This disclosure relates to a superhard structure comprising a body of polycrystalline material, a method of making a superhard structure, and to a wear element comprising a polycrystalline superhard structure.
Polycrystalline diamond (PCD) materials may be made by subjecting a mass of diamond particles of chosen average grain size and size distribution to high pressures and high temperatures while in contact with a pre-existing hard metal substrate. Typical pressures used in this process are in the range of around 4 to 7 GPa but higher pressures up to 10 GPa are also practically accessible. Temperatures employed are above the melting point at such pressures of the transition metal binder of the hard metal substrate. For the common situation where tungsten carbide/cobalt substrates are used, temperatures above 1395° C. suffice to melt the metal in the binder, for example cobalt, which infiltrates the mass of diamond particles enabling sintering of the diamond particles to take place. The resultant PCD material may be considered as a continuous network of bonded grains of diamond with an interpenetrating network of binder, for example a cobalt based metal alloy. The so-formed PCD material which forms a PCD table bonded to the substrate, is then quenched by dropping the pressure and temperature to room conditions. During the temperature quench, the metal in the binder solidifies and bonds the PCD table to the substrate. At these conditions, the PCD table and substrate may be considered as being in thermoelastic equilibrium with one another.
Typically, but not exclusively, cutting elements or cutters for boring, drilling or mining applications consist of a layer of polycrystalline diamond material (PCD) in the form of a diamond table bonded to a larger substrate or body often made from tungsten carbide/cobalt cemented hard metal. Such cutters with their attendant carbide substrates are traditionally and commonly made as right cylinders with the polycrystalline diamond layer or table typically ranging in thickness from about 0.5 mm to 5.0 mm but more often in the range 1.5 mm to 2.5 mm. The hard metal substrates are typically from 8 mm to 16 mm long. The commonly used diameters of the right cylindrical cutters are in the range 8 mm to 20 mm.
Other PCD constructions such as general domed and pick shaped elements are also used in various applications, for example drilling, mining and road surfacing applications. Often, the PCD material forms an outer layer on such elements with a metal carbide being used as a substrate bonded thereto. Again, the substrate is usually the largest part of such structures.
Commonly, the types of drill bit where such cutters are employed are termed drag bits. In this type of drill bit, several PCD cutters are arranged in the drill bit body so that a portion of the top peripheral edge of each PCD table bears on the rock formations. Due to the rotation of the bit, the top peripheral edge of each PCD table of each cutter experiences loading and subsequent abrasive wear processes resulting in a progressive removal of a limited amount of the PCD material. The worn area on the PCD table is referred to as the wear scar.
The performance of PCD cutters during drilling operations is determined, to a large extent, by the initiation and propagation of cracks in the PCD table. Cracks which propagate towards and intersect the free surface of a cutter may result in spalling of the cutter where a large volume of PCD breaks off from the PCD table. The result of this phenomenon may reduce the useful life of the drill bit and may lead to catastrophic failure of the cutter.
It is desirable that any cracks that form should be arrested, inhibited or deflected from propagating through the body of the PCD table to a free surface, thereby prolonging the useful life of the cutter.
International patent application WO 2004/111284 discloses a composite material comprising a plurality of cores, each core comprising a single granule of PCD, the cores being dispersed in a matrix which coats the individual granules, and a suitable binder. The matrix is formed of a PCD material of a grade different to that of the cores.
Other known solutions concern, directly or indirectly, limited ways of dealing with crack behaviour for example by means of specific layer designs.
There is a need for general solutions for a polycrystalline superhard material having favourable residual stress distributions which can ameliorate undesirable crack propagation and so lead to the reduction of spalling.
Viewed from a first aspect there is provided a superhard structure comprising:
Viewed from a second aspect there is provided a process for making a polycrystalline superhard structure comprising:
Viewed from a third aspect there is provided a drill bit or a cutter or a component therefor comprising the superhard structure(s) described herein.
a is a schematic diagram of a half cross-section of a PCD body attached to a substrate, according to a first embodiment;
b is a partially sectioned three dimensional representation of the embodiment of
a, b, c are schematic representations of the stress distribution in a conventional planar cutter made from one PCD material only, showing the axial, radial and hoop tensile and compressive stress fields, respectively, together with the position of the tensile and compressive maxima;
a, b and c are schematic representations showing the stress distribution in a cutter according to an embodiment where the axial, radial and hoop tensile and compressive stress fields, respectively, are shown together with the position of the tensile and compressive maxima; and
As used herein, a “superhard material” is a material having a Vickers hardness of at least about 25 GPa. Diamond and cubic boron nitride (cBN) material are examples of superhard materials.” Diamond is the hardest known material with cubic boron nitride (cBN) considered to be second in this regard. Both materials are termed to be superhard materials. Their measured hardnesses are significantly greater than nearly all other materials. Hardness numbers are figures of merit, in that they are highly dependent upon the method employed to measure them. Using Knoop indenter hardness measurement techniques at 298° K, diamond has been measured to have a hardness of 9000 kg/mm2 and cBN 4500 kg/mm2 both with 500 g loading. PCD materials typically have a hardness falling in the range 4000 to 5000 kg/mm2 when measured using similar techniques with either Vickers or Knoop indenters. Other hard materials such as boron carbide, silicon carbide, tungsten carbide and titanium carbide have been similarly measured to have hardnesses of 2250, 3980, 2190 and 2190 kg/mm2 respectively. For the purposes discussed herein, materials with measured hardnesses greater than around 4000 kg/mm2 are considered to be superhard materials.
