Superhydrophobic and oleophobic coatings with low VOC binder systems

Information

  • Patent Grant
  • 9546299
  • Patent Number
    9,546,299
  • Date Filed
    Wednesday, August 21, 2013
    11 years ago
  • Date Issued
    Tuesday, January 17, 2017
    7 years ago
Abstract
Coating compositions for the preparation of superhydrophobic (SH) and/or oleophobic (OP) surfaces that employ low amounts of volatile organic compounds are described. Also described are the resulting coatings/coated surfaces and methods of their preparation. Such coatings/surfaces have a variety of uses, including their ability to prevent or resist water, dirt and/or ice from attaching to a surface.
Description
BACKGROUND

The superhydrophobic (SH) and superoleophobic surfaces are defined as those where water or oil droplet contact angles exceed 150°. Such surfa have a variety of uses, including their ability to prevent or resist water, dirt and/or ice from attaching to a surface. A variety of hydrophobic and oleophobic surface coating compositions have been described that employ high amounts of volatile organic compounds (VOCs) including those that participate in atmospheric photochemical reactions. Those contrast with the coating compositions described herein that utilize water and/or VOC-exempt organic solvents that have been found to undergo limited amounts of atmospheric photochemical reactions and lower amounts of photochemically active VOCs.


SUMMARY

This disclosure sets forth coating compositions that employ water-based binder systems that have a low VOC content and/or low non-exempt VOC content, thereby providing a variety of environmental benefits in their application. The coating compositions described herein remain substantially hydrophobic/oleophobic even when abraded, and have increased durability and/or life span when subjected to normal wear and tear compared to coatings where hydrophobic and/or oleophobic components are restricted to the coating's surfaces.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a histogram plotting the amount of abrasion (measured in Taber cycles using a CS 10 wheel and 250 g load) causing a loss of superhydrophobicity for five one-step coatings prepared with various BAYHYDROL® based binders (see Appendix A).



FIG. 2 is a schematic showing the proposed distribution of second particles, (“nano particles” e.g., CAB-O-SIL® TS720) across the thickness of coatings prepared with different BAYHYDROL® based binders. First particles are indicated by “X” and second particles are indicated by small filled circles or dots. The upper portion of the diagram indicates the accumulation of a substantially amount of submicron (e.g., second particles treated to be hydrophobic) at the surface, likely due to the absence of co-solvents. In contrast, coating compositions of the present disclosure (e.g., those which incorporate co-solvents) permit the dispersion of submicron particles (e.g., second particles treated to be hydrophobic) throughout the coating.



FIG. 3 shows a plot of surface roughness (Ra) as a function of coating thickness for one-step coating made with BAYHYDROL® 140AQ.



FIG. 4 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity against coating thickness (i.e., Taber cycle variation with coating thickness) for a one-step coating prepared using BAYHYDROL® 140AQ



FIG. 5 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity against coating roughness measured as Ra (i.e., Taber cycle variation with increasing surface roughness) for coatings prepared using BAYHYDROL® 140AQ.



FIG. 6 shows a plot of surface roughness, Ra, as a function of thickness for one-step superhydrophobic coating on steel plates treated with a one-step coatings of BAYHYDROL® 140AQ and clear 700T with CAB-O-SIL® TS720 ranging from 11-20%. Within the first approximation, all of the data with three levels of TS720 (11-20%) fit linearly. Ra values for one-step coating using BAYHYDROL® 140AQ with clear 700T varied from 4-15 μm for coating having a thickness ranging from 20-80 μm.



FIG. 7 shows a plot of surface roughness, Rz, as a function of the thickness of one-step superhydrophobic coatings on steel plates described in Example 3 and FIG. 6. Rz values vary from 25-65 μm for coating thickness from 20-80 μm.



FIG. 8 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity against coating thickness (Taber abrasion data represents abrasion durability). The number of abrasion cycles is plotted as a function of thickness for one-step superhydrophobic coating on the steel plates as described in Example 3 and FIG. 6.



FIG. 9 shows a plot of surface roughness, Ra, as a function of thickness for coatings prepared with one-step superhydrophobic coatings on steel plates. The coatings were prepared with a combination of BAYHYDROL® 140AQ and clear POLANE 700T as a binder, TS720 ranging from 11-20% second particles, and 7% of Tiger Drylac first particle. The Ra data shows differing levels of surface roughness variations with increasing coating thickness, the lowest amount of TS720 (11%) having the least roughness, whereas higher Ra values are noted for 15% and 20% TS720.



FIG. 10 shows the surface roughness, Rz, as a function of coating thickness for one-step superhydrophobic coating on steel plates described in Example 4 and FIG. 9. Values of Rz, as a function of thickness follows a trend similar to that noted for Ra.



FIG. 11 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity against coating thickness for one-step superhydrophobic coatings on steel plates described in Example 4 and FIG. 9. The data show approximately a linear increase in Taber cycles increasing with increasing coating thickness. The lowest TS720 content (11%) yields the lowest number of Taber abrasion cycles for loss of superhydrophobicity. For TS720 contents of 15 and 20%, the number of Taber cycles to loss of superhydrophobicity is similar. For a given coating thickness, perhaps 50 μm, 11% TS720 gives a Taber value of about 300-400 as opposed to 800 abrasion cycles for TS720 at a content of 15 or 20%.



FIG. 12 shows a plot of surface roughness, Ra, as a function of coating thickness for one-step superhydrophobic coating on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and white POLANE 700T, and TS720 second particles in amounts ranging from 11-20%. Ra values show an approximately linear increase with increasing thickness for each level of TS720. The lowest values of Ra were noted for TS720 of 15%, and the Ra values for TS720 at 20% showed roughness values that were in between those of 11% and 20% TS720.



FIG. 13 shows a plot of surface roughness, Rz, as a function of thickness for one-step superhydrophobic coating on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and white POLANE 700T and with TS720 in amounts ranging from 11-20%. Rz values show an approximately linear increase with increasing coating thickness for each level of TS720. The lowest values of Rz were noted for TS720 of 15%, and the Rz values for TS720 at 20% showed roughness values that were in between the values for compositions with 11% and 20% TS720.



FIG. 14 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity against coating thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and white POLANE 700T, and TS720 second particles in amounts ranging from 11-20%.



FIG. 15 shows a plot of surface roughness, Ra, as a function of thickness for one-step superhydrophobic coating on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and white POLANE 700T, TS720 second particles in amounts ranging from 11-20%, and 7% of Tiger Drylac first particles.



FIG. 16 shows a plot of surface roughness, Rz, as a function of thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and clear 700T, TS720 second particles in amounts ranging from 11-20%, and 7% of Tiger Drylac first particles.



FIG. 17 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and white 700T as a binder, TS720 second particles in amounts ranging from 11-20%, and 7% of Tiger Drylac first particle.



FIG. 18 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of coating thickness for one-step superhydrophobic coatings on steel plates using BAYHYDROL® 140AQ and clear POLANE® 700T as a binder, and TS720 second particles. Data for 5, 7, and 9% TS720 are included for comparison.



FIG. 19 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of coating thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and with white POLANE® 700T as a binder and TS&@) second particles. Data for 5, 7, and 9% TS720 are included for comparison.



FIG. 20 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of coating thickness for one-step superhydrophobic coatings on steel plates for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ and clear POLANE700T as a binder and TS720 second particles. Data for 11% TS 720 are included for comparison.



FIG. 21 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of coating thickness for one-step superhydrophobic coatings on steel plates The coatings were prepared using BAYHYDROL® 140AQ and with white POLANE 700′T as a binder and TS720 second particles. Data for 11% TS720 are included for comparison.



FIG. 22 shows a plot of the amount of abrasion (measured in Taber cycles) required to cause a loss in superhydrophobicity as a function of coating thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ in combination with either clear or white POLANE® 700T (60:40 v/v) as a binder, with 11% (w/w) of CAB-O-SIL TS720 second particles. A portion of each binder system received Tiger Drylac first particle at 7% w/w to give four samples. Results of Taber abrasion testing with a 250 g load and CS10 wheels are provided in the plot. Although there is scatter in the data, there are two clear trends. First, the plates coated with compositions without first particle have higher abrasion resistance based on the Taber wear data than plates coated with compositions comprising Tiger Drylac first particles. Second, for a fixed coating thickness of about 50 microns, coatings without first particles are about 2.5× more abrasion resistant.



FIG. 23 shows a plot of Taber abrasion resistance (cycles) plotted as a function of coating thickness for one-step superhydrophobic coatings on steel plates prepared as described in Example 22, except that each coating composition contained 15% TS720. Data from the four sample types are plotted, and the trend lines from the data in FIG. 22 are included for references.



FIG. 24 shows a plot of Taber abrasion resistance (cycles to loss of superhydrophobicity) plotted a function of coating thickness for one-step superhydrophobic coating on steel plates using BAYHYDROL® 140AQ and clear and White 700T with TS720 of 20% (i.e., the coating described in FIGS. 22 and 23 with 20% TS720). Data from all four compositions are compared, and trend lines for the data in Example 22 are included for reference.



FIG. 25 shows a plot of Taber abrasion resistance (cycles to loss of superhydrophobicity) plotted as a function of coating thickness for one-step superhydrophobic coating on steel plates using BAYHYDROL® 140AQ and with clear and white 700T with TS720 of 11% without first particle. This plot shows that for all being equal, white POLANE 700T provides more Taber durability than clear 700T. For a coating thickness of 50 μm, Taber resistance for the white 700T are about 1.5× that of clear 700T.



FIG. 26 shows a plot of surface roughness, Ra, as a function of thickness for one-step superhydrophobic coatings on steel plates. The coatings were prepared using BAYHYDROL® 140AQ in combination with clear or white POLANE 700T as a binder, TS720 second particles at 11% (w/w), and Tiger Drylac first particle of 7% as indicated.



FIG. 27 shows a plot of surface roughness, Ra, as a function of thickness for one-step superhydrophobic coating on steel plates. Coatings were prepared using BAYHYDROL® 140AQ in combination with clear or White POLANE 700T as a binder, and TS720 second particles at 11% w/w. The coating composition contained no first particles.



FIG. 28 shows a plot of surface roughness, Ra, as a function of thickness for one-step superhydrophobic coating on steel plates. The coatings were prepared using BAYHYDROL® 140AQ in combination with either clear or white POLANE 700T as a binder, TS720 second particles at 11% (w/w), and Tiger Drylac first particle at 7% w/w.



FIG. 29 shows a plot comparing the abrasion resistance (measured as Taber cycles to loss of superhydrophobicity) plotted against coating thickness. Coatings were prepared with clear POLANE 700T and second particles of M5T at 11%, either with or without 7% of S60 first particles. Taber measurements were conducted with a 250-g load and CS10 wheels.



FIG. 30 shows a plot comparing the abrasion resistance (measured as Taber cycles to loss of superhydrophobicity) plotted against coating thickness. Coatings were prepared with clear POLANE 700T and second particles of M5T at 11%, either with or without 7% of S60 first particles. Taber measurements were conducted with a 500-g load and CS10 wheels.



FIG. 31 shows a plot comparing the abrasion resistance (measured as Taber cycles to loss of superhydrophobicity) plotted against coating thickness. Coatings were prepared with clear POLANE 700T and second particles of M5T at 11%, either with or without 7% of S60 first particles. Taber measurements were conducted with a 1,000-g load and CS10 wheels.



FIG. 32 shows a plot comparing the abrasion resistance (measured as Taber cycles to loss of superhydrophobicity) plotted against coating thickness. Coatings were prepared with clear POLANE 700T, second particles of M5T at 11%, either with or without 7% of S60 first particles and a coating thickness up to 350 microns. Taber measurements were conducted with a 1,000-g load and CS10 wheels.



FIG. 33 shows the calculation of Ra (arithmetic mean roughness) and Rz (ten point mean roughness). For Ra analysis a section of standard length is sampled from the mean line on the roughness chart. The mean line is laid on a Cartesian coordinate system wherein the mean line runs in the direction of the x-axis and magnification is the y-axis. The value obtained with the formula given in the figure is expressed in micrometers unless stated otherwise. For ten-point mean roughness (Rz) a section of standard length is sampled from the mean line on the roughness chart. The distance between the peaks and valleys of the sampled line is measured in they direction. Then, the average peak is obtained among 5 tallest peaks (Yp), as is the average valley between the 5 lowest valleys (Yv). The sum of these two values is expressed in micrometers, unless stated otherwise.





DETAILED DESCRIPTION

Low VOC Coatings


Compositions for forming hydrophobic and/or oleophobic coatings described in this disclosure include one-step compositions that employ water-based polyurethanes (or combinations of water based polyurethanes) as a binder in combination with one or more types of second particles. The compositions set forth in this disclosure may optionally include one or more types of first particles in addition to third particles.


The low VOC coating compositions described herein provide coatings that do not lose hydrophobicity and/or oleophobicity when their surface is abraded. As the coatings do not lose hydrophobicity and/or oleophobicity when abraded, the coatings permit thickness to be used as the basis to increase the abrasion resistance and durability.


1 Binders


To reduce the amount of VOC's, particularly non-exempt VOC's, that are released from coating compositions used to prepare hydrophobic and/or oleophobic coatings, water-based (also denoted as waterborne) binders may be used to prepare coating compositions that result in SH and/or OP coatings, including water-based polyurethanes (e.g., water-based polyurethane dispersions (PUDs), emulsions, and/or suspension).


In addition to low volatile organic compound content, water-based polyurethanes permit the formation of hydrophobic and/or oleophobic coatings that remain substantially hydrophobic and/or oleophobic even after substantial surface abrasion. Moreover, water-based polyurethanes offer mechanical flexibility, size/dimensional stability of the dried and cured coating, and they can resist embrittlement due to heat and/or light exposure. UV curable versions of water-based polyurethanes (e.g., PUDs) are also available that avoid the need to heat cure coatings, which is economically and environmentally desirable due to reduced energy expenditure associated with light cureable coating applications relative to those requiring or whose curing is enhanced by heating.


