 Russell Jul 2007 B2
7278267 Yamada Oct 2007 B2
7279800 Bassett Oct 2007 B2
7287381 Pierson Oct 2007 B1
7305829 Mirolli Dec 2007 B2
7313926 Gurin Jan 2008 B2
7340894 Miyahara et al. Mar 2008 B2
7340897 Zimron Mar 2008 B2
7406830 Valentian Aug 2008 B2
7416137 Hagen et al. Aug 2008 B2
7453242 Ichinose Nov 2008 B2
7458217 Kalina Dec 2008 B2
7458218 Kalina Dec 2008 B2
7464551 Althaus et al. Dec 2008 B2
7469542 Kalina Dec 2008 B2
7516619 Pelletier Apr 2009 B2
7600394 Kalina Oct 2009 B2
7621133 Tomlinson Nov 2009 B2
7654354 Otterstrom Feb 2010 B1
7665291 Anand Feb 2010 B2
7665304 Sundel Feb 2010 B2
7685821 Kalina Mar 2010 B2
7730713 Nakano Jun 2010 B2
7735335 Uno Jun 2010 B2
7770376 Brostmeyer Aug 2010 B1
7775758 Legare Aug 2010 B2
7827791 Pierson Nov 2010 B2
7838470 Shaw Nov 2010 B2
7841179 Kalina Nov 2010 B2
7841306 Myers Nov 2010 B2
7854587 Ito Dec 2010 B2
7866157 Ernst Jan 2011 B2
7900450 Gurin Mar 2011 B2
7950230 Nishikawa May 2011 B2
7950243 Gurin May 2011 B2
7972529 Machado Jul 2011 B2
7997076 Ernst Aug 2011 B2
8096128 Held et al. Jan 2012 B2
8099198 Gurin Jan 2012 B2
8146360 Myers Apr 2012 B2
8281593 Held Oct 2012 B2
8419936 Berger et al. Apr 2013 B2
20010015061 Viteri et al. Aug 2001 A1
20010020444 Johnston Sep 2001 A1
20010030952 Roy Oct 2001 A1
20020029558 Tamaro Mar 2002 A1
20020066270 Rouse et al. Jun 2002 A1
20020078696 Korin Jun 2002 A1
20020078697 Lifson Jun 2002 A1
20020082747 Kramer Jun 2002 A1
20030000213 Christensen Jan 2003 A1
20030061823 Alden Apr 2003 A1
20030154718 Nayar Aug 2003 A1
20030182946 Sami Oct 2003 A1
20030213246 Coll et al. Nov 2003 A1
20030221438 Rane et al. Dec 2003 A1
20040011038 Stinger Jan 2004 A1
20040011039 Stinger et al. Jan 2004 A1
20040020185 Brouillette et al. Feb 2004 A1
20040020206 Sullivan et al. Feb 2004 A1
20040021182 Green et al. Feb 2004 A1
20040035117 Rosen Feb 2004 A1
20040083731 Lasker May 2004 A1
20040083732 Hanna et al. May 2004 A1
20040088992 Brasz et al. May 2004 A1
20040097388 Brask et al. May 2004 A1
20040105980 Sudarshan et al. Jun 2004 A1
20040107700 McClanahan et al. Jun 2004 A1
20040159110 Janssen Aug 2004 A1
20040211182 Gould Oct 2004 A1
20050022963 Garrabrant et al. Feb 2005 A1
20050056001 Frutschi Mar 2005 A1
20050096676 Gifford, III et al. May 2005 A1
20050109387 Marshall May 2005 A1
20050137777 Kolavennu et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050167169 Gering et al. Aug 2005 A1
20050183421 Vaynberg et al. Aug 2005 A1
20050196676 Singh et al. Sep 2005 A1
20050198959 Schubert Sep 2005 A1
20050227187 Schilling Oct 2005 A1
20050252235 Critoph et al. Nov 2005 A1
20050257812 Wright et al. Nov 2005 A1
20060010868 Smith Jan 2006 A1
20060060333 Chordia et al. Mar 2006 A1
20060066113 Ebrahim et al. Mar 2006 A1
20060080960 Rajendran et al. Apr 2006 A1
20060112693 Sundel Jun 2006 A1