Residual stresses locked into a cutter comprising the superhard material after the fabrication process thereof at HPHT conditions are considered to be particularly pertinent to crack initiation and propagation during application of the cutter. Very significant residual stresses are set up on completion of the quench to room temperature and pressure conditions due to the very different moduli of elasticity and coefficients of thermal expansion between the superhard material, for example a PCD material, and the substrate. Although the table of superhard material is now in an overall compressive state of stress, the bending effect caused by bonding the table to the one side of the substrate results in localised tensile stress in critical regions of the table.
From laboratory and field trials of PCD cutters, it has been observed that cracks in the PCD material initiate and propagate in certain critical regions as the cutter wears. In particular, cracks tend to initiate on the surface of the wear scar or just behind the wear scar. After the cracks have initiated, they propagate into the body of the PCD material, either parallel to the top of the PCD table, or they veer towards the top of the PCD table or towards the PCD-carbide substrate interface. Cracks which veer towards a surface of the PCD material are likely to cause chipping or spalling of the PCD table or loss of large sections of PCD material which can reduce cutter life and the efficiency of cutting. It has been observed that the life of a cutter is prolonged if propagating cracks are arrested, deflected or directed towards the PCD-carbide interface or generally away from the surfaces of the PCD material.
There is described herein the alteration of the stress distribution in regions, in which cracks are believed to the propagate to assist in the inhibition of further propagation of cracks or to deflect them away from those critical regions in which they preferentially propagate, or to restrict the cracks to preferred volumes or regions for crack propagation which are less detrimental to the cutter life. Methods of manipulating the stresses in the PCD material so as to induce compression or reduce tension in the critical regions are described. Alternatively and in addition, tensile maximum stresses in the critical regions may be displaced and moved away from the free surfaces. The position of the original critical region may now be occupied by material in a compressed state. By placing polycrystalline material such as a PCD material having increased compression or lowered tension in the path of the cracks may have the effect of channelling or deflecting cracks into the regions of higher tension. Such channelling or deflection preferably directs the cracks away from the free surfaces of the superhard material, for example the PCD material.
To induce compression in appropriate positions within the PCD table of a cutter, during the fabrication process, different materials having differing properties are adjoined. This includes properties such as coefficient of thermal expansion and/or modulus of elasticity or any other physical property which, after the fabrication process, would result in the one material inducing a compression in the adjoining other material, which itself will go into a state of tension or reduced compression.
If two materials differing in coefficient of thermal expansion are joined during a high temperature fabrication process then, on cooling, the material having the higher coefficient of thermal expansion would try to contract more than the other material. The material having the high coefficient of thermal expansion is then inhibited from contracting by the material having the lower coefficient of thermal expansion and, as a result, a compressive stress is induced in the latter material.
Another way of inducing compression in a material is by adjoining materials of differing elastic modulus during a high pressure fabrication process. On release of pressure, the material with the higher modulus of elasticity will induce a compression on the material with the lower modulus of elasticity and itself will undergo an increased tension.
Cutters containing, for example, a body of PCD material, may be fabricated using high temperature combined with high pressure, in which these approaches for inducing compression are utilised.
It has been observed that some PCD material types differ significantly in both coefficient of thermal expansion and modulus of elasticity. In these materials, when the coefficient of thermal expansion is low, the elastic modulus is high. Thus when different materials from this group are exploited, the quench from high temperature and high pressure during formation of the material causes opposing stress induction effects. However, the stress change effects brought about by the coefficient of thermal expansion differences dominate.
It has also been observed that other PCD material types, although having significantly different coefficients of thermal expansion, can have only small and relatively insignificant differences in the moduli of elasticity. When such PCD materials are used, the effect of the modulus of elasticity differences may largely be ignored.
To aid further discussion, the residual stresses in the PCD layer of cylindrical cutters are hereafter resolved using cylindrical coordinates into axial, radial and hoop components, that is, along the axis of the cutter, along the radius thereof and tangential to the radius, respectively.