1.1 Water-Based Polyurethanes as Binders


A wide variety of water-based polyurethanes (polyurethane coating compositions comprising more than insubstantial amounts of water as a solvent and/or diluent) may be used to prepare hydrophobic and/or oleophobic coatings described herein. Polyurethanes are polymers consisting of a chain of organic units joined by urethane (carbamate) linkages. Polyurethane polymers are typically formed through polymerization of at least one type of monomer containing at least two isocyanate functional groups with at least one other monomer containing at least two hydroxyl (alcohol) groups. A catalyst may be employed to speed the polymerization reaction. Other components may be present in the polyurethane coating compositions to impart desirable properties including, but not limited to, surfactants and other additives that bring about the carbamate forming reaction(s) yielding a coating of the desired properties in a desired cure time.


In some embodiments, the polyurethane employed in the durable coatings may be formed from a polyisocyanate and a mixture of —OH (hydroxyl) and NH (amine) terminated monomers. In such systems the polyisocyanate can be a trimer or homopolymer of hexamethylene diisocyanate (HDI).




embedded image


Some solvents compatible with such systems include water, n-butyl acetate, toluene, xylene, ethyl benzene, cyclohexanone, isopropyl acetate, N-methylpyrrolidone, and methyl isobutyl ketone and mixtures thereof; although not all of these solvents are VOC-exempt.


A variety of water-based (waterborne) polyurethane compositions may be employed for the preparation of hydrophobic, SH and/or oleophobic surfaces may be employed. Among the commercial water-based polyurethanes that may be employed in the preparation of SH and OP surfaces are those that comprise polycarbonate, polyester, polyethers and/or polyacrylic urethanes, and their aliphatic counterparts (aliphatic polyester urethane resins, aliphatic polycarbonate urethane resins, and/or aliphatic acrylic urethanes. The structures of some examples of polyacrylic urethanes, polyester urethanes, and polycarbonate urethanes are provided below.




embedded image



Polyacrylic urethane where x>1, 30>y>2, and z>1




embedded image



Polyester urethane where v>1, w>1, x>1, 2>y>30 and z>1




embedded image



Polycarbonate urethane where x>1 and


In some embodiments, the water-based polyurethanes are selected from one or more members of the POLANE® (e.g., POLANE® 700T, Sherwin Williams, Cleveland, Ohio), KEM AQUA® (Sherwin-Williams), or the BAYHYDROL® (e.g., BAYHYDROL 110, 122, 124, A145, and 140AQ) families of polyurethane emulsion/dispersions. The polyurethane emulsions or PUDs used as binders to prepare the hydrophobic and/or oleophobic coatings described herein may be prepared in water, or a water containing medium comprising a cosolvent that is water miscible (e.g., isopropanol and/or acetone), particularly cosolvents that are VOC-exempt and water miscible (e.g., acetone).


Water-based polyurethane binders are compatible with, and show good adhesion to, a wide variety of surfaces. Using water-based polyurethane binders, superhydrophobic coatings may be formed on many, if not most surfaces including, but not limited to, those of various woods, metals, glasses, ceramics, stone, rubbers, fabrics, and plastics.


In some embodiments, the coating compositions for preparing hydrophobic and/or oleophobic coatings contain binder comprising water-based polyurethane emulsions or PUDs, such as polyacrylic urethanes or polyurethane-acrylic enamels. In one embodiment the PUDs employed as a binder are POLANE® compositions (Sherwin Williams), such as POLANE® 700T. In other embodiments, compositions for SH and OP coating preparation comprising BAYHYDROL® binders are employed for coating plastics and very flexible substrates. In such an embodiment, flexible materials, such as polycarbonate, ABS, PET, polystyrene, PVC and polyurethane Reaction Injection Molding (RIM) products, can typically be coated using a one (1) component (1K) waterborne coating.


In another embodiment, the coating compositions for preparing hydrophobic and/or oleophobic coatings contain a binder comprising water-based polyester-urethane or aliphatic polyester urethane dispersion or emulsion in a water containing medium. In another embodiment, the coating compositions for preparing hydrophobic and/or oleophobic coatings contain a binder comprising water-based polycarbonate urethane or aliphatic polycarbonate urethane dispersion or emulsion in a water containing medium. In one embodiment, the polyurethane emulsion or PUD employed as a binder system is a BAYHYDROL® (Bayer Material Sciences), such as BAYHYDROL® 110, 122, 124, A145, 140AQ. In some embodiments the polyurethane binders are UV curable such as BAYHYDROL® UV 2282, UV 2317, UV VP LS 2280, UV VP LS 2317, UV XP 2629, UV XP 2687, UV XP 2689, or UV XP 2690. Water-based polyurethanes may come as a single component ready to apply composition, or as a two or three part (component) system.


Data for a number of BAYHYDROL® compositions and data for some water based polyurethane compositions, such as POLANE®s (e.g., POLANE® 700T) can be obtained from the manufacturers.


In some embodiments, the water-based polyurethane binders comprise a polycarbonate and/or polyester modified waterborne PUD or an acrylic modified waterborne PUD, any of which may be used alone or in combination. In some embodiments, the water-based polyurethane binders comprise a BAYHYDROL® or POLANE® (e.g., POLANE® 700T and BAYHYDROL® 124), which may be used alone or in combination.


In some embodiments, the coating composition comprises waterborne polycarbonate and/or polyester modified waterborne PUD in addition to an acrylic modified waterborne PUD. In such embodiments, the ratio of the waterborne polycarbonate and/or polyester modified waterborne PUD to the acrylic modified waterborne PUD can be about 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, or 70:30 on a weight-to-weight basis of the commercially available PUDs. In one such embodiment, the polycarbonate and/or polyester modified waterborne PUD is a BAYHYDROL® selected from BAYHYDROL® 110, 122, 124, A145, 140AQ and the acrylic modified waterborne PUD is a POLANE® such as POLANE® 700T.


In one embodiment, the coating composition for the application of superhydrophobic and/or oleophobic coatings on surfaces comprises: a polyurethane dispersion or suspension comprising one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane; from about 5 to about 30% by weight of second particles comprising one or more siloxanes, and/or one or more alkyl, haloalkyl, fluoroalkyl, or perfluoroalkyl containing moieties; and optionally comprising up to about 26% by weight of third particles; wherein said coating composition comprises less than 0.3 pounds per gallon of volatile non-exempt organic compounds; and wherein the superhydrophobic coating resulting from the application of said composition to a surface retains its superhydrophobicity after 150-1,400 Taber abrasion cycles at a 1000 g load for coating thickness range of 25-300 microns, and/or 100-2,500 Taber abrasion cycles at a 250 g load, using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at 3 degrees. In some embodiments, the polyurethane dispersion or suspension comprises a polycarbonate, a polyurethane, and a polyacrylic urethane. The polycarbonate urethane and polyacrylic urethane may be present in any ratio including, but not limited to, 90:10, 80:20, 70:30, 60:40, and 50:50 (polycarbonate urethane:polyacrylic urethane).


In some embodiments, the above-describe water-borne polyurethane coating compositions (e.g., water based polyurethane dispersions or suspensions) comprise at least one polyester urethane, polyacrylic urethane, and/or polycarbonate urethane composition that when dried and cured produces a coating that has: (a) a modulus at 100% elongation of 1300 psi or greater, and/or (b) an elongation percent at break of 150% or greater. In other embodiments, such coating compositions comprise: a polyester urethane and apolyacrylic urethane; a polyester urethane and a polycarbonate urethane; a polyester urethane and a polycarbonate urethane; or polyester urethane, a polyacrylic urethane, and a polycarbonate urethane.


Superhydrophobic and/or oleophobic coatings compositions may be applied to form coatings having a broad range of thicknesses. In some embodiments, the coatings will have a thickness in a range selected from about 10 μm to about 225 μm or about 30 μm to 350 μm. Within this broad range are embodiments employing coatings of thicknesses that range from about 10 μm to about 25 μm, from about 25 μm to about 50 μm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, from about 15 μm to about 200 μm; from about 20 μm to about 150 μm; from about 30 μm to about 175 μm; from about 50 μm to about 200 μm; from about 20 μm to about 100 μm; from about 100 μm to about 220 μm; from about 220 μm to about 350 μm; from about 15 μm to about 150 μm; and from about 160 μm to about 350 μm.


2 First Particles


Embodiments of the coatings disclosed herein may comprise particles that are added to the binder compositions to improve the mechanical properties of the coating, e.g., the durability of the hydrophobic and/or oleophobic coatings. A wide variety of such particles, which are also known as extenders or fillers, may be added to the binders. Those particles are denoted as “first particles” because the coatings described herein may have one or more additional types of particles. Such first particles that may be employed in the hydrophobic, SH and/or OP coatings described herein include, but are not limited to, particles comprising: wood (e.g., wood dust), glass, metals (e.g., iron, titanium, nickel, zinc, tin), alloys of metals, metal oxides, metalloid oxides (e.g., silica), plastics (e.g., thermoplastics), carbides, nitrides, borides, spinels, diamond, and fibers (e.g., glass fibers).


Numerous variables may be considered in the selection of first particles. These variables include, but are not limited to, the effect the first particles have on the resulting coatings, their size, their hardness, their compatibility with the binder, the resistance of the first particles to the environment in which the coatings will be employed, and the environment the first particles must endure in the coating and/or curing process, including resistance to temperature and solvent conditions. In addition, if light is used for curing the coatings, the particle must be resistant to the required light exposure conditions (e.g., resistant to UV light).


In embodiments described herein, first particles have an average size in a range selected from about 1 micron (μm) to about 250 μm. Within such broader range, embodiments include ranges of first particles having an average size of from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 μm to about 25 μm, from about 5 μm to about 25 μm, from about 25 μm to about 50 μm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, and from about 225 μm to about 250 μm. Also included within the broader range are embodiments employing particles in ranges from about 10 μm to about 100 μm, from about 10 μm to about 200 μm, from about 20 μm to about 200 μm, from about 30 μm to about 50 μm, from about 30 μm to about 100 μm, from about 30 μm to about 200 μm, from about 30 μm to about 225 μm, from about 50 μm to about 100 μm, from about 50 μm to about 200 μm, from about 75 μm to about 150 μm, from about 75 μm to about 200 μm, from about 100 μm to about 225 μm, from about 100 μm to about 250 μm, from about 125 μm to about 225 μm, from about 125 μm to about 250 μm, from about 150 μm to about 200 μm, from about 150 μm to about 250 μm, from about 175 μm to about 250 μm, and from about 200 μm to about 250 μm.


First particles may be incorporated into binders at various ratios depending on the binder composition and the first particle's properties. In some embodiments, the first particles may have a content range selected from: about 1% to about 60% or more by weight. Included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 2% to about 5%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, from about 25% to about 30%, from about 30% to about 35%, from about 35% to about 40%, from about 40% to about 45%, from about 45% to about 50%, from about 50% to about 55%, from about 55% to about 60%, and greater than 60%. Also included within this broad range are embodiments in which the first particles are present, by weight, in ranges from about 4% to about 30%, from about 5% to about 25%, from about 5% to about 35%, from about 10% to about 25%, from about 10% to about 30%, from about 10% to about 40%, from about 10% to about 45%, from about 15% to about 25%, from about 15% to about 35%, from about 15% to about 45%, from about 20% to about 30%, from about 20% to about 35%, from about 20% to about 40%, from about 20% to about 45%, from about 20% to about 55%, from about 25% to about 40%, from about 25% to about 45%, from about 25% to about 55%, from about 30% to about 40%, from about 30% to about 45%, from about 30% to about 55%, from about 30% to about 60%, from about 35% to about 45%, from about 35% to about 50%, from about 35% to about 60%, or from about 40% to about 60% on a weight basis.


In some embodiments, where the first particles comprise or consist of glass spheres, the first particles may be present in any of the foregoing ranges or in a range of from about 1% to about 40%, from about 3% to about 45%, from about 10% to about 45%, or from about 2% to about 15% on a weight basis.


In other embodiments where the first particles are a polyethylene or modified polyethylene, the particle may be present in a content range selected from any of the foregoing ranges, or in a range of: from about 3% to about 20%; about 5 to about 20%; from about 3% to about 15%; from about 12 to about 20%; or from about 3% to about 10% on a weight basis.


The incorporation of first particles can lead to a surface that is textured due to the presence of the first particles. In such embodiments, the presence of the first particles results in a surface texture that has elevations on the level of the coating formed. The height of the elevations due to the presence of the first particles can be from less than one micron (where the first particle is just below the line of the binder's surface) to a point where the first particles are almost completely above the level of the binder coating (although they may still be coated with binder). Thus, the presence of first particles can result in a textured surface wherein the first particles cause such elevations in the binder that have maximum heights in a range up to nearly 250 μm. Accordingly, such elevations can be present in ranges from about 1 μm to about 5 μm, from about 1 μm to about 10 μm, from about 1 μm to about 15 μm, about 1 μm to about 20 μm, from about 1 μm to about 25 μm, from about 1 μm to about 50 μm, from about 1 μm to about 75 μm, from about 1 μm to about 100 μm, from about 1 μm to about 125 μm, from about 1 μm to about 150 μm, from about 1 μm to about 175 μm, from about 1 μm to about 200 μm, from about 1 μm to about 225 μm, from about 1 μm to about 250 μm, from about 10 μm to about 80 μm, from about 15 to about 80 μm, from about 20 to about 100 μm, and from about 30 to about 70 μm.


The surface texture of coatings may also be assessed using the arithmetical mean roughness (Ra) or the ten point mean roughness (Rz) as a measure of the surface texture. In some embodiments, a coating described herein has an arithmetical mean roughness (Ra) in a range selected from: about 0.2 μm to about 20 μm; about 0.3 μm to about 18 μm; about 0.2 μm to about 8 μm; about 8 μm to about 20 μm; or about 0.5 μm to about 15 μm. In other embodiments, a coating as described herein has a ten-point mean roughness (Rz) in a range selected from: about 1 μm to about 90 μm; about 2 μm to about 80 μm; about 3 μm to about 70 μm; about 1 μm to about 40 μm; about 40 μm to about 80 μm; about 10 μm to about 65 μm; or about 20 μm to about 60 μm.