20060182680 Keefer et al. Aug 2006 A1
20060211871 Dai et al. Sep 2006 A1
20060213218 Uno et al. Sep 2006 A1
20060225421 Yamanaka et al. Oct 2006 A1
20060225459 Meyer Oct 2006 A1
20060249020 Tonkovich et al. Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20070001766 Ripley et al. Jan 2007 A1
20070017192 Bednarek et al. Jan 2007 A1
20070019708 Shiflett et al. Jan 2007 A1
20070027038 Kamimura et al. Feb 2007 A1
20070056290 Dahm Mar 2007 A1
20070089449 Gurin Apr 2007 A1
20070108200 McKinzie, II May 2007 A1
20070119175 Ruggieri et al. May 2007 A1
20070130952 Copen Jun 2007 A1
20070151244 Gurin Jul 2007 A1
20070161095 Gurin Jul 2007 A1
20070163261 Strathman Jul 2007 A1
20070195152 Kawai et al. Aug 2007 A1
20070204620 Pronske et al. Sep 2007 A1
20070227472 Takeuchi et al. Oct 2007 A1
20070234722 Kalina Oct 2007 A1
20070245733 Pierson et al. Oct 2007 A1
20070246206 Gong et al. Oct 2007 A1
20080000225 Kalina Jan 2008 A1
20080006040 Peterson et al. Jan 2008 A1
20080010967 Griffin et al. Jan 2008 A1
20080023666 Gurin Jan 2008 A1
20080053095 Kalina Mar 2008 A1
20080066470 MacKnight Mar 2008 A1
20080135253 Vinegar et al. Jun 2008 A1
20080163625 O'Brien Jul 2008 A1
20080173450 Goldberg et al. Jul 2008 A1
20080211230 Gurin Sep 2008 A1
20080250789 Myers et al. Oct 2008 A1
20080252078 Myers Oct 2008 A1
20090021251 Simon Jan 2009 A1
20090085709 Meinke Apr 2009 A1
20090107144 Moghtaderi et al. Apr 2009 A1
20090139234 Gurin Jun 2009 A1
20090139781 Straubel Jun 2009 A1
20090173337 Tamaura et al. Jul 2009 A1
20090173486 Copeland Jul 2009 A1
20090180903 Martin et al. Jul 2009 A1
20090205892 Jensen et al. Aug 2009 A1
20090211251 Petersen et al. Aug 2009 A1
20090211253 Radcliff et al. Aug 2009 A1
20090266075 Westmeier et al. Oct 2009 A1
20090293503 Vandor Dec 2009 A1
20100024421 Litwin Feb 2010 A1
20100077792 Gurin Apr 2010 A1
20100083662 Kalina Apr 2010 A1
20100102008 Hedberg Apr 2010 A1
20100122533 Kalina May 2010 A1
20100146949 Stobart et al. Jun 2010 A1
20100146973 Kalina Jun 2010 A1
20100156112 Held et al. Jun 2010 A1
20100162721 Welch et al. Jul 2010 A1
20100205962 Kalina Aug 2010 A1
20100218513 Vaisman et al. Sep 2010 A1
20100218930 Proeschel Sep 2010 A1
20100263380 Biederman et al. Oct 2010 A1
20100287934 Glynn et al. Nov 2010 A1
20100300093 Doty Dec 2010 A1
20100326076 Ast et al. Dec 2010 A1
20110027064 Pal et al. Feb 2011 A1
20110030404 Gurin Feb 2011 A1
20110048012 Ernst et al. Mar 2011 A1
20110061384 Held et al. Mar 2011 A1
20110061387 Held et al. Mar 2011 A1
20110088399 Briesch et al. Apr 2011 A1
20110179799 Allam et al. Jul 2011 A1
20110185729 Held Aug 2011 A1
20110192163 Kasuya Aug 2011 A1
20110203278 Kopecek et al. Aug 2011 A1
20110259010 Bronicki et al. Oct 2011 A1
20110299972 Morris Dec 2011 A1
20110308253 Ritter Dec 2011 A1
20120047892 Held et al. Mar 2012 A1
