This application relates to a refrigerant superheat control to enhance system performance and improve compressor reliability.
In air conditioning, heat pump and refrigeration systems, a superheat of the refrigerant leaving an evaporator needs to be closely controlled. Refrigerant leaves the evaporator normally at the superheated state, where its actual temperature is higher than the corresponding saturation temperature (a superheat is actually defined as the difference between these two temperatures). A certain (positive) superheat is typically required to ensure that little or no liquid refrigerant enters the compressor and system operation is stable. If a significant amount of liquid refrigerant enters the compressor, an undesirable condition known as “flooding” will occur.
On the other hand, it is known that in order to assure the highest performance (efficiency and capacity) of the refrigerant system, close to zero superheat values for the refrigerant leaving the evaporator are to be maintained. Further, by reducing suction superheat, the oil return to the compressor is also improved, as the oil viscosity is reduced with the reduced superheat. This is true, since more refrigerant is diluted in the oil at lower superheat values. Conversely, as the superheat value is increased, refrigerant is boiled off from the oil increasing the oil viscosity and making the oil more prone to stagnate at the evaporator exit or in the piping connecting the evaporator to the compressor. Of course, improving oil return is a goal of a refrigerant system designer, as it enhances compressor reliability and enhances system performance by preventing oil retention in the evaporator and associated piping.
While it is known to be desirable to reduce the superheat to the lowest value possible, to date most refrigerant system, at best, would operate with superheat values in a range of 6-12° F. The potential for a measurement error due to temperature sensor measurement tolerances, calibration and resolution; system component manufacturing variability; ambient effects on system operation; load demand fluctuations and associated transient phenomena, concurrently occurring within the refrigerant system, have typically provided a practical bar to further reduction in the superheat setting.
As also known, typically, a temperature (and the associated superheat value) of the refrigerant downstream of the evaporator is utilized for the system operational control either to provide safe and reliable compressor operation, or to prevent an expansion device, such as a thermostatic expansion valve, malfunctioning, or both.
It is undesirable, as mentioned above, to have significant flooding in the compressor, due to associated reliability issues. Thus, the refrigerant system designers have erred on the side of applying sufficient superheat to eliminate any potential for such flooding at an entire spectrum of operating conditions. Uncontrolled flooding results in a drastic drop in compressor capacity and efficiency, and may also cause severe damage to the compressor.
The present invention allows operation at a much lower superheat setting, and perhaps even with slight flooding at the compressor entrance (or evaporator exit), without any detrimental effects on compressor reliability and at higher system efficiency and capacity. At the same time, the present invention ensures that no significant amount of liquid refrigerant will enter the compressor pumping elements.
In one disclosed embodiment of this invention, the refrigerant temperature is measured inside the compressor. Preferably, the temperature is measured after refrigerant has undergone some preheating before it enters the compression elements. Such preheating, for example, could be associated with the motor heat dissipated into the refrigerant, or with heating by the ambient environment while the refrigerant is transferred from the evaporator to the compressor. Thus, the superheat values of the refrigerant leaving the evaporator could be reduced to the desired, close to zero values. On the other hand, while limited amount of liquid can enter the compressor shell, the additional heat delivered prior to the initiation of the compression process will assure that no liquid refrigerant will be entering the compression elements inside the compressor shell. Thus, compressor reliability will not be compromised. The superheat value, for example, can be calculated by subtracting the actual refrigerant temperature form its saturation temperature. The refrigerant temperature is normally determined by a temperature sensor located inside the refrigerant system or a temperature sensor attached to the “airside” of the piping, compressor shell, etc. to deduce the refrigerant temperature based on the temperature of the metal components surrounding and in direct contact with the refrigerant. For instance, the sensor on the inside or outside of the compressor shell can be installed at the factory or added to the compressor in the field. The refrigerant saturation temperature can be established by means of various sensors, including a temperature sensor located in the two-phase region of the refrigerant system heat exchangers (either inside or outside) or pressure sensor measuring the refrigerant pressure. As known in the art, the saturation temperature can be deduced from the refrigerant pressure measurements.
As an example, and in one disclosed embodiment, it is known to deliver suction refrigerant to a hermetic or semi-hermetic compressor into a sealed housing shell containing both the compressor pump unit (compression elements) and electric motor. In one known application of such compressors, at least a portion of the refrigerant is allowed to initially flow over the motor, cooling the motor. When the refrigerant cools the motor, heat is delivered into the refrigerant. In the disclosed embodiment, the refrigerant temperature to control an expansion device is determined at the location where the refrigerant has already picked up some heat after it has cooled the motor and as the refrigerant approaches the compressor pump unit. Taking this refrigerant temperature at this location within the compressor shell minimizes the evaporator superheat and, at the same time, allows for evaporator performance enhancement and reliable compressor operation.