In some embodiments the compositions described herein, when dried and cured, produce a surface with an arithmetic mean roughness (Ra) greater than zero and less than about 30 microns, 20 microns, 16 microns or 10 microns. In other embodiments, the surface roughness of a dried and cured coating is from about 1 to about 20 microns; from about 2 to about 15 microns, from about 10 to about 20 microns: or from about 10 to about 30 microns.


First particles may optionally comprise moieties that make them hydrophobic and/or oleophobic. Where it is desirable to introduce such moieties, the particles may be reacted with reagents that covalently bind moieties that make them hydrophobic and/or oleophobic. In some embodiments, the reagents may be silanizing agents, such as those that introduce alkyl, haloalkyl, fluoroalkyl or perfluoroalkyl moieties (functionalities). In some embodiments, the silanizing agents are compounds of formula (I) (i.e., R4-nSi—Xn), and the various embodiments of compounds of formula (I) described below for the treatment of second particles. The surface of many types of first particles can be activated to react with silanizing agents by various treatments including exposure to acids, bases, plasma, and the like, where necessary to achieve functionalization of the particles.


In embodiments described herein, the first particles are not modified by adding functional groups that impart one or more of hydrophobic and/or oleophobic properties to the particles (e.g., properties beyond the properties inherent to the composition forming the particles). In one such embodiment, first particles do not contain covalently bound alkyl, haloalkyl, fluoroalkyl or perfluoroalkyl functionalities (moieties). In another such embodiment, the first particles are not treated with a silanizing agent (e.g., a compound of formula (I)).


2.1 Exemplary Sources of First Particles


First particles may be prepared from the diverse materials described above. Alternatively, first particles may be purchased from a variety of suppliers. Some commercially available first particles that may be employed in the formation of the hydrophobic and/or oleophobic (HP/OP) coatings described herein include those in the accompanying Table 1.









TABLE 1







First Particles

















First



Particle






First
Particle

First

Size

Crush


particle
(Filler)
First Particle
Particle
Density
Range

Strength


No.
ID
Type
Details
(g/cc)
(μm)
Color
(psi)
Source
Location



















1
K1
Glass Bubbles
GPSa
0.125
30-120
White
250
3M ™
St. Paul, MN


2
K15
Glass Bubbles
GPSa
0.15
30-115
White
300
3M ™
St. Paul, MN


3
S15
Glass Bubbles
GPSa
0.15
25-95 
White
300
3M ™
St. Paul, MN


4
S22
Glass Bubbles
GPSa
0.22
20-75 
White
400
3M ™
St. Paul, MN


5
K20
Glass Bubbles
GPSa
0.2
20-125
White
500
3M ™
St. Paul, MN


6
K25
Glass Bubbles
GPSa
0.25
25-105
White
750
3M ™
St. Paul, MN


7
S32
Glass Bubbles
GPSa
0.32
20-80 
White
2000
3M ™
St. Paul, MN


8
S35
Glass Bubbles
GPSa
0.35
10-85 
White
3000
3M ™
St. Paul, MN


9
K37
Glass Bubbles
GPSa
0.37
20-85 
White
3000
3M ™
St. Paul, MN


10
S38
Glass Bubbles
GPSa
0.38
15-85 
White
4000
3M ™
St. Paul, MN


11
S38HS
Glass Bubbles
GPSa
0.38
15-85 
White
5500
3M ™
St. Paul, MN


12
K46
Glass Bubbles
GPSa
0.46
15-80 
White
6000
3M ™
St. Paul, MN


13
S60
Glass Bubbles
GPSa
0.6
15-65 
White
10000
3M ™
St. Paul, MN


14
S60/HS
Glass Bubbles
GPSa
0.6
11-60 
White
18000
3M ™
St. Paul, MN


15
A16/500
Glass Bubbles
Floated
0.16
35-135
White
500
3M ™
St. Paul, MN





Series


16
A20/1000
Glass Bubbles
Floated
0.2
30-120
White
1000
3M ™
St. Paul, MN





Series


17
H20/1000
Glass Bubbles
Floated
0.2
25-110
White
1000
3M ™
St. Paul, MN





Series


18
D32/4500
Glass Bubbles
Floated
0.32
20-85
White
4500
3M ™
St. Paul, MN





Series


19
H50/10000
Glass Bubbles
Floated
0.5
20-60 
White
10000
3M ™
St. Paul, MN



EPX

Series


20
iMK
Glass Bubbles
Floated
0.6
8.6-26.7
White
28000
3M ™
St. Paul, MN





Series


21
G-3125
Z-Light Spheres ™
CMb
0.7
50-125
Gray
2000
3M ™
St. Paul, MN


22
G-3150
Z-Light Spheres ™
CMb
0.7
55-145
Gray
2000
3M ™
St. Paul, MN


23
G-3500
Z-Light Spheres ™
CMb
0.7
55-220
Gray
2000
3M ™
St. Paul, MN


24
G-600
Zeeo-spheres ™
CMb
2.3
1-40
Gray
>60000
3M ™
St. Paul, MN


25
G-800
Zeeo-spheres ™
CMb
2.2
 2-200
Gray
>60000
3M ™
St. Paul, MN


26
G-850
Zeeo-spheres ™
CMb
2.1
12-200
Gray
>60000
3M ™
St. Paul, MN


27
W-610
Zeeo-spheres ™
CMb
2.4
1-40
White
>60000
3M ™
St. Paul, MN


28
SG
Extendo-sphere ™
HSc
0.72
30-140
Gray
2500
Sphere One
Chattanooga, TN


29
DSG
Extendo-sphere ™
HSc
0.72
30-140
Gray
2500
Sphere One
Chattanooga, TN


30
SGT
Extendo-sphere ™
HSc
0.72
30-160
Gray
2500
Sphere One
Chattanooga. TN


31
TG
Extendo-sphere ™
HSc
0.72
8-75
Gray
2500
Sphere One
Chattanooga, TN


32
SLG
Extendo-sphere ™
HSc
0.7
10-149
Off
3000
Sphere One
Chattanooga, TN








White


33
SLT
Extendo-sphere ™
HSc
0.4
10-90 
Off
3000
Sphere One
Chattanooga, TN








White


34
SL-150
Extendo-sphere ™
HSc
0.62
70
Cream
3000
Sphere One
Chattanooga, TN


35
SLW-150
Extendo-sphere ™
HSc
0.68
8-80
White
3000
Sphere One
Chattanooga, TN


36
HAT
Extendo-sphere ™
HSc
0.68
10-165
Gray
2500
Sphere One
Chattanooga, TN


37
HT-150
Extendo-sphere ™
HSc
0.68
8-85
Gray
3000
Sphere One
Chattanooga, TN


38
KLS-90
Extendo-sphere ™
HSc
0.56
4-05
Light
1200
Sphere One
Chattanooga, TN








Gray


39
KLS-125
Extendo-sphere ™
HSc
0.56
4-55
Light
1200
Sphere One
Chattanooga, TN








Gray


40
KLS-150
Extendo-sphere ™
HSc
0.56
4-55
Light
1200
Sphere One
Chattanooga, TN








Gray


41
KLS-300
Extendo-sphere ™
HSc
0.56
4-55
Light
1200
Sphere One
Chattanooga, TN








Gray


42
HA-300
Extendo-sphere ™
HSc
0.68
10-146
Gray
2500
Sphere One
Chattanooga, TN


43
XI0M 512
Thermo-plastic
MPRd
0.96
10-100
White
508
XIOM Corp.
West Babylon,











NY


44
XIOM 512
Thermo-plastic
MPRd
0.96
10-100
Black
508
XIOM Corp.
West Babylon,











NY


45
CORVEL ™
Thermo-plastic
Nylon
1.09
44-74
Black

ROHM &
Philadelphia, PA



Black

Powder




HASS



78-7001

Coating


46
Micro-glass
Fibers
MMEGFe
1.05
16 × 120
White

Fibertec
Bridgewater, MA



3082


47
Micro-glass
Fibers
MMEGFe
0.53
10 × 150
White

Fibertec
Bridgewater, MA



9007D
Silane-Treated


48
Tiger
Polyester crosslinked



Drylac
with TGIC (triglycidyl



Series 49
isocyanurate)






aGPS—general purpose series




bceramic microspheres




chollow spheres




dmodified polyethylene resins




emicroglass milled E-glass filaments







3 Second Particles


The coatings disclosed herein employ second particles (e.g., nanoparticles), which bear hydrophobic moieties. A variety of second particles can be used to prepare the SH and/or OP coatings described herein. Suitable second particles have a size from about 1 nano meter (nm) to about 25 μm and are capable of binding covalently to one or more chemical moieties (groups or components) that provide the second particles, and the coatings into which they are incorporated, hydrophobicity, and when selected to include fluoroalkyl groups, hydrophobivity and oleophobicity.


In some embodiments, the second particles may have an average size in a range selected from: about 1 nm up to about 25 μm or more. Included within this broad range are embodiments in which the second particles have an average size in a range selected from: about 1 nm to about 10 nm, from about 10 nm to about 25 nm, from about 25 nm to about 50 nm, from about 50 nm to about 100 nm, from about 100 nm to about 250 nm, from about 250 nm to about 500 nm, from about 500 nm to about 750 nm, from about 750 nm to about 1 μm, from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from 1 nm to about 100 nm, from about 2 nm to about 200 nm, from about 10 nm to about 200 nm, from about 20 nm to about 400 nm, from about 10 nm to about 500 nm; from about 40 nm to about 800 nm, from about 100 nm to about 1 μm, from about 200 nm to about 1.5 μm, from about 500 nm to about 2 μm, from about 500 nm to about 2.5 μm, from about 1.0 μm to about 10 μm, from about 2.0 μm to about 20 μm, from about 2.5 μm to about 25 μm, from about 500 nm to about 25 μm, from about 400 nm to about 20 μm, and from about 100 nm to about 15 μm, from about 1 nm to about 50 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm; from about 5 nm to about 400 nm; about 10 nm to about 300 nm; or about 20 nm to about 400 nm.


In the above-mentioned embodiments, the lower size of second particles may be limited to particles greater than about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, or about 60 nm; and the upper size of second particles may be limited to particles less than about 20 μm, about 10 μm, about 5 μm, about 1 μm, about 0.8 μm, about 0.6 μm, about 0.5 μm, about 0.4 μm, about 0.3 μm or about 0.2 μm. Limitations on the upper and lower size of second particles may be used alone or in combination with any of the above-recited size limits on particle composition, percent composition in the coatings, and the like.


In some embodiments, the coatings may contain first particles in any of the above-mentioned ranges subject to either the proviso that the coatings do not contain only particles (e.g., first or second particles) with a size of 25 μm or less, or the proviso that the coatings do not contain more than an insubstantial amount of second particles with a size of 25 μm or less (recognizing that separation processes for particles greater than 25 μm may ultimately provide an unintended, insubstantial amount of particles that are 25 μm or less).


In other embodiments, first particles have an average size greater than 30 μm and less than 250 μm, and coatings comprising those particles do not contain substantial amounts of particles (e.g., first and second particles) with a size of 30 μm or less. In yet other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 40 μm or less, or particles with a size of 40 μm or less in substantial amounts. And in still other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 50 μm or less, or particles with a size of 50 μm or less in substantial amounts.


In other one embodiments, such as where the second particles are prepared by fuming (e.g., fumed silica or fumed zinc oxide), the second particles may have an average size in a range selected from about 1 nm to about 50 nm; about 1 nm to about 100 nm; about 1 nm to about 400 nm; about 1 nm to about 500 nm; about 2 nm to about 120 nm; about 5 nm to about 100 nm; about 5 nm to about 200 nm; about 5 nm to about 400 nm; about 10 nm to about 300 nm; or about 20 nm to about 400 nm.


Second particles having a wide variety of compositions may be employed in the durable SH and/or OP coatings described and employed herein. In some embodiments the second particles will be particles comprising metal oxides (e.g., aluminum oxides such as alumina, zinc oxides, nickel oxides, zirconium oxides, iron oxides, or titanium dioxides), or oxides of metalloids (e.g., oxides of B, Si, Sb, Te and Ge) such as a glass, silicates (e.g., fumed silica), aluminosilicates, or particles comprising combinations thereof. The particles are treated to introduce one or more moieties (e.g., groups or components) that impart hydrophobicity and/or oleophobicity to the particles, either prior to incorporation into the compositions that will be used to apply coatings or after incorporation into the coatings. In some embodiments, the second particles are treated with a silanizing agent, a silane, siloxane or a silazane, to introduce hydrophobic and/or oleophobic properties to the particles (in addition to any such properties already possessed by the particles).


In some embodiments, second particles are silica (silicates), alumina (e.g., Al2O3), titanium oxide, or zinc oxide that are treated with one or more silanizing agents, e.g., compounds of formula I.


In some embodiments, second particles are silica (silicates), alumina (e.g., Al2O3), titanium oxide, or zinc oxide, that are treated with a siloxane.


In some embodiments, the second particles are silica (silicates), glass, alumina (e.g., Al2O3), a titanium oxide, or zinc oxide, treated with a silanizing agent, a siloxane or a silazane. In some embodiments, the second particles may be prepared by fuming (e.g., fumed silica or fumed zinc oxide).


3.1 Some Sources of Second Particles


Second particles such as fumed silica may be purchased from a variety of suppliers, including but not limited to Cabot Corp., Billerica, Mass. (e.g., Nanogel TLD201, CAB-O-SIL® TS-720 (silica, pretreated with polydimethyl-siloxane), and M5 (untreated silica)) and Evonik Industries, Essen, Germany (e.g., ACEMATT® silica such as untreated HK400, AEROXIDE® silica, AEROXIDE® TiO2 titanium dioxide, and AEROXIDE® Alu alumina).


Some commercially available second particles are set forth in Table 1 along with their surface treatment by a silanizing agent or polydimentyl siloxane in Table 2.