20120067055 Held Mar 2012 A1
20120128463 Held May 2012 A1
20120131918 Held May 2012 A1
20120131919 Held May 2012 A1
20120131920 Held May 2012 A1
20120131921 Held May 2012 A1
20120159922 Gurin Jun 2012 A1
20120159956 Gurin Jun 2012 A1
20120174558 Gurin Jul 2012 A1
20120186219 Gurin Jul 2012 A1
20120247134 Gurin Oct 2012 A1
20120247455 Gurin et al. Oct 2012 A1
20120261090 Durmaz et al. Oct 2012 A1
20130019597 Kalina Jan 2013 A1
20130033037 Held et al. Feb 2013 A1
20130036736 Hart et al. Feb 2013 A1
20130113221 Held May 2013 A1
Foreign Referenced Citations (91)
Number Date Country
2794150 Nov 2011 CA
1165238 Nov 1997 CN
1432102 Jul 2003 CN
101614139 Dec 2009 CN
202055876 Nov 2011 CN
202544943 Nov 2012 CN
202718721 Feb 2013 CN
2632777 Feb 1977 DE
19906087 Aug 2000 DE
10052993 May 2002 DE
1977174 Oct 2008 EP
1998013 Dec 2008 EP
2419621 Feb 2012 EP
2446122 May 2012 EP
2478201 Jul 2012 EP
2500530 Sep 2012 EP
2550436 Jan 2013 EP
856985 Dec 1960 GB
2010974 Jul 1979 GB
2075608 Nov 1981 GB
58-193051 Nov 1983 JP
60040707 Mar 1985 JP
61-152914 Jul 1986 JP
01-240705 Sep 1989 JP
05-321612 Dec 1993 JP
06-331225 Nov 1994 JP
08028805 Feb 1996 JP
09-100702 Apr 1997 JP
2641581 May 1997 JP
09-209716 Aug 1997 JP
2858750 Dec 1998 JP
H11270352 May 1999 JP
2000257407 Sep 2000 JP
2001-193419 Jul 2001 JP
2002-097965 Apr 2002 JP
2003529715 Oct 2003 JP
2004-239250 Aug 2004 JP
2004-332626 Nov 2004 JP
2005030727 Feb 2005 JP
2005-533972 Nov 2005 JP
2006037760 Feb 2006 JP
2006177266 Jul 2006 JP
2007-198200 Sep 2007 JP
4343738 Oct 2009 JP
2011-017268 Jan 2011 JP
100191080 Jun 1999 KR
10-2007-0086244 Aug 2007 KR
10-0766101 Oct 2007 KR
10-0844634 Jul 2008 KR
10-20100067927 Jun 2010 KR
1020110018769 Feb 2011 KR
1069914 Sep 2011 KR
1103549 Jan 2012 KR
10-2012-0058582 Jun 2012 KR
2012-0068670 Jun 2012 KR
2012-0128753 Nov 2012 KR
2012-0128755 Nov 2012 KR
WO 9105145 Apr 1991 WO
WO 9609500 Mar 1996 WO
0071944 Nov 2000 WO
WO 0144658 Jun 2001 WO
WO 2006060253 Jun 2006 WO
WO 2006137957 Dec 2006 WO
WO 2007056241 May 2007 WO
WO 2007079245 Jul 2007 WO
WO 2007082103 Jul 2007 WO
WO 2007112090 Oct 2007 WO
WO 2008039725 Apr 2008 WO
2008101711 Aug 2008 WO
WO 2009045196 Apr 2009 WO
WO 2009058992 May 2009 WO
2010083198 Jul 2010 WO
WO 2010074173 Jul 2010 WO
WO 2010121255 Oct 2010 WO
WO 2010126980 Nov 2010 WO
WO 2010151560 Dec 2010 WO
WO 2011017450 Feb 2011 WO
WO 2011017476 Feb 2011 WO
WO 2011017599 Feb 2011 WO
WO 2011034984 Mar 2011 WO
WO 2011094294 Aug 2011 WO
WO 2011119650 Sep 2011 WO
WO 2012074905 Jun 2012 WO
WO 2012074907 Jun 2012 WO
WO 2012074911 Jun 2012 WO
WO 2012074940 Jun 2012 WO
WO 2013055391 Apr 2013 WO
WO 2013059687 Apr 2013 WO
WO 2013059695 Apr 2013 WO
WO 2013070249 May 2013 WO
WO 2013074907 May 2013 WO
Non-Patent Literature Citations (89)
Entry
CN Search Report for Application No. 201080035382.1, 2 pages.