In typical traditional cutters, the critical regions within which cracks have a preference to initiate and/or propagate are indicated schematically in
The critical regions described above identify the positions in the PCD table where volumes of different PCD materials may be placed in order to alter the residual stress distribution which arises from the general cutter structure and manufacturing process thereof. The desired alteration in the residual stress distribution involves the induction of compression or reduced tension in the critical regions. Alternatively, the critical regions with their attendant tensile stress maxima may be displaced from the free surface of the PCD table to the inside volume of the PCD table where they are less harmful. These alterations to the stress distribution serve to arrest or deflect or direct cracks to less critical regions away from free surfaces and towards the bulk volume of the PCD table and the carbide interface. In turn, the occurrence of cracks propagating to the free surfaces which would previously cause spalling of the PCD table is diminished and this may lead to a desirable increase in cutter life.
This identification of the critical regions and the placement of appropriate materials in volumes indicated by these regions assists in the redistribution of residual stress in the superhard structure.
There are many ways in which PCD materials may be placed in relation to the critical regions and some of these combinations are described by way of example below. The resultant changes in residual stress may allow the different critical regions to be manipulated and altered in a partially independent manner and may be used to indicate the efficacy of each particular embodiment.
a shows a schematic partial view of the cross section of half of a body of superhard material such as a PCD material attached to a substrate, which indicates adjacent volumes associated with the regions of
b is three dimensional representation of the embodiment of
The fourth region 4, is adjacent to the third region 3, and is situated at the circumferential free surface of the PCD table. This region 4 is associated with region A1 of
The second region 2, is adjacent to the fifth region 5, and separates the first region 1 from the remainder of the top free surface of the PCD table. The second region 2 extends across the middle of the top free surface of the PCD table and is associated with region B2 of
Material of the highest coefficient of thermal expansion may be chosen to occupy the first or the sixth regions 1 and 6. For example, in some embodiments the first region 1, may contain the material of highest coefficient of thermal expansion, and the materials chosen for the second to the sixth regions 2 to 6, may all differ from one another in regard to the coefficient of thermal expansion and all be lower in this property than the first region 1.
The material of the fifth region 5, may be lower in coefficient of thermal expansion than those of both fourth and second regions, 4 and 2. Similarly, the material of the sixth region 6, may be lower in coefficient of thermal expansion than that of the third region 3, and the material of the fourth region 4, may have a coefficient of thermal expansion lower than that of the third region 3.
Materials that may be used for forming the various regions include, for example, diamond containing materials such as PCD, and composites with other metals such as copper, tungsten and the like, and composites with ceramics such as silicon carbide, titanium carbide and nitride and the like. In addition, non diamond containing materials compatible with cutter structures and fabrication procedures may also be used and may include hard metals such as tungsten carbide/cobalt, titanium carbide/nickel and the like, cermets such as aluminium oxide, nickel combinations and the like, general ceramics and refractory metals.
In addition to utilising relative coefficient of thermal expansion differences in materials, the modulus of elasticity may be used to appropriately alter the stress field in the PCD cutter. In this example, the material of the first region 1, may be chosen to have the lowest modulus of elasticity as compared to the materials of the second to sixth regions, 2 to 6. Typical PCD materials often differ in both coefficient of expansion and modulus of elasticity. In the case of PCD material produced under high pressure high temperature conditions for diamond sintering, the stresses induced due to thermal expansion mismatch typically dominate.
In some embodiments, the first region 1, is of a sufficient proportion of the overall PCD table volume to have a significant influence on the stresses in the surrounding regions. For example, the first region 1 may occupy between around 30 and 95% of the overall PCD table volume. The adjacent boundaries between each of the second, third, fourth, fifth and sixth regions, 3, 4, 5 and 6, may be positioned in order to optimize the desired changes of stress distribution.
It is known in the art that typically but not exclusively PCD materials have linear thermal expansion coefficients within the range of 3×10−6 to 5×10−6 per degree Centigrade.
An example of the difference in linear coefficients of thermal expansion between the material of the first region 1, and the materials of each of the second to sixth regions 2 to 6, is at least around 0.3×10−6 per degree Centigrade. Also, an example of the difference in linear coefficient of expansion between two adjacent materials is at least around 0.1×10−6 per degree Centigrade. If region 4 is made from a sufficiently wear resistant material for adequate cutting performance such as PCD materials and the like, other hard materials fulfilling the thermal expansion criteria and preferences outlined above may be used in the other regions.
PCD materials may be considered as a combination of diamond and transition metals such as cobalt, nickel and the like. The linear thermal expansion coefficient of diamond is very low with a literature value of 0.8+/−0.1×10−6 per degree Centigrade. Metals such as cobalt have high thermal expansion coefficients, typical of transition metals such as 13×10−6 per degree Centigrade. The thermal expansion coefficients of typical PCD materials have a strong dependence upon the diamond to metal compositional ratio. A very convenient way of practically producing PCD material variants with differing thermal expansion coefficients is to manufacture PCD materials with significantly different metal contents. The metal content of PCD materials may typically, but not exclusively, fall in the range from 1 to 15 volume percent and materials with possibly as high as 25 volume percent metal may be produced.