TABLE 2








Nominal BET




Produce
Surface
Level of
Surface Area of Base
Particle Size
Product


Name
Treatment
Treatment
Product (m2/g)
(nm)
Source







M-5
None
None
200

Cab-O-Sil


Aerosil ® 200
None
None
200
12
Evonik


Aerosil ® 255
None
None
255

Evonik


Aerosil ® 300
None
None
300
 7
Evonik


Aerosil ® 380
None
None
380
 7
Evonik


HP-60
None
None
200

Cab-O-Sil


PTG
None
None
200

Cab-O-Sil


H-5
None
None
300

Cab-O-Sil


HS-5
None
None
325

Cab-O-Sil


EH-5
None
None
385

Cab-O-Sil


TS-610
Dimethyldichlorosilane
Intermediate
130

Cab-O-Sil


TS-530
Hexamethyldisilazane
High
320

Cab-O-Sil


TS-382
Octyltrimethoxysilane
High
200

Cab-O-Sil


TS-720
Polydimethylsiloxane
High
200

Cab-O-Sil


Aerosil ®
Polydimethylsiloxane

100
14
Evonik


R202







Aerosil ®
Hexamethyldisilaze

125-175

Evonik


R504
(HMDS) and aminosilane






Aerosil ®
HMDS based on

220

Evonik


R812S
Aerosil ® 300







embedded image


embedded image








As purchased, the particles may be untreated (e.g., M5 silica) and may not posses any HP/OP properties. Such untreated particles can be treated to covalently attach one or more groups or moieties to the particles that give them HP/OP properties, for example, by treatment with the silanizing agents discussed above.


4 Third Particles


In some embodiments, the coatings disclosed herein employ third particles, which unlike second particles, do not bear hydrophobic moieties. A variety of third particles, which typically have a size from about 1 nm to 5 μm, can be employed in the superhydrophobic and/or oleophobic coatings described herein.


In some embodiments the third particles may have an average size in a range selected from about 1 nm to about 5 μm or more. Included within this broad range are embodiments in which the third particles have an average size in a range selected from about 1 nm to about 10 nm, from about 10 nm to about 25 nm, from about 25 nm to about 50 nm, from about 50 nm to about 100 nm, from about 100 nm to about 250 nm, from about 250 nm to about 500 nm, from about 500 nm to about 750 nm, from about 750 nm to about 1 μm, from about 0.5 μm to about 4 μm, from about 2 μm to about 4 μm, from 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 2 nm to about 120 nm, from about 2 nm to about 200 nm, from about 10 nm to about 200 nm, from about 20 nm to about 400 nm, from about 10 nm to about 500 nm; from about 40 nm to about 800 nm, from about 100 nm to about 1 μm, from about 200 nm to about 1 μm, from about 200 nm to about 900 nm, from about 300 nm to about 800 nm; or from about 400 nm to about 700 nm μm, from about 500 nm to about 1 μm, or from about 500 nm to about 1 μm.


In the above-mentioned embodiments, the lower size of third particles may be limited to particles greater than about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, or about 60 nm; and the upper size of third particles may be limited to particles less than about 5 μm, about 4 μm, about 3 μm, about 1 μm, about 0.8 μm, about 0.6 μm, about 0.5 μm, about 0.4 μm, about 0.3 μm or about 0.2 μm. Third particles having limitations on either or both of their upper and lower sizes may be used alone or in combination with any of the above-recited first or second particles in the coating compositions.


Third particles having a wide variety of compositions may be employed in the durable coatings described and employed herein. In some embodiments the third particles are particles comprising oxides of metalloids or metal oxides including, but not limited to, titanium dioxide, iron oxide(s) (e.g., 2Fe2O3H2O or Fe2O3), chromium oxide(s). In other embodiments, the third particles may comprise materials other than metal oxides including, but not limited to, carbon black, zinc chromate (e.g., 3ZnCrO4Zn(OH)2), azurite (Na7Al6Si4O24S2), cadmium sulphide(s), lithopone (ZnS mixed with BaSO4), CaCO3, kaolin (hydrated aluminium silicate), talc (hydrated magnesium silicate), zinc phosphate, zinc chromate, zinc molybdate, barium metaborate, or BaSO4. (See, e.g., Paints and Pigments, by Michael D. T. Clark revised and editing by Heather Wansbrough following correspondence with Steve Lipsham, available on the World Wide Web at nzic.org.nz/ChemProcesses/polymers/10D.pdf.)


Third particles may be particulate pigments, e.g., carbon black, titanium dioxide, iron oxide(s), zinc chromates, azurite, chromium oxide(s) cadmium sulphide(s), lithopone, talc (hydrated magnesium silicate), BaSO4 calcium copper silicate, and Cu2CO3(OH)2. Pigments serve not only to provide color, but may also enhance coating resistance to weather, heat, light, or corrosion. Third particles may also be mineral compounds that do not provide staining power or opacity, known as extenders. Extenders may be used to improve coating application characteristics, as “flatting agents” to provide flat or semi-gloss finishes, or to prevent settlement of pigments. Some common extenders include CaCO3, talc, barites, kaolin, silica, and mica. See, e.g., Paints and Pigments, by Michael D. T. Clark.


In one embodiment, third particles comprise titanium dioxide.


Third particles may be present or absent in the coating compositions, and the resulting coatings described herein. When present, they may be present in an amount from about 0.01% to about 25%, from about 0.01% to about 5%, from about 0.1% to about 5%, from about 1% to about 5%, from about 0.01% to about 10%, from about 0.1% to about 10%, from about 2% to about 10%, from about 0.5% to about 25%, from about 5% to about 25%, from about 5% to about 20%, from about 10% to about 20%, from about 0.01% to about 8%, from about 8% to about 16%, from about 16% to about 24%, or from about 5% to about 15% by weight based on the weight of the composition.


5.0 Hydrophobic and Oleophobic Moieties of First and/or Second Particles


As discussed above, both the first and second particles may comprise one or more independently selected moieties that impart hydrophobic and/or oleophobic properties to the particles and the coatings into which they are incorporated. As also noted above, such chemical entities may be associated with the commercially available particles and/or added by way of treating the particles.


In some embodiments, the second particles will bear one or more alkyl, haloalkyl, fluoroalkyl, and perfluoroalkyl moieties. Such moieties can be covalently bound directly or indirectly bound to the second particle, such as through one or more intervening silicon or oxygen atoms. In other embodiments, the second particles will be treated with a siloxane.


In other embodiments, the second particles will bear one or more alkyl, haloalkyl, fluoroalkyl, and perfluoroalkyl moieties of the formula R3-nSi—, where n is from 1-3, that are directly or indirectly (e.g., covalently bound) to the second particle, such as through one or more intervening atoms.


5.1 Silanizing Agents and their Use


A variety of silanizing agents (e.g., compounds of the formula R4-nSi—Xn) can be employed to introduce moieties, e.g., R3-nSi— groups (where n is an integer from 0 to 2), to the first or second particles prior to their introduction into the coatings described herein. Silanizing agents may also be used to introduce such moieties onto coating surfaces and onto/into particles subsequent to their introduction into the coatings, provided the particles are at or close enough to the surface of the coating for a silanizing agent to reach and react with those particles. Suitable silanizing agents typically have both leaving groups and terminal functionalities. Terminal functionalities are groups that are not displaced by reaction of a silanizing agent with, for example, particles such as silica second particles (e.g., R groups of compounds of the formula (I)). Leaving groups are those groups that are displaced from silanizing agents upon reaction to form bonds with the second particles.


Prior to reacting first or second particles with silanizing agents, the particles may be treated with an agent that will increase the number of sites available for reaction with the silanizing agent (e.g., SiCl4, Si(OMe)4, Si(OEt)4, SiCl3CH3, SiCl3CH2SiCl3, SiCl3CH2CH2SiCl3, Si(OMe)3CH2Si(OMe)3, Si(OMe)3CH2CH2 Si(OMe)3, Si(OEt)3CH2Si(OEt)3, or Si(OEt)3CH2CH2 Si(OEt)3 and the like). Treatment with such agents is conducted, e.g., with a 1% to 5% solution of the agent in a suitable solvent (e.g., hexane), although higher concentrations may be employed (e.g., about 5% to about 10%). Where agents such as SiCl4 or Si(OMe)4 are employed to increase the number of sites available for reaction with silanizing agents, the surface may first be treated with SiCl4 followed by reaction with water to replace the chlorines with OH groups that react effectively with silanizing agents such as those of formula (I). Reaction with silanizing agents is typically conducted using a silanizing agent at in the range of about 1% to about 2% w/v, although concentrations in the range of about 2% to about 5% w/v may also be used. Depending on the reagents employed, the reaction, which often can be conducted at room temperature, is typically conducted for 1 hour to 6 hours, although reaction for as long as 24 hours may be desirable in some instances. Skilled artisans will appreciate that concentrations and reaction times and conditions other than those described above (e.g., elevated reaction temperatures) also might be able to be used. In one embodiment, elevated reaction temperatures from about 30, 40, 50, 60, 90, 100, or 120 degrees up to the boiling or decomposition point of the silinizing agent may be employed.


Second particles can be treated with reactive silanes, siloxanes and silazanes to produce hydrophobic effects in a solvent free reaction. In one embodiment the silica and silane are combined in a reaction vessel equipped with a high speed mixing blade. The liquid silane is added to the agitating particles at a ratio of 2 to 1 by weight. In another embodiment, the silica is agitated with a dry air (or inert gas) in a cyclone reactor while liquid silane is introduced as a fine spray. The mixtures resulting from either process are heated to 200° F. for 4 to 8 hours to complete the reaction and drive off residual volatiles.


In some embodiments, silanizing agents are compounds of the formula (I):

R4-nSi—Xn  (I)


where n is an integer from 1-3;

    • each R is independently selected from:
      • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
      • (ii) C1 to 20 alkyl optionally substituted with one or more independently selected substituents selected from fluorine atoms and C6-14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iii) C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents;
      • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy; and
      • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2-12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1-4;
    • each X is an independently selected —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
    • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
    • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.


In some embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms and n is 3.


In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms and n is 3.


In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms and n is 3.


In other embodiments, R has the form —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.


In any of the previously mentioned embodiments of compounds of formula (I), the value of n may be varied such that 1, 2 or 3 independently selected terminal functionalities are present in compounds of formula (I). Thus, in some embodiments, n is 3. In other embodiments, n is 2, and in still other embodiments, n is 1.


In any of the previously mentioned embodiments of compounds of formula (I), all halogen atoms present in any one or more R groups may be fluorine.


In any of the previously mentioned embodiments of compounds of formula (I), X may be independently selected from H, Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In other embodiments, X may be selected from Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In still other embodiments, X may be selected from, —Cl, —NHR3, —N(R3)2 or combinations thereof.


Any coating described herein may be prepared with one, two, three, four or more compounds of formula (I) employed alone or in combination to modify the first or second particles, and/or other components of the coating. For example, the same or different compounds of formula (I) may be employed to modify both the first particles and the binder.


The use of silanizing agents of formula (I) to modify first or second particles, or any of the other components of the coatings, will introduce one or more R3-nXnSi— groups (e.g., R3Si—, R2X1Si—, or RX2Si— groups) where R and X are as defined for a compound of formula (I). The value of n is 0, 1, or 2, due to the displacement of at least one “X” substituent and formation of at least one bond between a particle and the Si atom (the bond between the particle and the silicon atom is indicated by a dash “—” (e.g., R3Si—, R2X1Si—, or RX2Si— groups).


Exemplary reagents that can be employed to prepare first or second particles with hydrophobic and/or oleophobic properties include silanizing agents such as those that are commercially available from Gelest, Inc., Morrisville, Pa. Such silanizing agents include, but are not limited to, the following compounds, which are identified by their chemical name followed by the commercial supplier reference number (e.g., their Gelest reference in parentheses): (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO6645.0); n-octyltriethoxysilane (SIO6715.0); and 3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).


Another group of reagents that can be employed to prepare first or second particles with hydrophobic and/or oleophobic properties include tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane: nonafluorohexyldimethylchlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; 3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)-silane nonafluorohexylmethyldichlorosilane; nonafluorohexyltrichlorosilane; nonafluorohexyltriethoxysilane; and nonafluorohexyltrimethoxysilane. In one embodiment, the coating compositions set forth herein comprise silica second particles treated with nonafluorohexyltrichlorosilane.


Two attributes of silanizing agents that may be considered for the purposes of their reaction with first or second particles and the introduction of hydrophobic or oleophobic moieties are the leaving group (e.g., X groups of compounds of the formula (I)) and the terminal functionality (e.g., R groups of compounds of the formula (I)). A silanizing agent's leaving group(s) can determine the reactivity of the agent with the first or second particle(s) or other components of the coating if applied after a coating has been applied. Where the first or second particles are a silicate (e.g., fumed silica) the leaving group can be displaced to form Si—O—Si bonds. Leaving group effectiveness is ranked in the decreasing order as chloro>methoxy>hydro (H)>ethoxy (measured as trichloro>trimethoxy>trihydro>triethoxy). This ranking of the leaving groups is consistent with their bond dissociation energy. The terminal functionality determines the level of hydrophobicity that results from application of the silane to the surface.


In addition to the silanizing agents recited above, a variety of other silanizing agents can be used to alter the properties of first or second particles and to provide hydrophobic and/or oleophobic properties. In some embodiments, second particles may be treated with an agent selected from dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, polydimethylsiloxane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane. In such embodiments, the second particles may be silica. Silica second particles treated with such agents may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 150 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 250 nm.


In addition to the silanizing agents recited above, which can be used to modify any one or more components of coatings (e.g., first and/or second particles), other agents can be employed including, but not limited to, one or more of: gamma-aminopropyltriethoxysilane, Dynasylan® A (tetraethylorthosilicate), hexamethyldisilazane, and Dynasylan® F 8263 (fluoroalkylsilane), any one or more of which may be used alone or in combination with the silanizing agent recited herein.