CN Search Report for Application No. 201080050795.7, 2 pages.
PCT/US2011/062198—Extended European Search Report dated May 6, 2014, 9 pages.
PCT/US2011/055547—Extended European Search Report dated May 28, 2014, 8 pages.
PCT/US2013/055547—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 11 pages.
PCT/US2013/064470—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 22, 2014, 10 pages.
PCT/US2013/064471—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 24, 2014, 10 pages.
PCT/US2014/013154—International Search Report dated May 23, 2014, 4 pages.
PCT/US2014/013170—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated May 9, 2014, 12 pages.
PCT/US2014/023026—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 22, 2014, 11 pages.
PCT/US2014/023990—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 17, 2014, 10 pages.
PCT/US2014/026173—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jul. 9, 2014, 10 pages.
Renz, Manfred, “The New Generation Kalina Cycle”, Contribution to the Conference: “Electricity Generation from Enhanced Geothermal Systems”, Sep. 14, 2006, Strasbourg, France, 18 pages.
Thorin, Eva, “Power Cycles with Ammonia-Water Mixtures as Working Fluid”, Doctoral Thesis, Department of Chemical Engineering and Technology Energy Processes, Royal Institute of Technology, Stockholm, Sweden, 2000, 66 pages.
Alpy, N., et al., “French Atomic Energy Commission views as regards SCO2 Cycle Development priorities and related R&D approach,” Presentation, Symposium on SCO2 Power Cycles, Apr. 29-30, 2009, Troy, NY, 20 pages.
Angelino, G., and Invernizzi, C.M., “Carbon Dioxide Power Cycles using Liquid Natural Gas as Heat Sink”, Applied Thermal Engineering Mar. 3, 2009, 43 pages.
Bryant, John C., Saari, Henry, and Zanganeh, Kourosh, “An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles” Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Presentation, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 20 pages.
Chapman, Daniel J., Arias, Diego A., “An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant”, Paper, Abengoa Solar, Apr. 29-30, 2009, Troy, NY, 5 pages.
Chen, Yang, Lundqvist, P., Johansson, A., Platell, P., “A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Working Fluid in Waste Heat Recovery”, Science Direct, Applied Thermal Engineering, Jun. 12, 2006, 6 pages.
Chen, Yang, “Thermodynamic Cycles Using Carbon Dioxide as Working Fluid”, Doctoral Thesis, School of Industrial Engineering and Management, Stockholm, Oct. 2011, 150 pages., (3 parts).
Chordia, Lalit, “Optimizing Equipment for Supercritical Applications”, Thar Energy LLC, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Combs, Osie V., “An Investigation of the Supercritical CO2 Cycle (Feher cycle) for Shipboard Application”, Massachusetts Institute of Technology, May 1977, 290 pages.
Di Bella, Francis A., “Gas Turbine Engine Exhaust Waste Heat Recovery Navy Shipboard Module Development”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Dostal, V., et al., A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Mar. 10, 2004, 326 pages., (7 parts).
Dostal, Vaclav and Kulhanek, Martin, “Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic”, Czech Technical University in Prague, Symposium on SCO2 Power Cycles, Apr. 29-30, 2009, Troy, NY, 8 pages.
Dostal, Vaclav, and Dostal, Jan, “Supercritical CO2 Regeneration Bypass Cycle—Comparison to Traditional Layouts”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Barber Nichols, Inc., Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Eisemann, Kevin, and Fuller, Robert L., “Supercritical CO2 Brayton Cycle Design and System Start-up Options”, Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 11 pages.
Feher, E.G., et al., “Investigation of Supercritical (Feher) Cycle”, Astropower Laboratory, Missile & Space Systems Division, Oct. 1968, 152 pages.
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2” , Barber Nichols, Inc. Presentation, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 20 pages.
Fuller, Robert L., and Eisemann, Kevin, “Centrifugal Compressor Off-Design Performance for Super-Critical CO2”, Paper, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 12 pages.