Referring to the embodiment illustrated in
The difference in metal content between the PCD materials of the first region 1, and the second to sixth regions, 2 to 6, may be at least around 1.5 volume percent. Additionally, the difference in metal content between any of the adjacent materials of the second to the sixth regions 2 to 6, may be, for example, at least around 0.5 volume percent.
PCD materials made with large average grain sizes of diamond particles tend to have lower metal contents than those made with smaller average grain sizes. It is therefore practically possible to create PCD materials with differing metal contents with the attendant differing thermal expansion coefficient by means of choice of average grain size of the diamond particles.
In the embodiment shown in
Alternatively the average grain size of the material in the sixth region 6, may be smaller than that of the materials of all the other regions namely, regions 1 to 5.
In some embodiments, the average grain size of the material of the first region 1, falls in the range of around 1 to 10 microns and the average grain size of the material of the other regions 2 to 6 is greater than around 10 microns.
In a situation where the coefficients of thermal expansion of different structure PCD materials are similar, the differing moduli of elasticity may be used to induce relative stresses. In such an example, the modulus of elasticity in the material of the first region 1, or in the material of the sixth region 6, of
Typically, but not exclusively, PCD materials have modulus of elasticity within the range of around 750 to 1050 GPa. A difference in modulus of elasticity between materials in the first region 1, or that of the sixth region 6, and the materials of each of the remaining regions may be, for example, at least around 20 GPa.
If the material of the fourth region 4, is made from a sufficiently wear resistant material for adequate cutting performance, such as PCD materials and the like, other hard materials fulfilling the modulus of elasticity criteria and preferences outlined above may be used.
As mentioned previously, PCD materials may be considered to comprise a combination of diamond and transition metals such as cobalt, nickel and the like. Single crystal diamond is one of the stiffest materials known to man with an extremely high modulus of elasticity. PCD materials contain, as their greatest component, diamond grains which may be synthetic or natural, and which are intergrown together with the interstices filled with the transition metal. A way of modifying the elastic modulus is to change the overall diamond content. The higher the diamond content, the higher the value of the modulus of elasticity. The diamond content of PCD materials may typically but not exclusively fall in the range from 75 to 99 volume percent.
In the examples where differences in modulus of elasticity are dominant in the generation of residual stresses then, referring to the embodiment of
The difference in diamond content between the PCD materials of the first region 1 or the sixth region 6 and that of the remaining regions may, for example, be at least around 0.2 volume percent.
With reference to
Further embodiments may be arrived at by choosing materials in specific chosen volumes to have the same coefficients of thermal expansion.
Cutters made according to
The boundaries between adjacent regions containing differing materials may be expanded to form new regions separating the adjacent region. In this way, more complex three dimensional designs may be exploited.
In some embodiments, the material of the ninth region 9 has the highest coefficient of thermal expansion and the eighth and ninth regions 8, 9 differ in this property. Also, the material of the eighth region 8 may have an intermediate coefficient of thermal expansion between that of the ninth and tenth regions 9, 10.
Cutters made according to the latter example, may have a significant reduction of axial tensile stress in region A2 of
Further variants with increased numbers of regions of different materials may be arrived at by the expansion of the boundaries in
A very large number of permutations of different materials organised in the multiple regions may be made. In some embodiments, the region containing the material of highest coefficient of thermal expansion having the largest relative volume, occupies the centre region of the carbide-PCD interface and there is a progressive reduction in coefficient of thermal expansion in each subsequent adjacent volume extending from the central region of the PCD table to the circumferential edge. In the case where the number of multiple regions becomes very large, the thickness of these regions approaches the dimensional scale of the microstructure of the material and thus a continuous graduation of the structure, composition and properties may result.
The PCD table may be largely or completely graduated in this manner, with the central region of the PCD table being located away from the circumferential free surface and occupied by material of the highest coefficient of thermal expansion.
With reference to
More embodiments may be arrived at by further considering
Cutters made according to the latter example, although not markedly changing the axial tensile stress of region A2 in
Other embodiments may be arrived at from considering
In addition, using the approach of expanding the boundaries between any of the regions to make new regions of materials with appropriate properties, designs with multiple regions may be derived for the designs shown in
In regard to any one or more of the embodiments described, the region having the material of the highest coefficient of thermal expansion may be sub divided into more than one separate region, all of which may be separated from the circumferential free surface of the PCD table by at least one material of lower coefficient of thermal expansion. These multiple volumes of the same, highest coefficient of thermal expansion may be, for example any three dimensional geometric shape such as toroids, ellipsoids, cylinders, spheres and the like. The total volume of the material of the highest coefficient of thermal expansion may, for example, occupy 30 to 95% of the overall volume of the PCD table.