5.2 Use of Compounds Other than Silanizing Agents


Other agents also can be used to introduce hydrophobic and/or oleophobic moieties into second particles. The choice of such agents will depend on the functionalities available for forming chemical (covalent) linkages between hydrophobic/oleophobic moieties and the functional groups present on the second particles surface. For example, where second particle surfaces have, or can be modified to have, hydroxyl or amino groups, then acid anhydrides and acid chlorides of alkyl, fluoroalkyl, and perfluoroalkyl compounds may be employed (e.g., the acid chlorides: Cl—C(O)(CH2)4 to 18CH3; Cl—C(O)(CH2)4-10(CF2)2 to 14CF3; Cl—C(O)(CF2)4 to 18CF3 or the anhydrides of those acids).


6.0 Solvents


6.1 Low VOC and VOC-Exempt Organic Solvents


Volatile organic compounds (VOC) means any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. This includes any such organic compound other than the following, “exempt organic solvents” or “VOC-exempt solvents,” which have been determined to have negligible photochemical reactivity: methane; ethane; methylene chloride (dichloromethane); 1,1,1-trichloroethane (methyl chloroform); 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113); trichlorofluoromethane (CFC-11); dichlorodifluoromethane (CFC-12); chlorodifluoromethane (HCFC-22); trifluoromethane (HFC-23); 1,2-dichloro 1,1,2,2-tetrafluoroethane (CFC-114); chloropentafluoroethane (CFC-115); 1,1,1-trifluoro 2,2-dichloroethane (HCFC-123); 1,1,1,2-tetrafluoroethane (HFC-134a); 1,1-dichloro 1-fluoroethane (HCFC-141b); 1-chloro 1,1-difluoroethane (HCFC-142b); 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124); pentafluoroethane (HFC-125); 1,1,2,2-tetrafluoroethane (HFC-134); 1,1,1-trifluoroethane (HFC-143a); 1,1-difluoroethane (HFC-152a); parachlorobenzotrifluoride (PCBTF); cyclic, branched, or linear completely methylated siloxanes; acetone; perchloroethylene (tetrachloroethylene); 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca); 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC-225cb); 1,1,1,2,3,4,4,5,5,5-decafluoropentane (HFC 43-10mee); difluoromethane (HFC-32); ethylfluoride (HFC-161); 1,1,1,3,3,3-hexafluoropropane (HFC-236fa); 1,1,2,2,3-pentafluoropropane (HFC-245ca); 1,1,2,3,3-pentafluoropropane (HFC-245ea); 1,1,1,2,3-pentafluoropropane (HFC-245eb); 1,1,1,3,3-pentafluoropropane (HFC-245fa); 1,1,1,2,3,3-hexafluoropropane (HFC-236ea); 1,1,1,3,3-pentafluorobutane (HFC-365mfc); chlorofluoromethane (HCFC-31); 1 chloro-1-fluoroethane (HCFC-151a); 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a); 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane (C4F9OCH3 or HFE-7100); 2-(difluoromethoxymethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OCH3); 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (C4F9OC2H5 or HFE-7200); 2-(ethoxydifluoromethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OC2H5); methyl acetate, 1,1,1,2,2,3,3-heptafluoro-3-methoxy-propane (n-C3F7OCH3, HFE-7000), 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-(trifluoromethyl) hexane (HFE-7500), 1,1,1,2,3,3,3-heptafluoropropane (HFC 227ea), methyl formate (HCOOCH3), (1) 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethyl-pentane (HFE-7300); propylene carbonate; dimethyl carbonate; and perfluorocarbon compounds which fall into these classes:

    • (i) Cyclic, branched, or linear, completely fluorinated alkanes;
    • (ii) Cyclic, branched, or linear, completely fluorinated ethers with no unsaturations;
    • (iii) Cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations; and
    • (iv) Sulfur containing perfluorocarbons with no unsaturations and with sulfur bonds only to carbon and fluorine.


6.2 The Use of Solvents in Coating Compositions


Where compositions comprise significant amounts of solid components, it may be desirable to dilute the compositions for ease of application, such as with VOC-exempt solvents including, but not limited to, water and/or acetone or other water miscible VOC-exempt solvents in addition to water and any other liquids that are already present in the composition. In some embodiments it may be desirable to add non-VOC exempt solvents. Thus, in some embodiments solvents such as ethanol, isopropanol or n-propanol, alone or in any combination, may be added as diluents. In one group of embodiments, the coating compositions described in this disclosure may be diluted with, and/or comprise: water; water and acetone; water and isopropanol and/or n-propanol; or water, acetone, and isopropanol and/or n-propanol.


Typically water up to 50% or 60% may be used to dilute the coating composition, but other amounts (e.g., 0.1-10, 10-20, 20-30, 30-40, 40-50, or 50-60 percent by weight of the final composition) of water or one or more compatible solvents (e.g., acetone, isopropanol, n-propanol and/or ethanol), alone or in combination may be employed. If possible or desired, the solvents added in addition to water will be VOC-exempt solvents or contain less than 1, 2, 5, 10, 15, 20%, 25%, 30%, 35% or 40% of solvents that are not VOC exempt. Where application of the coatings is to be conducted by rolling or brushing, the composition will typically contain an addition amount of water from about 15% to about 50% by weight of the composition (e.g., the compositions will be diluted with about 15 grams (g) to about 50 g of water per 100 g of the base composition). Similarly, where the compositions are to be applied by spraying, the composition can be diluted by addition of about 40 g to about 60 g of water, or other solvents such as acetone, per 100 g of the compositions as described herein. Mixtures of water and one or more VOC-exempt solvents, such as water miscible VOC-exempt solvents, may be employed for diluting composition to be applied by rolling, brushing and/or spraying.


In addition to reducing the thickness or viscosity of the compositions, solvents other than water provide a number potential benefits including, but not limited to, more rapid drying where the solvents are more volatile than water. The addition of solvents other than water also increases the ease in mixing components to form a uniform dispersion/suspension, and increases the stability of the suspension as measured by the length of time before the components once mixed will separate. Compositions comprising one or more solvents other than water (e.g., acetone, isopropanol, or n-propanol) such as in the range of 1-25% or 5-25% 10-25% or 10-20% (e.g., about 1%, 2%, 5%, 10%, 15%, 20%, or 25%) by weight of the final composition including the solvents, have a greater tendency to stay as suspensions, emulsions or dispersions for a longer period of time than compositions that are otherwise equivalent but contain water in place of the solvent. In some embodiments the compositions will continue to stay as suspensions, emulsions or dispersions for two, three, four, five, six, or ten times longer than compositions that are otherwise equivalent but contain water in place of the solvent.


7. Application of Coatings


Coatings may be applied to substrates, or base coatings previously applied to substrates, by any method known in the art, including but not limited to: brushing, painting, dipping, spin coating, spraying, or electrostatic spraying.


The composition may contain any necessary solvents/liquids, particularly water or a VOC-exempt solvent, to assist in the application process, for example by reducing the viscosity of the composition.


In some embodiments, the one-step SH and/or OP coatings described above may be treated to further modify their properties by the subsequent application of compositions comprising second particles and/or silanizing agents. Such a composition, which may be termed a “top coats,” is applied before the SH and/or OP coating has substantially cured, typically 30-45 minutes after the application of the SH and/or OP coating. When such top coatings are applied, other components of the coating (e.g., the binder or first particles) may also become modified by the agent. Top coat compositions typically comprise a solvent (e.g., a VOC-exempt solvent) and second particles from about 1 to about 20% weight/volume. Alternatively, the top coat may comprise a compound of formula I alone or in combination with silica particles having the size of a second particle. In one embodiment, the top coat comprises acetone as a VOC-exempt solvent, and 1-5% fumed silica (w/v), about 0.25 to about 2% tetrachlorosilane (SiCl4 v/v), and from about 0.25 to about 1.0% (v/v) of a silanizing agent, such as a compound of formula I.


Second particles, applied as part of a top coat composition in a two-step method may be applied either as a suspension in a suitable solvent that is compatible with the binder system (e.g., a low VOC composition, hexane, xylene, and ethanol) or without a solvent using a spray gun (air spray gun) supplied with a suitable supply of compressed air, nitrogen, or other compressed gas (e.g., a Binks Model 2001 or 2001V spray gun air spray gun; Binks, Inc., Glendale Heights, Ill., supplied with air at about 50 psi may be employed). Thus, in some embodiment the top coating composition is applied by spraying or atomizing a liquid second composition onto the SH and/or OP coating. Alternatively, the second particles are applied absent any liquid by spraying the SH and/or OP coating with second particles using a stream of gas.


8. Surface Preparation


To provide good adhesion of coatings to a surface, the surfaces may be cleaned and may also be abraded to create some degree of surface roughness. Surface roughness can be created by methods including: (1) scuffing with an abrasive pad (e.g., Scotch-Brite™ pads), (2) fine sandblasting, (3) tumble blasting with small steel balls, and (4) coarse sandblasting.


The surface roughness of coatings, or the roughness of substrates produced by different methods, can be measured using a Mahr Pocket Surf PS1 (Mahr Federal Inc., Providence, R.I.) and can be expressed using a variety of mathematical expressions including, but not limited to, the arithmetical mean roughness (Ra) and ten-point mean roughness (Rz), which are described in FIG. 33.


Scuffing surfaces, such as plastic, with abrasive materials such as Scotch-Brite™ pads increases the roughness values of plastics to an Ra of about 0.2-0.3 μm to about 0.7-0.9 μm and the Rz from about 1.4 to about 7 μm. Sandblasting plastics with coarse sand produces a very rough surface where the Ra increases substantially into the range of about 5 to about 6 μm and the Rz increases to the range of about 30 to about 37 μm.


The surface of flexible materials, can also be abraded to improve the adherence of the SH and/or OP coatings. Scuffing with abrasive materials (e.g., Scotch-Brite™ pads) can increase the Ra of flexible materials such as rubber from the range of about 0.2 to about 0.35 μm to the range of about 0.4 to about 0.5 μm and the Rz from about 2 μm to the range of about 3 to about 4 μm. Fine sandblasting of flexible materials, such as rubber, increases the Ra into the range from about 0.60 to about 0.75 μm and the Rz from about 2 μm to the range from about 6 to about 7 μm. Tumbling plastics with small steel balls can increase the Ra from about 0.28 to the range of about 0.3 to about 0.4 μm and the Rz from about 2.043 to about 3.28 μm. Coarse sandblasting increases the Ra from 0.3 to the range of about 5 to about 6 μm and the Rz to the range of about 30 to about 35 μm.


9. Use of Hydrophobic and/or Oleophobic Coating


The compositions described herein may be used to apply superhydrophobic and/or oleophobic coatings to on many, if not most surfaces including, but not limited to metals, glasses, ceramics, stone, rubbers, fabrics, and plastics to achieve a variety of desirable results. The coatings may be employed for a variety of uses including preventing or resisting the attachment of water, dirt and/or ice to the surfaces. Due to their properties, the surfaces may be employed in applications including, but not limited to, anti-corrosion, anti-icing, self -cleaning, and liquid/spill containment.


In one embodiment, may be applied to electrical equipment to prevent moisture, water, or ice from forming and causing damage through corrosion or arching. In one particular embodiment, the electrical equipment is high voltage insulators and/or wires exposed to rain, snow or ice. In another embodiment the electrical equipment are transformers, electrical power boxes, electric motor windings, and/or electrical switches.


In another embodiment, the coatings are applied to aircraft (e.g., wings and/or control surfaces) to prevent ice formation.


In another embodiment, the coatings are applied to surfaces of marine equipment exposed to temperatures that will freeze fresh and/or sea water (e.g., rails, ladders, booms, hatches, dock components, and the like) to prevent ice formation.


Coating compositions described herein can be employed in other embodiments, to form spill resistant borders on shelves, counters, work areas or floors.


Another use of the coating compositions described herein is the preparation of self-cleaning sidings, window frames, gutters, satellite dishes, lawn furniture, and other outdoor products.


The coatings described herein can be used for corrosion protection in the automotive industry. In one embodiment, the coatings can be used for corrosion protection on underside of cars, trucks, and other heavy-duty equipment/vehicles.


10. Coating Compositions


Some exemplary ranges for the SH and/or OP coating components are described in the table below. Each component (Binder, First Particles, Second Particles, and Third Particles) may be combined with the other components in any of the ranges set forth in the table below, provided the components do not total to more than 100%.

















Component














Polyurethane
First
Second
Third




Binder
Particles
Particles
Particles




Min-Max
Min-Max
Min-Max
Min-Max



Ranges
%
%
%
%

















1
30-50






2
35-47






4
30-35






5
35-40






6
40-45






7
45-50






8
50-60






1

 1-35





2

0-7





3

0-4





4

4-8





5

10-15





6

15-20





7

20-25





8

25-30





9

30-35





1


7.5-25 




2


 8-22




3


 9-20




4


10-21




5


 8-16




6


 9-18




7


7.5-10 




8


10-15




9


15-20




10


20-25




1



0



2



 0-26



3



0>-3 



4



0.1-3



5



3-6



6



3-9



7



6-9



8



 6-12



9



12-15



10



15-20



11



20-26










Percentages as recited in the preceding table and in the specification are based on the total weight of the compositions. Unless stated otherwise, the composition percentages given for the polyurethane binders represent the weight of the polyurethane binder as provided by their commercial suppliers, which contain from about 34% to 46% polyurethane binder components on a dry weight basis. Dry weight composition ranges for the binder components may determined based upon those ranges. Where, component do not total to 100%, the balance is typical comprised of water and/or other solvents (e.g., VOC-exempt solvents such as acetone or acetone water combinations). In other embodiments, it may be desirable to add non-VOC exempt solvents. In some embodiments solvents that are not VOC-exempt, such a isopropanol or n-propanol, may be added. Thus, in one group of embodiments, the coating compositions described in this disclosure may be diluted with, and/or comprise a solvent that is containing: water; water and acetone; water and isopropanol and/or n-propanol; or water, acetone, and isopropanol and/or n-propanol.