Gokhstein, D.P. and Verkhivker, G.P. “Use of Carbon Dioxide as a Heat Carrier and Working Substance in Atomic Power Stations”, Soviet Atomic Energy, Apr. 1969, vol. 26, Issue 4, pp. 430-432.
Gokhstein, D.P.; Taubman, E.I.; Konyaeva, G.P., “Thermodynamic Cycles of Carbon Dioxide Plant with an Additional Turbine After the Regenerator”, Energy Citations Database, Mar. 1973, 1 Page, Abstract only.
Hejzlar, P. et al., “Assessment of Gas Cooled Gas Reactor with Indirect Supercritical CO2 Cycle” Massachusetts Institute of Technology, Jan. 2006, 10 pages.
Hoffman, John R., and Feher, E.G “150 kwe Supercritical Closed Cycle System”, Transactions of the ASME, Jan. 1971, pp. 70-80.
Jeong, Woo Seok, et al., “Performance of S-CO2 Brayton Cycle with Additive Gases for SFR Application”, Korea Advanced Institute of Science and Technology, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 5 pages.
Johnson, Gregory A., & McDowell, Michael, “Issues Associated with Coupling Supercritical CO2 Power Cycles to Nuclear, Solar and Fossil Fuel Heat Sources”, Hamilton Sundstrand, Energy Space & Defense-Rocketdyne, Apr. 29-30, 2009, Troy, NY, Presentation, 18 pages.
Kawakubo, Tomoki, “Unsteady Roto-Stator Interaction of a Radial-Inflow Turbine with Variable Nozzle Vanes”, ASME Turbo Expo 2010: Power for Land, Sea, and Air; vol. 7: Turbomachinery, Parts A, B, and C; Glasgow, UK, Jun. 14-18, 2010, Paper No. GT2010-23677, pp. 2075-2084, (1 page, Abstract only).
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S-CO2 Cycles”, Presentation, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 14 pages.
Kulhanek, Martin, “Thermodynamic Analysis and Comparison of S-CO2 Cycles”, Paper, Czech Technical University in Prague, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 7 pages.
Kulhanek, Martin., and Dostal, Vaclav, “Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison”, Abstract, Faculty Conference held in Prague, Mar. 24, 2009, 13 pages.
Ma, Zhiwen and Turchi, Craig S., “Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems”, National Renewable Energy Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 4 pages.
Moisseytsev, Anton, and Sienicki, Jim, “Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor”, Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29, 2009, 26 pages.
Munoz De Escalona, Jose M., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Paper, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 6 pages.
Munoz De Escalona, Jose M., et al., “The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems”, Presentation, Thermal Power Group, University of Seville, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 19 pages.
Muto, Y., et al., “Application of Supercritical CO2 Gas Turbine for the Fossil Fired Thermal Plant”, Journal of Energy and Power Engineering, Sep. 30, 2010, vol. 4, No. 9, 9 pages.
Muto, Yasushi, and Kato, Yasuyoshi, “Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems”, International Conference on Power Engineering—2007, Oct. 23-27, 2007, Hangzhou, China, pp. 86-87.
Noriega, Bahamonde J.S., “Design Method for s-CO2 Gas Turbine Power Plants”, Master of Science Thesis, Delft University of Technology, Oct. 2012, 122 pages., (3 parts).
Oh, Chang, et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Oct. 2004, 38 pages.
Oh, Chang; et al., “Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility”, Presentation, Nuclear Energy Research Initiative Report, Final Report, Mar. 2006, 97 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept” Presentation for Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 40 pages.
Parma, Ed, et al., “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 9 pages.
Parma, Edward J., et at, “Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept”, Presentation, Sandia National Laboratories, May 2011, 55 pages.
PCT/US2006/049623—Written Opinion of ISA dated Jan. 4, 2008, 4 pages.
PCT/US2007/001120—International Search Report dated Apr. 25, 2008, 7 pages.
PCT/US2007/079318—International Preliminary Report on Patentability dated Jul. 7, 2008, 5 pages.
PCT/US2010/031614—International Search Report dated Jul. 12, 2010, 3 pages.