All of the embodiments so far described are axially symmetrical with regard to the common prior art cylindrical geometry cutter and are relatable to the critical regions of crack initiation and propagation as shown in
It is also conceived that a particular PCD material may, although being particularly good in terms of its wear properties and behaviour in rock cutting, not be an ideal material to have at the periphery of a cutter due to a less than ideal thermal coefficient of expansion and/or elastic modulus in regard to surrounding volumes and so have less than ideal residual stress in its volume. In such a case, any of the axisymmetric embodiments described and schematically represented by
FEA analyses were carried out on cutters of the embodiments described having wear scars. It was concluded that the residual stress field is not materially altered as a result of the removal of PCD at the wear scar. The reason being that the volume of material removed at a typical wear scar is small in relation to the total PCD volume. The axial, radial and hoop tensile maxima of the residual stress field characteristic of any particular embodiment is neither significantly reduced in magnitude nor displaced in position by the progressive formation of wear scars of typical dimensions.
Some embodiments are now described in more detail with reference to the examples below which are not to be considered or intended to limit the invention.
PCD cutters based upon the embodiment of
With reference to
After the sintering of the diamond was complete the conditions were dropped to room temperature and pressure. At high pressure and temperature the materials of the cutter are at thermo-elastic equilibrium. After the quench to room conditions the property differences between the various PCD materials and the hard metal substrate set up a resultant residual stress distribution in the cutter PCD table.
With reference to
The material of the first region 1, was made from diamond powder of average particle size of about 6 microns with a multimodal size distribution extending from 2 microns to 16 microns. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of about 12 volume percent, with a linear coefficient of thermal expansion of 4.5×10−6/° C. and an elastic modulus of 860 GPa. This is the material of highest coefficient of thermal expansion.
The material of the second region 2, was made from a diamond powder of average particle size of about 12.5 micron with a multimodal size distribution, extending from 2 microns to 30 micron. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of 10.2 volume percent, with a linear coefficient of thermal expansion of 4.15×10−6/° C. and an elastic modulus of 980 GPa.
The material of the third region 3, was made from a diamond powder of average particle size of about 5.7 micron with a multimodal size distribution, extending from 1 micron to 12 micron. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of 10 volume percent, with a linear coefficient of thermal expansion of 4.0×10−6/° C. and an elastic modulus of 1005 GPa.
The material of the fourth region 4, was made from a diamond powder of average particle size of about 25 microns with a multimodal size distribution, extending from 4 microns to 45 microns. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of 7.7 volume percent, with a linear coefficient of thermal expansion of 3.7×10−6/° C. and an elastic modulus of 1030 GPa.
The material of the fifth region 5, was made from a diamond powder of average particle size of about 33.5 microns with a multimodal size distribution, extending from 4 microns to 75 microns. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of 7.0 volume percent, with a linear coefficient of thermal expansion of 3.4×10−6/° C. and an elastic modulus of 1040 GPa. This is the material of lowest coefficient of thermal expansion with the highest diamond content of 93 volume percent.
The material of the sixth region 6, was made from a diamond powder of average particle size of about 6.4 microns with a trimodal size distribution, extending from 3 microns to 16 microns. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of 11.5 volume percent, with a linear coefficient of thermal expansion of 4.25×10−6/° C. and an elastic modulus of 925 GPa.
After removal from the high pressure apparatus, each cutter was brought to final size by grinding and polishing procedures known in the art. A sample of the cutters was cut and cross-sectioned and the dimensions of the volumes of different PCD materials measured and their volumes relative to the overall volume of the PCD table estimated.
It was estimated that the material of the first region 1, made up of the material of highest coefficient of thermal expansion, occupied approximately 75% of the overall volume of the PCD table.
The material of the sixth region 6, occupied approximately 3% of the overall PCD table volume, extended radially approximately 4 mm from the central axis and was about 0.25 mm in thickness and separated the material of the first region 1, from the tungsten carbide, hard metal substrate.
The material of the third region 3, occupied approximately 8% of the overall PCD table volume, was adjacent to the material of the sixth region 6, extended radially a further 4 mm to the peripheral free surface of the table, was about 0.25 mm in thickness and separated the material of the first region 1, from the tungsten carbide, hard metal substrate.
The material of the fourth region 4, occupied approximately 5% of the overall PCD table volume, was adjacent to the material of the third region 3, was situated at the circumferential free surface of the PCD table and separated the material of the first region 1, from the circumferential free surface of the PCD table.
The material of the fifth region 5, occupied approximately 6% of the overall PCD table volume, was adjacent to the material of the fourth volume, 4, and was approximately 0.25 mm thick and separated the material of the first region 1, from the top free surface of the PCD table.
The material of the second region 2, occupied approximately 3% of the overall PCD table volume, was about 0.25 mm in thickness, was adjacent to the material of the fifth region 5, extended radially approximately 4 mm from the central axis, extended across the middle of the top free surface of the cutter and separated the material of the first region 1, from the top free surface of the cutter.