Thirty four SH/OP coating compositions comprising the above-mentioned components are set forth in the following table. As with the table above, all recited percentages are based on the total weight of the composition, with the balance typically being comprised of one or more compatible VOC-exempt solvents such as water. Once prepared, the compositions may be diluted with one or more compatible solvents (e.g., water) to control properties (e.g., viscosity) for application. Typically up to 50% water may be used to dilute the coating composition, but other amounts (e.g., 0.1-10, 10-20, 20-30, 30-40, 40-50, or 50-60 percent by weight of the final composition) of one or more compatible solvents (e.g., acetone, isopropanol, n-propanol and/or ethanol), alone or in combination may be employed. If possible or desired, the solvents added in addition to water will be VOC-exempt or contain less than 1, 2, 5, 10, 15, or 20% of solvents that are not VOC exempt. Where application of the coatings is to be conducted by rolling or brushing, the composition will typically contain an addition amount of water from about 15% to about 50% by weight of the composition (e.g., the compositions will be diluted with about 15 g to about 50 grams of water per 100 g of the base composition). Similarly, where the compositions are to be applied by spraying, the composition can be diluted by addition of about 40 g to about 60 g of water or other solvents or combinations of solvents (such as acetone) per 100 g of the composition as described herein. Mixtures of water and one or more VOC-exempt solvents may be employed for diluting composition to be applied by rolling, brushing and/or spraying.














Component












Polyurethane
First
Second
Third



Binder Polymer
Particles
Particles
Particles



Min-Max
Min-Max
Min-Max
Min-Max


Composition
%
%
%
%














1
32-47
0
 5-15
0


2
32-47
0
10-21
0


3
32-47
1-7
 5-15
0


4
32-47
1-7
10-21
0


5
32-47
1-7
 5-15
0


6
32-47
1-7
10-21
0


7
32-47
0
 5-15
0


8
32-41
0
10-21
0>-10


9
32-41
1-7
 5-15
0>-10


10
32-41
1-7
10-21
0>-10


11
32-41
1-7
 5-15
0>-10


12
32-41
1-7
10-21
0>-10


13
32-41
0
 5-15
10-26


14
32-41
0
10-21
10-26


15
32-41
1-7
 5-15
10-26


16
32-41
1-7
10-21
10-26


17
32-41
1-7
 5-15
10-26


18
32-41
1-7
10-21
10-26


19
30-39
0
 5-15
0


20
30-39
0
10-21
0


21
30-39
1-7
 5-15
0


22
30-39
1-7
10-21
0


23
30-39
1-7
 5-15
0


24
30-39
1-7
10-21
0


25
30-39
0
 5-15
0


26
30-39
0
10-21
0>-10


27
30-39
1-7
 5-15
0>-10


28
30-39
1-7
10-21
0>-10


29
30-39
1-7
 5-15
0>-10


30
30-39
1-7
10-21
0>-10


31
30-39
0
 5-15
10-26


32
30-39
0
10-21
10-26


33
30-39
1-7
 5-15
10-26


34
30-39
1-7
10-21
10-26










A skilled artisan will understand that composition ranges of individual components may be selected so that they do not exceed 100%.


In addition to their hydrophobicity and oleophobicity (e.g., superhydrophobicity and/or superoleophobic) the coatings described in the present disclosure have a variety of other properties such as flexibility without loosing their hydrophobicity or oleophobicity. In some embodiments, the coatings compositions when applied to flexible rubber sheet approximately one eighth of an inch thick, then dried and cured, can be brought to a ninety degree angle around a cylindrical rod greater than 2, 4, 8, 10, 20, 40, 50, 75, 100, or 200 times at room temperature (18 to about 23° C.) without loss of the coating's hydrophobic or oleophobic properties (e.g., remaining hydrophobic or oleophobic or even superhydrophobic and/or superoleophobic).


A skilled artisan will understand that composition ranges of individual components may be selected so that they do not exceed 100%. Where compositions comprise significant amounts of solid components, it may be desirable to dilute the compositions for ease of application, such as with VOC-exempt solvents in addition to any other liquids that are already present in the composition.


Certain embodiments are described below.

  • 1. A coating composition for the application/preparation of hydrophobic (e.g., superhydrophobic) and/or oleophobic (e.g., superoleophobic) coatings on surfaces comprising:
    • a polyurethane dispersion or suspension comprising one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane;
    • about 5 to about 30% by weight of second particles comprising one or more siloxanes, and/or one or more alkyl, haloalkyl, fluoroalkyl, or perfluoroalkyl containing moieties;
    • said composition optionally comprising up to about 26% by weight of third particles;


      wherein said coating composition optionally comprises less than about 0.6, 0.5, 0.4, or 0.3 pounds per gallon of volatile non-exempt organic compounds; and


      wherein the superhydrophobic coating resulting from the application of said composition to a surface retains its superhydrophobicity after 150-1,400 Taber abrasion cycles at a 1000 g load for coating thickness range of 25-300 microns, and/or 100-2,500 Taber abrasion cycles at a 250 g load, using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at 3 degrees.
  • 2. The composition of any of embodiment 1, wherein said polyurethane suspension or dispersion does not comprise third particles.
  • 3. The composition of embodiment 2, wherein said composition does not comprise first particles and the superhydrophobic coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 150-800 Taber abrasion cycles at a 1,000 g load, for a thickness range of 25-75 microns, and/or 200-1,400 Taber abrasion cycles at a 250 g load for a thickness range of 25-75 microns, on a planar surface using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 4. The composition of embodiment 1, wherein said composition further comprises first particles.
  • 5. The composition of embodiment 4, wherein the composition comprises 5-20% by weight of first particles.
  • 6. The composition of embodiment 5, wherein the first particles, are selected from oxides of metalloids, metal oxides, one or more thermoplastics, one or more thermoset plastics, one or more metals, one or more glasses, and/or one or more hollow spheres.
  • 7. The composition of any of embodiments 4 to 6, wherein the superhydrophobic coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 100-600 Taber abrasion cycles at a 250 g load for a thickness range of 40-85 micron using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 8. The composition of any of embodiment 1, wherein said polyurethane suspension or dispersion comprises third particles.
  • 9. The composition of embodiment 8, wherein the composition comprises 5-20% by weight of third particles.
  • 10. The composition of any of embodiments 8 to 9, wherein the third particles, are selected from particles comprising one or more inorganic compounds, one or more oxides of metalloids or metal oxides.
  • 11. The composition of any of embodiments 8 to 10, wherein said composition does not comprise first particles and the superhydrophobic coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after about 300-350 Taber abrasion cycles at a 1000 g load, for a thickness range of 25-75 microns and/or 400-800 Taber abrasion cycles at a 250 g load, for a thickness range of 25-80 microns on a planar surface using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 12. The composition of any of embodiments 8-10, further comprising first particles.
  • 13. The composition of embodiment 12, wherein the composition comprises 5-20% by weight of first particles.
  • 14. The composition of any of embodiments 12 to 13, wherein the first particles, are selected from oxides of metalloids, metal oxides, one or more thermoplastics, one or more thermoset plastics, one or more metals, one or more glasses, and/or one or more hollow spheres.
  • 15. The composition of any of embodiments 12 to 14, wherein the superhydrophobic coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 200-1,400 Taber abrasion cycles at a 1000 g load, for a thickness range of 75-300 microns and/or 400-2,500 Taber abrasion cycles at a 250 load, for a thickness range of 35-90 microns on a planar surface using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 16. The composition of any of embodiments 1 to 16, wherein said one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane are a BAYHYDROL® and/or a POLANE®.
  • 17. The composition of any of embodiments 1 to 15, wherein the composition comprises a mixture of polyacrylic urethanes and polycarbonate urethanes.
  • 18. The composition of embodiment 17, wherein said aqueous polyurethane dispersion or suspension comprises a mixture of at least two of: a polyester urethane, an aliphatic polyester urethane, a polycarbonate urethane a polyacrylic urethane, and an aliphatic polycarbonate urethane
  • 19. The composition of embodiment 18, wherein said mixture comprises a BAYHYDROL® and a POLANE®.
  • 20. The composition of embodiment 19, wherein said mixture comprises a ratio of BAYHYDROL® to POLANE® from 90:10 to 50:50.
  • 21. The composition of embodiments 18 to 20, wherein said BAYHYDROL® is BAYHYDROL® 124, 122, 110 or 140AQ.
  • 22. The composition of any of embodiments 18-22 wherein said POLANE® is POLANE® 700T.
  • 23. The composition of any of embodiments 1 to 22, wherein said composition further comprises second particle have a size of about 2 nm to about 120 nm.
  • 24. The composition of any of embodiments 1 to 22, wherein said second particle have a size of about 1 nm to up to about 25 microns
  • 25. The composition of embodiment 24, wherein said particles are silica particles.
  • 26. The composition of any of embodiments 1 to 24, wherein said siloxane is polydimethylsiloxane.
  • 27. The composition of any of embodiments 1 to 25, wherein said one or more alkyl, haloalkyl, fluoroalkyl, or perfluoroalkyl containing moieties are one or more alkylsilane, haloalkylsilane, fluoroalkylsilane or perfluoroalkylsilane groups.
  • 28. The composition of embodiment 27, wherein said alkyl, haloalkyl, fluoroalkyl, fluoroalkylsilane and/or perfluoroalkylsilane groups result from the reaction of silica or metal oxide particles with one or more silanes selected from the group consisting of: a compound of formula I, (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5): (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO6645.0); n-octyltriethoxysilane (SIO6715.0): and 3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).
  • 29. The composition of embodiment 27, wherein said alkylsilane and/or fluoroalkylsilane result from the reaction of silica or metal oxide particles with one or more silanes selected from the group consisting of; tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; nonafluorohexyldimethylchlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; 3,3,4,4,5,5,6,6,6-nonalluorohexyldimethyl(dimethylamino)-silane; nonafluorohexylmethyldichlorosilane; nonafluorohexyltrichlorosilane; nonafluorohexyltriethoxysilane; and nonafluorohexyltrimethoxysilane.
  • 30. The composition of any of the preceding embodiments wherein said second particles are present from about 20 to about 30% by weight.
  • 31. The composition of any of embodiments 1-30, wherein said second particles are present an amount from about 5 to about 20% by weight.
  • 32. The composition of embodiment 31, wherein said second particles are present in an amount from about 10 to about 12% by weight.
  • 33. The composition of any of embodiments 1 to 32, wherein said coating is both superhydrophobic and oleophobic.
  • 34. The composition of any of embodiments 4 to 7, 14 to 33, comprising two or more, or three or more, types of first particles having different compositions.


35. The composition of any of embodiments 4 to 7, 14 to 34, comprising a thermoplastic or thermoset plastic first particle.


36. The composition of embodiment 35, wherein said thermoplastic or thermoset plastic first particle comprise about 5 to about 10% of the composition by weight.


37. The composition any of embodiments 4 to 7, 14 to 34, comprising glass bead or hollow glass sphere first particles.

  • 38. The composition of embodiment 37, wherein said glass bead or hollow glass sphere first particles comprise about 5 to about 15% of the composition by weight.
  • 39. The composition of embodiment 38, wherein said glass bead or hollow glass sphere first particles comprise about 6 to about 8% of the composition by weight.
  • 40. The composition of any of the preceding embodiments, that when dried and cured produces a surface with an arithmetic mean roughness (Ra) of less than about 30 microns
  • 41. The composition of any of the preceding embodiments, that when dried and cured produces a surface with an arithmetic mean roughness (Ra) of less than about 20 microns
  • 42. The composition of any of the preceding embodiments, that when dried and cured produces a surface with an arithmetic mean roughness (Ra) of less than about 16 microns
  • 43. The composition of embodiment 40, wherein said arithmetic mean roughness (Ra) is from about 1 to about 20 microns.
  • 44. The composition of any of embodiments 1-43, comprising from about 30% to about 50% polyurethanes by weight.
  • 45. The composition of any of embodiments 1-44, wherein said polyurethane dispersion or suspension comprise at least one polyester urethane, polyacrylic urethane, and/or polycarbonate urethane composition that when dried and cured produces a coating that has: (a) a modulus at 100% elongation of 1300 psi or greater, and/or (b) an elongation percent at break of 150% or greater.
  • 46. The composition of any of embodiments 1-45, further comprising 0.1-10, 10-20, 20-30, 30-40, 40-50 or 50-60 g of one or more compatible solvents per 100 g of coating composition.
  • 47. The composition of embodiment 46, wherein said one or more compatible solvents are VOC-exempt solvents such as a water, acetone or a combination of water and acetone, and wherein said coating composition comprises less than about 0.5, 0.4, 0.3, or 0.2 pounds per gallon of volatile non-exempt organic compounds.
  • 48. The composition according to embodiment 47, wherein said one or more solvents that are not VOC-exempt solvents (non-VOC-exempt solvents), or solvents compositions that comprise solvents that are not VOC-exempt solvents such as: ethanol; isopropanol or n-propanol; water and isopropanol and/or n-propanol; acetone and isopropanol and/or n-propanol; or water, acetone, and isopropanol and/or n-propanol.
  • 49. A hydrophobic (superhydrophobic) and/or oleophobic (superoleophobic) coating formed by the application of the composition of any embodiments 1-48.
  • 50. A method of coating at least part of a surface comprising the application of a composition of any of embodiments 1-48.
  • 51. The method of embodiment 50, wherein said method comprises dipping, spraying, rolling, or spin coating said composition onto said surface.
  • 52. The method of any of embodiments 50 or 51, further comprising drying the coating composition at an elevated temperature (e.g., at about 120, 140, 160, 180, 200, 220, or 240 degrees Fahrenheit)
  • 53. The method of any of embodiments 50-52, further comprising applying a top-coat to said coating.
  • 54. The method of embodiment 53, wherein said top-coat comprises second particles (e.g., fumed silica) treated to be hydrophobic (e.g., particles treated with a silanizing agent such as those described in section 5.0 including, but not limited to, silanizing agents of formula I) or wherein said top-coat comprises a silanizing agent (e.g., a silanizing agent such as those described in section 5.0 including, but not limited to, silanizing agents of formula I).
  • 55. A coating prepared by the method of any of embodiments 50-54.
  • 56 The coating of embodiments 49 or 55, wherein in said coating further comprises a top-coat of second particles treated to be hydrophobic (e.g., treated with a silanizing agent such as those described in section 5.0 including, but not limited to, silanizing agents of formula I) or the coating further comprising a top-coat of a hydrophobic silane group (e.g., a surface treated with silanizing agent such as those described in section 5.0 including, but not limited to, silanizing agents of formula I).
  • 57. The coating of any of embodiments 49 and 55-56, that when dried and cured produces a surface with an arithmetic mean roughness (Ra) in a range selected from: about 0.2 μm to about 20 μm; about 0.3 μm to about 18 μm; about 0.2 μm to about 8 μm; about 8 μm to about 20 μm; or about 0.5 μm to about 15 μm; or a roughness that is less than about 30 microns, 20 microns, 16 microns or 10 microns.
  • 58. The coating of any of embodiments 49 and 55-57, wherein said polyurethane dispersion or suspension comprise at least one polyester urethane, polyacrylic urethane, and/or polycarbonate urethane composition that when dried and cured produces a coating that has: (a) a modulus at 100% elongation of 1300 psi or greater, and/or (b) an elongation percent at break of 150% or greater.
  • 59. The coating of any of embodiments 49 and 55-58, that retains its hydrophobicity (superhydrophobicity) and/or its oleophobicity (superoleophobicity) after a flexible substrate (about ⅛ inch in thickness) coated with said coating is bent greater than 100 times a right angle around a cylinder with a diameter of ¼ inch.
  • 60. The coating composition of any of embodiments 49 and 55-59, wherein said second particles are dispersed throughout the coating thickness, and wherein said coating retains its hydrophobicity (superhydrophobicity) and/or its oleophobicity (superoleophobicity) after abrasion.
  • 61. The coating of any of embodiments 49 and 55-60, that retains its hydrophobicity (superhydrophobicity) and/or its oleophobicity (superoleophobicity) after being exposed to rain or a shower for more than 1 hour.