In another embodiment, if a motor is located outside of the compressor shell, then the refrigerant temperature can be measured at an early stage of compression within the compressor pump unit. In this manner, the heat delivered by internal compression within the compression elements to the refrigerant. This additional heat will quickly boil off any limited, controlled amount of liquid entering the compression elements. Again, this will allow a reduction in the amount of superheat that is deemed necessary to eliminate the potential for substantial amount of flooding at the compression elements as well as assure stable system operation.
In some applications, thus it may be possible and beneficial to have a slight flooding at the evaporator exit with a two-phase refrigerant leaving the evaporator.
In the present invention, a scroll compressor and a screw compressor are used as illustrations, though other type of compressors would naturally fall within the scope of this invention, such as reciprocating compressors, rotary compressors, centrifugal compressors, etc.
Further, the present invention is especially useful when utilized in a refrigerant system incorporating an electronic expansion device with the temperatures measured directly and then transmitted via a controller through a feedback mechanism to the electronic expansion device. Additionally, with such an electronic expansion valve, various values of superheat can be preset and dialed in, if necessary. The invention would also apply to an expansion device utilizing a thermal expansion bulb as a sensing element, which communicates the sensed temperature back and controls the expansion device by mechanical means. Such a device would preferably be utilized with the bulb located external to the compressor housing shell, and, for example can be inserted into a thermowell, with the thermowell being, for example, located in the vicinity of the compressor pump set entrance or slightly into the compression process. The thermowell normally is the integral part of the compressor housing. The measurements of the oil temperature in the compressor oil sump, either form inside or outside of the shell, can also be used to deduce the amount of superheat at the evaporator exit.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A refrigerant system 20 is illustrated in
It is known in the art to utilize a temperature sensed at the evaporator 28 exit location or on the compressor suction line 38, before refrigerant enters the compressor 22, and communicate the value of this temperature to an electronic controller, with the electronic controller than controlling the electronic expansion device 26, or/and the suction modulation valve 30. By measuring a temperature inside the compressor shell 34, the present invention takes advantage of the fact that the refrigerant having passed over the motor 36 cools the motor, causing the refrigerant temperature to increase. As seen in the
A worker of ordinary skill in the art would recognize how to use the sensed refrigerant temperature to control the expansion devices 26 and 126 or/and the suction modulation valve 30 to achieve a desired superheat. This control forms no portion of this invention. Rather, it is the use of such control to obtain more optimal superheat values that provide enhanced system performance and reliable compressor operation that is inventive here. If the electronic expansion is replaced by the TXV (thermal expansion device) then the use of a controller may not be needed at all, as the amount of superheat can be directly (mechanically) controlled by the TXV type expansion device itself. In summary, the refrigerant temperature is measured either inside of the compressor or on the compressor shell to control the thermodynamic state of refrigerant (the amount of superheat or amount of liquid) at various possible locations between the evaporator and compressor pumping elements.
Although the present invention is predominantly illustrated for a scroll compressor, other type of compressors would naturally fall within the scope of this invention such as screw compressors, reciprocating compressors, rotary compressors, centrifugal compressors, etc. An example of refrigerant systems that fall with the scope of this invention include air conditioning systems and heat pump systems for cooling or/and respectively heating houses, building, computer rooms, etc. The refrigerant systems also include refrigeration systems to cool and freeze products in refrigeration containers, truck-trailer units, and supermarket installations. As known, the refrigerant systems can be equipped with multiple circuits, have various means of compressor unloading, as well as being equipped with various performance enhancement options and features such as for instance an economizer cycle. A variety of different type of refrigerants can be used in these systems including, but not limited to, R410A, R134a, R404A, R22, and CO2.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/020509 | 5/26/2006 | WO | 00 | 3/11/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/139537 | 12/6/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2120764 | Newton | Jun 1938 | A |
4244182 | Behr | Jan 1981 | A |
4878355 | Beckey | Nov 1989 | A |
5076067 | Prenger | Dec 1991 | A |
5475985 | Heinrichs | Dec 1995 | A |
5477701 | Kenyon et al. | Dec 1995 | A |
6341496 | Kettner et al. | Jan 2002 | B1 |
6615598 | Wang | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
4212162 | Oct 1993 | DE |
9416795 | Jan 1995 | DE |
19908043 | Sep 2000 | DE |
03106900 | Dec 2003 | WO |
Entry |
---|
Search Report and Written Opinion PCT/US06/20509. |
EP Search Report from counterpart EP 06 77 1336. |
Number | Date | Country | |
---|---|---|---|
20110185753 A1 | Aug 2011 | US |