The cutters as manufactured with the resultant measured volume dimensions and expected PCD material properties were modelled using Finite Element Analysis (FEA). This is a numerical stress analysis technique which allows the calculation of the stress distribution over the dimensions of the cutter. For comparative purposes, the stress distribution of a planar cutter with the table made solely of one material corresponding to the material of the fourth region 4, was calculated and used as reference.
a, b, c are a schematic representation of the stress distribution in such a planar cutter made from one PCD material only.
a shows the axial tensile and compressive fields together with the position of the tensile and compressive maxima. The dotted lines indicate the boundary between the tensile and compressive fields, the tensile field being hatched. It may be seen that the axial tensile maximum is situated at the circumferential free surface of the PCD table immediately above the interface with the substrate. This axial tensile maximum is associated with the A2 critical region of
b shows the radial tensile and compressive fields together with the position of the tensile and compressive maxima. The single radial tensile field is hatched as shown in the
c shows the hoop tensile and compressive fields together with the position of the tensile and compressive maxima. Most of the PCD table is in hoop compression apart from a limited volume at the circumferential top corner which is in tension as shown by the hatched area. The hoop tensile maximum is situated at the free surface and is associated with the A1 critical region of
Table 1, below gives the comparative FEA results expressed as the magnitude of the components of stress for this example compared the reference planar cutter.
It may be seen from Table 1 that the axial tensile maximum associated with the critical region A2 of
The radial tensile maximum associated with critical region B1 of
The hoop tensile maximum associated with critical region A1 of
In summary, the FEA analysis of the cutters of Example 1, made to correspond to the general embodiment of
PCD cutters based upon the embodiment of
In this example the PCD table is made from only two volumes of different PCD material. The PCD material of highest coefficient of thermal expansion formed a disc, labelled as 1 in
The manufacturing techniques and procedures as described in Example 1 above were used.
In this case, however, the temperature and pressure conditions employed were about 1470° C. and 5.7 GPa, respectively.
With reference to
The first region 1, was made from diamond powder of average particle size of about 12.6 microns with a multimodal size distribution extending from 2 microns to 16 microns. This diamond powder is known to form PCD material at the high pressure and temperature conditions used, with a cobalt content of about 9 volume percent, with a linear coefficient of thermal expansion of 4.0×10−6/° C. and an elastic modulus of 1020 GPa. This is the material of highest coefficient of thermal expansion.
The second region 12 which surrounds the first region 1 in
After removal from the high pressure apparatus, each cutter was brought to final size by grinding and polishing procedures known in the art. A sample of the cutters was cut and cross-sectioned and the dimensions of the volumes of different PCD materials measured and their volumes relative to the overall volume of the PCD table estimated.
It was estimated that the first region 1, made up of the material of highest coefficient of thermal expansion, occupied approximately 67% of the overall volume of the PCD table and that of the surrounding volume about 33%. The first region 1, was separated from the substrate by about 0.25 mm, from the top surface of the table by about 0.4 mm and from the circumferential free surface of the table by about 0.4 mm.
The cutters as manufactured with the resultant measured volume dimensions and expected PCD material properties were modelled using Finite Element Analysis (FEA). This technique allows the calculation of the stress distribution over the dimensions of the cutter. For comparative purposes the stress distribution of a planar cutter with the table made solely of one material corresponding to the material of the surrounding volume, labelled 12 in
It may be seen from Table 2, that the tensile axial and radial stress maxima have been reduced in magnitude by about 9% and 6%, respectively. However the hoop component tensile stress maximum has been increased in magnitude by about 12%.
It was also noted that the position of the axial maximum was unchanged, labelled A in
The positional change of the radial and hoop stress tensile maxima was noted. Both the radial and hoop tensile maxima have been displaced and now occupy positions inside the boundaries of the first region 1, labelled R and H respectively in
It was thus indicated by FEA that cutters made according to the embodiment of
Taking these results together it would be expected that in a drilling application, cracks propagating behind the wear scar of such cutters will be inhibited in their progress and will not cross the compression barriers separating them from the PCD table free surfaces. Such cracks may remain in the body of the PCD table and thereby act to inhibit spalling and premature failure of cutters of this design.
PCD cutters were made as per
The final PCD table thickness was 2.2 mm, bonded to a tungsten carbide, 13% weight cobalt hard metal substrate of 13.8 mm length. The right cylinder cutters were 16 mm in diameter and had a planar interface between the PCD table and the carbide substrate.
As in examples 1 and 2, tape casting techniques known in the art, were used to form so called green state discs and washers of three appropriately chosen diamond powders bonded with water soluble organic binders. By assembling these discs and washers in a refractory metal container, the geometry of
These assemblies were then vacuum degassed in a furnace at a temperature and time sufficient to drive off the binder materials. The assemblies were then subjected to a temperature of about 1460° C. at a pressure of about 5.6 GPa in a high pressure apparatus, as well established in the art. At these conditions the cobalt binder of the tungsten carbide hard metal binder melted and infiltrated the porosity of the diamond power assembly and diamond sintering took place. After the sintering of the diamond was complete the conditions were dropped to room temperature and pressure. At high pressure and temperature the materials of the cutter are at thermo-elastic equilibrium. After the quench to room conditions, the property differences between the various PCD materials together with that to the hard metal substrate set up the resultant stress distribution in the cutter PCD table.