EXAMPLES

For the purposes of this disclosure a hydrophobic coating is one that results in a water droplet forming a surface contact angle exceeding about 90° and less than about 180° at room temperature (about 18 to about 23° C.). Similarly, for the purposes of this disclosure a superhydrophobic (SH) coating is one that results in a water droplet forming a surface contact angle exceeding about 150° but less than the theoretical maximum contact angle of about 180° at room temperature. The term hydrophobic includes superhydrophobic, and may be limited to superhydrophobic, unless stated otherwise.


Superhydrophobicity may be assessed by measurement of the contact angle of water droplets with the surface. Where contact angles are not provided or determined directly, the superhydrophobicity of a coating, and particularly the loss of superhydrophobicity after abrasion testing, may be determined by placing water droplets on a coated surface inclined at 3°. Where more than half of the water droplets remain on the surface when it is inclined to 3°, the coating is deemed to have lost its superhydrophobicity.


For the purposes of this disclosure an oleophobic (OP) coating is one that results in a light mineral oil droplet forming a surface contact angle exceeding about 90° and less than about 180° at room temperature (about 18 to about 23° C.). Similarly, for the purposes of this disclosure a superoleophobic coating is one that results in a water droplet forming a surface contact angle exceeding about 150° but less than the theoretical maximum contact angle of about 180° at room temperature. The term oleophobic includes superoleophobic, and may be limited to superoleophobic, unless stated otherwise.


Example 1
Effect of Bayhydrol® Type Binders in One-Step Coating and its Performance in Two Systems

Binder Compositions


Coating compositions comprising two water-based (waterborne) polyurethanes as binders; a clear BAYHYDROL® (e.g., BAYHYDROL® 110, 122, 124, A145, or 140AQ) and a POLANE® (e.g., POLANE® 700T) were prepared. For each composition in System 1 a BAYHYDROL® and a POLANE® were combined in various ratios having from 40% to 70% BAYHYDROL® and from 60% to 30% POLANE® 700T on a weight to weight basis (w/w), based on the composition as provided by the commercial suppliers (e.g., 4::6 to 7::3 ratios of those components). The binder compositions contained third particles (pigment) where it is indicated that they were “white”, and may also contain third particle functioning as extenders. The combined system can be further diluted with up to 50% water (by weight). The combined BAYHYDROL®-POLANE® binder system was used in two different modes discussed below.


Example 1A
One-Step Compositions

Fumed silica, or other second particles, pretreated with siloxane, were added to the above—described binder composition. Second particles were added in amounts ranging from about 5% to about 20% of the composition by weight. Particle size, surface area, and treatments of various fumed silica particles used are given in Table 1.


The composition of this mode may have water additions of up to 50% by weight based upon the weight of the binder composition as described above. Once all components were added to the binder (e.g., second added), the complete compositions were mixed well using steel balls or a low shear mixer. The mixed composition was applied to various substrates using an air spray gun or other means as indicated (e.g., roller) effective to apply a coating to at least a portion of a surface. Once a coating was applied, the surfaces were cured at ambient conditions (65-85° F.) in 12-16 h. The cured coatings were superhydrophobic with water contact angles over 150°. The compositions containing all components were essentially VOC-free as no solvents that were not VOC-exempt were used (see Details in the Description). In a variation of the above-described one-step method, a top coating, as described herein below Example 1B, can be applied over the one-step coating to enhance or alter its properties.


Example 1B
One-Step Compositions with Top Coat Treatment

To the compositions of Example 1A one or more of the first particles (filler particles) from the list in Table 2 are added. First particles can comprise from up to 20% (e.g., 5-20%) of the composition by weight.


In some embodiments, a top coat can be applied to the SH or OP coating described herein, such as the compositions of Example 1A or 1B, to further modify the properties of the coatings. In one embodiment, the top coat comprises acetone, as a VOC-exempt solvent and 1-5% fumed silica (w/v), optionally about 0.25 to about 2% tetrachlorosilane (SiCl4 v/v), and from about 0.25 to about 1.0% (v/v) of a silane such as a compound of formula I or one of the specific silanizing agent s recited in Section 5.1. In addition to the foregoing components, about 0.1 to about 1% v/v water can be added. In another embodiment, the top coat may comprises acetone, as a VOC-exempt solvent and 1-5% of second particles (e.g.) w/v in g/ml) and may optionally contain about 0.25 to about 2% tetrachlorosilane (SiCl4 v/v), and from about 0.25 to about 1.0% (v/v) of a silane such as a compound of formula I or one of the specific silanizing agents recited in Section 5.1.


When a top coat is applied it is typically applied by with air spray gun to base coats are close to completely (100%) dry. The typical drying time for SH and/or OP coats can vary from 45-90 min, at which time they are ready for top coating. In another embodiment, surfaces may be coated a composition described in Example 1A and 1B that has been modified to omit second particles, and then given a top coat. In such a case the coating composition serves as a base coat (similar to a primer) to which a top coat can be applied to obtain the SH and OP performance.


Examples for Systems 1 and 2

Coating compositions comprising a BAYHYDROL® (124, 122, 110, A145, or 140AQ, Bayer Material Science) were mixed with POLANE® 700T (product F63W522, white and applied to metal plates. The durability of the SH and/or OP coatings (resistance of the loss of SH and/or OP properties to abrasion) formed from the compositions were measured. In each case, the BAYHYDROL® and 700T, as prepared by the manufacturer, were mixed in a ratio of 60:40 by volume. To each 100-g mixture was added 7 g of Corvel black as a first particle, 11-g TS720 fumed silica, and 50-g water. The mixtures were agitated using low shear mixer to distribute the TS720 uniformly in the composition. In each case, the solution was sprayed on aluminum plates to approximately the same thickness. After spraying, the plates were air-dried for 30 min followed by curing for 30 min in an oven at 200° F. On testing, the cured plates all displayed superhydrophobicity and were tested for loss of that property using a Taber tester with a 250-g load (CS10 wheel) by assessing the ability of water droplets applied to the abraded surface to roll off when it was inclined at 3 degrees. The failure of more than half of the droplets to roll off the surface was taken as an indication of a loss of superhydrophobicity. The Taber data from the coatings formed from the various BAYHYDROL® containing compositions are summarized in Table 3. That table also includes the key physical, chemical, and mechanical properties of various BAYHYDROL®s. Taber data for various BAYHYDROL® containing compositions is also compared in FIG. 1.


Compositions comprising POLANE 700T and BAYHYDROL® 140AQ gave the most abrasion resistant SH and/or OP coatings with a 250 g load (two coatings were also assessed with a 1,000 g load). BAYHYDROL® 140AQ while similar to other BAYHYDROLs listed in Table 3 has several distinguishing characteristics including its cosolvent (Toluene which is present in small amounts, 1%), its high tensile elongation, low modulus of 800 psi, and low hardness (F vs. H and 2H for others). BAYHYDROL® 140AQ is polyester-based, and comprises sodium sulfinate functionality. While not wishing to be bound by any theory, it is believed that the sodium sulfinate can serve as a surfactant and aid in distributing fumed silica particles (TS720) more uniformly throughout the entire coating thickness. Based on that hypothesis, one-step coating based on BAYHYDROL®s 124, 122, 110, and A145, which have second particles localized near the surface are shown diagrammatically in FIG. 2(a). In contrast, one-step coatings formed with BAYHYDROL® 140AQ, which are believed to have the second particles distributed throughout the coating, are diagramed in FIG. 2(b). The schematic in FIG. 2 shows one interpretation for the loss of some or all of the superhydrophobicity in coatings such as those depicted in FIG. 2(a). Those coatings would loose superhydrophobicity once the top of the coating bearing second particles is worn away. The schematic in FIG. 2(b) shows one interpretation for the continued superhydrophobicity of coatings with second particles dispersed throughout the coating thickness even as the coating is abraded, until it reaches bare metal. Coatings shown in FIG. 2(b) show thickness dependence wear and their ability to withstand increasing numbers of Taber abrasion cycles increases with increasing coating thickness as is shown, for example, in Example 2.









TABLE 3





Properties of Various BAYHYDROL ®s used in Developing One-Step Superhydrophobic Coatings
























No. of





Water
Tensile


Bayhydrol
Taber

Viscosity

Cosolvent
Cosolvent
Cosolvent
Strength


Type
Cycles
ph
(mPa/s)
Solids (%)
Type
(%)
(wt %)
(psi)





124
50
7.0-9.0
50-400
35+_2
NM2P
12
53
5000


122
75
7.0-9.0
50-400
35+_2
NM2P
15
50
5000


110
100
7.5-9.5
50-400
35+_2
NM2P
15
50
5900


A145
125
7.5-8.5
400-1500
43-47
Naphtha 100
4
45.6







2-butoxyethanol
4


140AQ
375
6.0-8.0
100-700 
40+_2
Toluene
1
59
5300


















Modulus
Tabers







at
1000

Swell



Elongation
100%
Cycles

after 24 h


Bayhydrol
at Break
Elongation
@ 1000 g

(%)
Urethane
















Type
(%)
(psi)
(mg loss)
Hardness
Water
IPA
MEK
Xylene
Type





124
275
1300

H
5
15
50
50
Polycabonate


122
150
4100
28
2H
5
20
45
30
Polycabonate


110
180
4200
12
2H
10
25
35
20
Polyester


A145








Polyacrylic


140AQ
450
800

F
10
20
105
50
Polyester





Abbreviations and notations:


NM2P—N-methyl-2-pyrolidone


Hardness on Pencil Lead scale as reported by manufacturer (pencil lead hardness) F—Firm; H hard, 2H






Example 2
Coating Thickness Effect Using Bayhydrol® 140AQ

A 60:40 mixture of BAYHYDROL® 140AQ and Plane 700T was made on a volume basis using compositions as distributed by the manufacturer. To 100 g of the mixture was added 7-g Tiger Drylac clear matte powder (Series 49), 11-g of CAB-O-SIL® TS720, and 50-g water. The mixture was prepared by low shear mixing and applied by spraying with an air gun with (˜40 psi pressure) on to steel (4 by 4 inch (in.) plates of 0.062-in. thickness). Steel plates were used for ease of measuring the coating thickness using a magnetic-based sensor (Model 95520 Digital Gauge, Cen-Tech, Taiwan). A total of seven plates were sprayed and tested for coating thickness, surface roughness, and resistance to wear (i.e., Taber cycles 250-g load). Data on the plates are summarized in Table 4, which shows the coating thickness varied from 10-68 μm (0.4-2.7 mils) and the surface roughness increased with increasing thickness (FIG. 3) from Ra=2.59 μm to Ra=12.56 μm. The Taber cycles increased approximately linearly with thickness (see FIG. 4) from 40 to 800, an increase of 20× from the thinnest to the thickest coating. The line in FIG. 4 can be used as a guide to selecting the coating thickness for a defined Taber durability. The Taber durability also appears to increase with increasing surface roughness as indicated in FIG. 5.









TABLE 4







Taber and Surface Roughness Data on Steel Plates Coated with


One-Step System using BAYHYDROL ® 140AQ












Coating

Surface
Coating



Thickness
Tabers
Roughness,
Thickness



(mils)
(Cycles)
Ra (μm)
(μm)















0.4
40
2.59
10.16



0.7
100
4.69
17.78



0.9
195
4.55
22.86



1.1
240
8.89
27.94



1.9
600
12.40
48.26



2.2
750
12.32
55.88



2.7
800
12.56
68.58









Example 3
Variation on Second Particle Content in a One-Step Coatings Prepared with Bayhydrol® 140AQ/Clear 700T Binder and CAB-O-SIL® TS720 Ranging from 11-20%

A 60:40 mixture of BAYHYDROL® 140AQ and clear POLANE® 700T (F63V521) by volume was prepared using those products as distributed by their manufacturers. To 40 g amounts of each mixture was added 4.4, 6.0, and 8.0 g (i.e., 11%, 15%, and 20%) of CAB-O-SIL® TS720. Also added to each mixture was 20-g (50%) water. All percentages are calculated and based on 100 g of 60:40 mixture. The compositions were each mixed using steel balls or a low impact mixer.