PCT/US2010/031614—International Preliminary Report on Patentability dated Oct. 27, 2011, 9 pages.
PCT/US2010/039559—International Preliminary Report on Patentability dated Jan. 12, 2012, 7 pages.
PCT/US2010/039559—Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration dated Sep. 1, 2010, 6 pages.
PCT/US2010/044476—International Search Report dated Sep. 29, 2010, 23 pages.
PCT/US2010/044681—International Search Report and Written Opinion mailed Oct. 7, 2010, 10 pages.
PCT/US2010/044681—International Preliminary Report on Patentability dated Feb. 16, 2012, 9 pages.
PCT/US2010/049042—International Search Report and Written Opinion dated Nov. 17, 2010, 11 pages.
PCT/US2010/049042—International Preliminary Report on Patentability dated Mar. 29, 2012, 18 pages.
PCT/US2011/029486—International Preliminary Report on Patentability dated Sep. 25, 2012, 6 pages.
PCT/US2011/029486—International Search Report and Written Opinion dated Nov. 16, 2011, 9 pages.
PCT/US2011/062266—International Search Report and Written Opinion dated Jul. 9, 2012, 12 pages.
PCT/US2011/062198—International Search Report and Written Opinion dated Jul. 2, 2012, 9 pages.
PCT/US2011/062201—International Search Report and Written Opinion dated Jun. 26, 2012, 9 pages.
PCT/US2011/062204—International Search Report dated Nov. 1, 2012, 10 pages.
PCT/US2011/62207—International Search Report and Written Opinion dated Jun. 28, 2012, 7 pages.
PCT/US2012/000470—International Search Report dated Mar. 8, 2013, 10 pages.
PCT/US2012/061151—International Search Report and Written Opinion dated Feb. 25, 2013, 9 pages.
PCT/US2012/061159—International Search Report dated Mar. 2, 2013, 10 pages.
Persichilli, Michael, et al., “Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam” Echogen Power Systems LLC, Power-Gen India & Central Asia 2012, Apr. 19-21, 2012, New Delhi, India, 15 pages.
Saari, Henry, et al., “Supercritical CO2 Advanced Brayton Cycle Design”, Presentation, Carleton University, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 21 pages.
San Andres, Luis, “Start-Up Response of Fluid Film Lubricated Cryogenic Turbopumps (Preprint)”, AIAA/ASMA/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, Jul. 8-11, 2007, 38 pages.
Sarkar, J., and Bhattacharyya, Souvik, “Optimization of Recompression S-CO2 Power Cycle with Reheating” Energy Conversion and Management 50 (May 17, 2009), pp. 1939-1945.
Tom, Samsun Kwok Sun, “The Feasibility of Using Supercritical Carbon Dioxide as a Coolant for the Candu Reactor”, The University of British Columbia, Jan. 1978, 156 pages.
VGB PowerTech Service GmbH, “CO2 Capture and Storage”, A VGB Report on the State of the Art, Aug. 25, 2004, 112 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Presentation, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 17 pages.
Vidhi, Rachana, et al., “Study of Supercritical Carbon Dioxide Power Cycle for Power Conversion from Low Grade Heat Sources”, Paper, University of South Florida and Oak Ridge National Laboratory, Supercritical CO2 Power Cycle Symposium, May 24-25, 2011, Boulder, CO, 8 pages.
Wright, Steven A., et al., “Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles”, Sandia Report, Jan. 2011, 47 pages.
Wright, Steven A., et al., “Supercritical CO2 Power Cycle Development Summary at Sandia National Laboratories”, May 24-25, 2011, (1 page, Abstract only).
Wright, Steven, “Mighty Mite”, Mechanical Engineering, Jan. 2012, pp. 41-43.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Presentation, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, Boulder, CO, May 25, 2011, 18 pages.
Yoon, Ho Joon, et al., “Preliminary Results of Optimal Pressure Ratio for Supercritical CO2 Brayton Cycle coupled with Small Modular Water Cooled Reactor”, Paper, Korea Advanced Institute of Science and Technology and Khalifa University of Science, Technology and Research, May 24-25, 2011, Boulder, CO, 7 pages.
Related Publications (1)
Number Date Country
20140050593 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61684933 Aug 2012 US