With reference to
The PCD material of region 13 of
The outer region 15, in
The intermediate region 14, in
After removal from the high pressure apparatus, each cutter was brought to final size by grinding and polishing procedures known in the art. A sample of the cutters was cut and cross-sectioned and the dimensions of the volumes of different PCD materials measured and their volumes relative to the overall volume of the PCD table estimated. The boundary between the regions 13 and 14 was situated about 1.0 mm axially away from the substrate interface and about 0.5 mm from the circumferential free surface. The boundary between the regions 15 and 14 is situated about 0.6 mm away from the top free surface of the PCD table and about 0.25 mm from the circumferential free surface.
Region 13 was estimated to be approximately 38% of the overall volume of the PCD table. Regions 14 and 15 were estimated to be approximately 23% and 47% of the overall volume of the PCD table, respectively.
The cutters as manufactured with the resultant measured volume dimensions and expected PCD material properties were modelled using Finite Element Analysis (FEA). This technique allows the calculation of the stress distribution over the dimensions of the cutter. For comparative purposes the stress distribution of a planar cutter with the table made solely of one material corresponding to the material of the surrounding region, labelled 15 in
Table 3 gives the comparative FEA results expressed as the stress maxima of the components of the convenient cylindrical coordinates, axial, radial and hoop of the cutter of Example 3 of
Table 3 clearly shows that the stress in the critical regions A2, B1 and A1 of the cutter of Example 3 has been significantly reduced in tension. Moreover the hoop stress associated with critical region A1 has been rendered significantly compressive, resulting in the whole PCD table being in hoop compression.
Comparing the axial stress distribution of
Comparing the radial stress distribution of
Comparing the hoop stress distribution of
It is expected that all these effects will combine so that any crack formation associated with the wear scar during rock cutting applications will be inhibited in propagation and prevented from extending to the free surface of the cutter and forming spallation of the PCD table.
PCD cutters were made according to
As in Examples 1, 2 and 3 the final PCD table thickness was 2.2 mm, bonded to a tungsten carbide, 13% weight cobalt hard metal substrate of 13.8 mm length. The right cylinder cutters were 16 mm in diameter and had a planar interface between the PCD table and the carbide substrate.
As in Examples 1, 2 and 3 tape casting techniques known in the art, were used to form so called green state discs, washers, and sectors of four appropriately chosen diamond powders bonded with water soluble organic binders. By assembling these discs, washers and sectors in a refractory metal container, the geometry of
These assemblies were then vacuum degassed in a furnace at a temperature and time sufficient to drive off the binder materials, and subsequently subjected to a temperature of about 1460° C. at a pressure of about 5.6 GPa in a high pressure apparatus, as well established in the art.
With reference to
The 60° segment material labelled 16 in
After removal from the high pressure apparatus, each cutter was brought to final size by grinding and polishing procedures known in the art. A sample of the cutters was cut and cross-sectioned and the dimensions of the volumes of different PCD materials measured and their volumes relative to the overall volume of the PCD table estimated. The boundary between the regions 13 and 14 was situated about 1.0 mm axially away from the substrate interface and about 0.5 mm from the circumferential free surface. The boundary between the regions 15 and 14 is situated about 0.6 mm away from the top free surface of the PCD table and about 0.25 mm from the circumferential free surface. The 60° segment extended about 2 mm in a radial direction from the circumferential free surface, was of thickness approximately 0.6 mm at the top free surface and approximately 0.25 at the circumferential free surface of the PCD table.
Regions 13, 14 and 15 were estimated to be approximately 38%, 23% and 44% of the overall volume of the PCD table respectively. The 60° segment, region 16 was estimated to occupy approximately 3% of the overall volume of the PCD table.
The cutters as manufactured with the resultant estimated volumes and dimensions and expected PCD material properties were modelled using Finite Element Analysis (FEA). As reference a planar cutter as in
Table 4 gives the comparative FEA results where the stress maxima calculated in the 60° segment were compared to the corresponding stress maxima of the planar reference cutter where the PCD material is the same as material 16 of
The axial tensile stress maximum was situated at the circumferential PCD table free surface just above the substrate interface, as in the planar reference cutter and associated with the critical region A2 of
The radial tensile stress maximum in the segment was situated at the top free surface of the PCD table, as in the planar cutter reference and associated with the critical region B1 of
The hoop tensile stress maximum in the segment was situated at the top free surface of the PCD table, as in the planar cutter reference and associated with the critical region A1 of
It is expected that the tendency for crack propagation in the material of the segment will thus be reduced as compared to a planar cutter made from the same material, reducing in turn the spalling tendency, so that the good wear properties of the segment material may be exploited in rock cutting applications. Moreover the highly favourable stress distribution in the adjoining and abutting material with the design of Example 3 may also inhibit crack propagation, to inhibit cracks from reaching the PCD table free surfaces as in Example 3. This may also contribute to a reduction in spall occurrence.
These results indicated that cutter designs based upon some embodiments with favourable residual stress distributions may be used to adjoin and abut segments of PCD materials and may favourably reduce the tensile stresses in these segments as compared to situations where the segment material is used alone.
It is expected that similar results should occur when more than one segment is used.
The interfacial boundary between a PCD table and a carbide substrate attached thereto may be geometrically modified in order to alter the residual stress field in the PCD table. These modified interfaces are termed non planar interfaces and may have an influence on the general stress distributions in locations immediate to the interface. The general character of the critical regions described and indicated in
Furthermore, modification of the geometry of the starting edge may be carried out by including, for example, a chamfer or the like, in order to reduce early chipping events. This practice may be used in conjunction with any or all of the embodiments.
Furthermore, treatments which remove in total or in part the metal component of PCD materials to a chosen depth from the free surface may be used to benefit the performance of PCD cutters. Typical depths exploited fall between 50 and 500 microns. The benefit is believed to reside primarily in improvements of thermal stability of the materials in the treated depth. However, an associated disadvantage of this treatment process is the occurrence of increased tensile stresses in the PCD materials adjacent to the treated layer or layers which may result in undesirable crack propagation. Embodiments may provide a means of mitigating this disadvantage by offsetting the tensile stresses by an already present induced compression brought about by placement of chosen materials. It is therefore possible to use such treatments in conjunction with one or more embodiments.
Also, certain heat treatments are able to partially anneal residual stresses and thereby reduce their magnitude. Typical of such treatments is to heat PCD cutters after removal from the high pressure apparatus under a vacuum at temperatures between 550° C. and 750° C. for time durations of a few hours. Such treatments are able to favourably alter the residual stress distributions but only to a limited degree. Heat treatments of this nature may be applied to the embodiments.
Although the foregoing description of superhard structures, production methods, and various applications of such structure and methods contain many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some embodiments. Similarly, other embodiments may be devised which do not depart from the scope of the invention. For example, structures containing superhard and other materials arranged to have adjacent three dimensional zones, volumes or regions made from materials differing in properties and compositions as described may be fabricated using material assembly and preparation techniques such as tape casting, injection moulding, powder extrusion, inkjet printing, electrophoretic deposition and the like and any combination of such methods, all adapted to be capable of being applied to superhard material powders such as diamond and cBN. Also, whilst the embodiments described herein have made particular reference to polycrystalline diamond material, other superhard materials may be used. In addition, other hard materials, often containing diamond, may also be used to alter the stress distribution in the body of polycrystalline material by placement of these materials in appropriate regions.
The embodiment of
The material in volume 12 of
As in example 1, the final PCD table thickness was 2.2 mm, bonded to a tungsten carbide, 13 weight percent cobalt hard metal substrate of 13.8 mm in length. The right cylinder cutters were 16 mm in diameter, 16 mm in overall length and had a planar interface between the PCD table and the carbide substrate.
The high pressure high temperature sintering conditions of 6.8 GPa and 1450° C. were maintained for 10 minutes. An exemplary cutter was then tested using a laboratory rock drill simulating apparatus. A portion of the top peripheral edge of the cutter made to bear on a rotating granite rock sample such that a continuous groove was made in the rock sample with the dominant rock fracture being brought about by shearing action. The test was continued until the developing wear scar on the cutter just reached the region of the tungsten carbide, PCD table interface. No obvious chipping or spalling had occurred. The worn sample was sectioned radially to intersect the wear scar, the cross section being polished and prepared for microscopic examination.
The PCD material in the central region is separated from the top free surface of the PCD table by a 0.4 mm thickness of the lower coefficient of thermal expansion material as per volume 12 of
PCD cutters were made to an embodiment derived from
The material in volume 19 of
The PCD material occupying volume 20 in
The dimensions of the PCD table, tungsten carbide substrate and the overall size and shape of the cutters together with the conditions under which the PCD materials were sintered were as per Example 5.
This is another embodiment the desired and expected fracture behaviour brought about by the modification of the residual stress distribution in the PCD table which is a feature of some embodiments.
PCD cutters were made to a design derived from the embodiment of Example 6, whereby a material of intermediate linear coefficient of thermal expansion and metal content occupied a volume shown labelled as 19 in
The material in volume 19 of
The PCD material occupying volume 20 in
The dimensions of the PCD table, tungsten carbide substrate and the overall size and shape of the cutters together with the conditions under which the PCD materials were sintered were as per Examples 5 and 6.
This is yet another example of the beneficial behaviour of some embodiments whereby the modified residual stress distribution in the PCD table by virtue of the adjacent arrangement of specifically chosen PCD materials guide cracks away from the free surfaces of the cutter.
Number | Date | Country | Kind |
---|---|---|---|
1022127.3 | Dec 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/73473 | 12/20/2011 | WO | 00 | 9/2/2013 |
Number | Date | Country | |
---|---|---|---|
61428932 | Dec 2010 | US |