Each mixture was sprayed (using an air gun) on 4×4-in square steel plates at five different thicknesses. All of the plates were air-dried for 30 min prior to drying in an oven at 200° F. for 30-40 min. Each plate was subjected to thickness measurement, surface roughness measurement (Ra and Rz values), and wear resistance using a Taber abrader (Taber abrasion). All Taber abrasion measurements were obtained using 250-g load and CS10 wheels. Data are summarized in Table 5 and plotted in FIGS. 6-8. FIG. 6 and shows the plot of surface roughness, Ra and Rz values respectively. FIG. 8 shows Taber data as a function of coating thickness.









TABLE 5







Summary of Data for One-Step Coating on Steel Plates made with


BAYHYDROL ® 140AQ and clear 700T: Fumed Silica TS720


Varied from 11-20%















Thick-
Number of


Coating



Plate
ness
Tabers
Ra
Rz
Thickness


Coating
#
(mils)
250-g Load
(μm)
(μm)
(μm)
















40.0 g Bay
1.1
0.93
300
3.36
23
23.62


140/700T Clear
1.2
1.47
650
7.02
36.8
37.34


(60/40), 4.4 g
1.3
1.46
300
5.52
33.7
37.08


TS720, 20.0 g
1.4
2.29
1500
8.21
41.4
58.17


Water
1.5
2.2
750
10.35
55.3
55.88


40.0 g Bay
2.1
1.01
150
5.79
31.7
25.65


140/700T Clear
2.2
1.34
450
7.44
43.2
34.04


(60/40), 6.0 g
2.3
1.62
500
9.61
55.2
41.15


TS720, 20.0 g
2.4
2.16
800
9.99
56.4
54.86


Water
2.5
3.02
350
13.46
63.8
76.71


40.0 g Bay
3.1
0.99
50
5.28
30.1
25.15


140/700T Clear
3.2
1.41

5.88
31.6
35.81


(60/40), 8.0 g
3.3
2.26
300
9.82
54.4
57.40


TS720, 20.0 g
3.4
2.12
300
10.11
59.8
53.85


Water
3.5
2.14
200
13.43
57.5
54.36









Example 4
One-Step Coating with Bayhydrol®/Polane® Binder with Varying Amounts of Second Particles and Thermoplastic First Particles (Tiger Drylac)

The mixtures in Example 3 were duplicated with the exception that in all cases a 7% addition of a thermoplastic first particle powder (Tiger Drylac) was added. Mixtures with each level of CAB-O-SIL® TS720 and 7% of first particle were sprayed, using an air spray gun, on five 4×4-in. square plates to achieve five different thicknesses on different plates. Each plate was subjected to thickness, surface roughness, and Taber abrasion testing, which is summarized in Table 6, and plotted in FIGS. 9-11.









TABLE 6







Summary of Data for One-Step Coating on Steel Plates made with


BAYHYDROL ® 140AQ and Clear 700T Fumed Silica TS720


was Varied from 11-20% and 7% of Tiger Drylac was added as a First


particle
















Number of







Thick-
Tabers


Coating



Plate
ness
250-g
Ra
Rz
Thickness


Coating
#
(mils)
Load
(μm)
(μm)
(μm)
















40.0 g Bay
4.1
1.66
100
3.71
24.1
42.16


140/700T Clear
4.2
1.89

5.61
33.7
48.01


(60/40), 4.4 g
4.3
2.18
300
6.35
39.2
55.37


TS720, 2.8 Tiger
4.4
3.08

10.97
61.7
78.23


Drylac, 20.0 g
4.5
3.28
600
17.64
88
83.31


40.0 g Bay
5.1
1.31
500
9.47
53.2
33.27


140/700T Clear
5.2
1.92
900
12.54
75.8
48.77


(60/40), 6.0 g
5.3
2.3

15.26
69.9
58.42


TS720, 2.8 Tiger
5.4
3.38

17.26
90.3
85.85


Drylac, 20.0 g
5.5
3.48

10.85
54.4
88.39


40.0 g Bay
6.1
0.84
150
7.49
40.3
21.34


140/700T Clear
6.2
1.13
300
8.09
46.4
28.70


(60/40), 8.0 g
6.3
1.63
700
10.04
56.7
41.40


TS720, 2.8 Tiger
6.4
2.06
1000
10.50
58.9
52.32


Drylac, 20.0 g
6.5
2.98

19.52
85.6
75.69





“Bay” = BAYHYDROL ®


20.0 g is 20 grams of water






Example 5
One-Step Coating with Binders Prepared with Bayhydrol® 140AQ and Polane® 700T White, and Three Levels of TS720 Ranging from 1.1-20%

The mixtures in Example 3 were duplicated with the exception that in all cases the clear POLANE® 700T was replaced with white POLANE® 700T (product F63W522). White 700T has about 15% TiO2 pigment first particles. Data for this study on 4×4-in. steel plates are summarized in Table 7 and plotted in FIGS. 12-14.


A separation of surface roughness values is noted for compositions with white TS720 as opposed to clear TS720, which is used in Example 3 (see e.g., the Taber Abrader data, FIG. 13). As noted in Table 7, the coating for 20% TS720 and 8 gm of PUD mixture cracked for all thicknesses; therefore, no Taber data were obtained. Data for TS720 of 11% show a very, nice linear increase with increasing coating thickness. There were only two Taber data points for TS720 of 15%. One was higher and the other was much lower than TS720 of 11%.









TABLE 7







Summary of Data for One-Step Coating on Steel Plates made with


BAYHYDROL ® 140AQ and White 700T. Fumed Silica TS720


Varied from 11-
















Number


Coating




Thick-
of Tabers


Thick-




ness
250-g
Ra
Rz
ness


Coating
Plate #
(mils)
Load
(μm)
(μm)
(μm)
















40.0 g Bay
7.1
0.88
400
5.43
37.9
22.35


140/700T White
7.2
1.56
850
9.06
50.2
39.62


(60/40), 4.4 g
7.3
1.89
1200
9.37
53.9
48.01


TS720, 20.0 g
7.4
3.06
1200
14.02
77.6
77.72


Water
7.5
3.16
1900
11.60
60
80.26


40.0 g Bay
8.1
0.9

1.00
7.42
22.86


140/700T White
8.2
1.1

1.77
13.9
27.94


(60/40), 6.0 g
8.3
1.81

1.96
15.6
45.97


TS720, 20.0 g
8.4
2.03
100
2.36
19.1
51.56


Water
8.5
2.16
1600
2.71
21.7
54.86


40.0 g Bay
9.1
0.74
Coating
4.08
27.4
18.80


140/700T White


cracked


(60/40), 8.0 g
9.2
1.32
Coating
4.50
30.2
33.53


TS720, 20.0 g


cracked


Water
9.3
1.68
Coating
3.18
24
42.67





cracked



9.4
2.04
Coating
5.65
35.4
51.82





cracked



9.5
2.4
Coating
6.40
40.1
60.96





cracked









Example 6
One-Step Coating with Binders of Bayhydrol® 140AQ and Polane® 700T and Three Levels of Cab-O-Sil® TS720 Ranging from 11-20%, and a 7% with Drylac First Particle Additions

The mixtures in Example 5 were duplicated with the exception that in all cases a 7% addition of a thermoplastic first particle powder (Tiger Drylac) was added. Data for steel plates coated with these mixtures is given in Table 8 and plotted in FIGS. 15-17. Surface roughness values Ra and Rz show very similar trends (see FIGS. 15 and 16). The Ra and Rz values increase linearly with increasing coating thickness for all CAB-O-SIL® TS720 levels, Higher roughness values were noted for CAB-O-SIL® TS720 of 11 and 15%. The lowest values were noted for 20%. Abrasion resistance, measured as Taber abrasion cycles, shows an essentially linear increase with increasing thickness (see FIG. 17). Higher values were noted for CAB-O-SIL® TS720 of 11 and 15% as compared to TS720 of 20%.









TABLE 8







Summary of Data for One-Step Coating on Steel Plates made with


BAYHYDROL ® 140AQ and White 700. Fumed Silica TS720


Varied from 11-20%, and 7% of Tiger Drylac was added as First particle.
















Number of







Thick-
Tabers


Coating



Plate
ness
250-g
Ra
Rz
Thickness


Coating
#
(mils)
Load
(μm)
(μm)
(μm)
















40.0 g Bay
10.1
1.28
400
6.94
36.8
32.51


140/700T White
10.2
1.84
1000
8.53
51.8
46.74


(60/40), 4.4 g
10.3
2

8.90
49.4
50.80


TS720, 2.8 Tiger
10.4
2.36
600
12.70
62.8
59.94


Drylac, 20.0 g
10.5
2.76
900
12.97
63.1
70.10


40.0 g Bay
11.1
1.05
250
5.37
32.9
26.67


140/700T White
11.2
1.24

6.69
42.3
31.50


(60/40), 6.0 g
11.3
1.68
500
7.58
41.2
42.67


TS720, 2.8 Tiger
11.4
2.05
900
11.71
59.3
52.07


Drylac, 20.0 g
11.5
2.5
900
11.90
58.1
63.50


40.0 g Bay
12.1
0.92
100
4.16
24.9
23.37


140/700T White
12.2
1.19
100
4.20
25.7
30.23


(60/40), 8.0 g
12.3
1.54
400
4.32
29.3
39.12


TS720, 2.8 Tiger
12.4
1.738

3.54
23.2
44.15


Drylac, 20.0 g
12.5
2.28
600
4.85
30.6
57.91









Example 7
Coatings with Varying Ts720 Second Particle Content (from 5-9%) without First Particle Additions

Taber abrasion durability and surface roughness data were obtained for two sets of steel plates, coated with two compositions differing only in the binder component of the coating. One composition was prepared with a binder of 60:40 BAYHYDROL® 140AQ and clear POLANE® 700T (product F63V521) (v/v) and the other coated with a binder of 60:40 BAYHYDROL®140AQ and white POLANE® 700T (product F63W522) (v/v). With both binders, CAB-O-SIL® TS720 content was varied from 5 to 9% (w/w based on the weight of the binder composition). Three different thicknesses of each TS720-containing composition were spray-coated on steel plates and processed identically as in the preceding examples. After curing, all plates were subjected to measurement of coating thickness, surface roughness, and testing of resistance of the coatings' resistance to the loss of their hydroph bicioleophobic properties using a Taber abrader (250 g load and CS10 wheels). Data for clear 700T plates is summarized in Table 9 and for white 700T in Table 10.









TABLE 9







Summary of Data for One-Step Coating on Steel Plates made with


BAYHYDROL ® 140AQ and Clear 700T. Fumed Silica TS720


Varied from 5-9% (Without First Particle Additions)
















Number







Thick-
of Tabers


Coating



Plate
ness
250-g
Ra
Rz
Thickness


Coating
#
(mils)
Load
(μm)
(μm)
(μm)
















40.0 g Bay
1.1
0.82
10
1.66
10.73
20.83


140/700T Clear
1.2
1.16
10
3.88
22.13
29.46


(60/40), 2.0 g
1.3
1.5
10
3.16
16.47
38.10


TS720, 3 g Water


40.0 g Bay
2.1
0.62
10
1.67
12.93
15.75


140/700T Clear
2.2
1.4
30
1.78
12.73
35.56


(60/40), 2.8 g
2.3
1.63
30
1.61
14.07
41.40


TS720, 4 g Water


40.0 g Bay
3.1
0.72
120
2.37
16.53
18.29


140/700T Clear
3.2
1.34
130
2.50
17.03
34.04


(60/40), 3.6 g
3.3
1.69
160
2.93
19.68
42.93


TS720, 6 g Water
















TABLE 10







Data for One-Step Coatings on Steel Plates Made with BAYHYDROL ®


140AQ and White 700T Binder and Cab-O-Sil TS720 from 5%-9%
















Number







Thick-
of Tabers


Coating



Plate
ness
250-g
Ra
Rz
Thickness


Coating
#
(mils)
Load
(μm)
(μm)
(μm)
















40.0 g Bay
4.1
0.55
10
3.16
18.37
13.97


140/700T White
4.2
0.88
15
6.76
38.60
22.35


(60/40), 2.0 g
4.3
1.04
75
6.42
37.03
26.42


TS720, 3 g Water


40.0 g Bay
5.1
0.41
40
3.35
19.80
10.41


140/700T White
5.2
1.09
80
3.30
22.73
27.69


(60/40), 2.8 g
5.3
1.48
100
3.24
22.07
37.59


TS720, 8.8 g


Water


40.0 g Bay
6.1
0.44
80
4.33
23.73
11.18


140/700T White
6.2
0.79
300
6.67
35.77
20.07


(60/40), 3.6 g
6.3
1.59
400
12.68
55.30
40.39


TS720, 15 g


Water









Plots for the abrasion resistance vs. coating thickness obtained with binder that employed clear POLANE® 700T (FIG. 18) showed increasing durability with increasing coating thickness and increasing TS720 from 5-9%. The slope of the Taber durability data, however, is low for TS720 at 5% relative to larger slopes observed with higher levels of TS720 content. When CabO-Sil TS720 content increases to 11%, the slope of abrasion resistance vs. coating thickness plots increases sharply (see, e.g., FIG. 20), For white POLANE® 700T with titanium dioxide pigment third particles (white, FIG. 19), the observed change in slope with increasing coating thickness followed a similar trend to that observed with clear POLANE® 700T, but the actual slopes are greater than with clear POLANE® 700T.


Increases in the slope of the abrasion resistance vs. coating thickness plots again suggests that the second particles (e.g., TS720 particles) are distributed uniformly throughout the coating thickness (see e.g., FIG. 2), and the Taber cycles increase as abrasion does not simply remove the majority of second particles when the surface is abraded. Surface abrasion exposes more material with second particles resulting in the continued hydrophobicity and/or oleophobicity of the newly exposed surface. The physical manifestation of this aspect is that the end of superhydrophobicity occurs when coating wears through (e.g., down to bare metal or an underlying coating layer), not when its surface is abraded away. At TS720 concentrations less than 11%, the slopes of the lines representing a correlation between abrasion resistance and coating thickness, suggest the TS720 particles may be concentrated to a greater degree at the outside (the exposed surface of the coating that forms an interface with air). Thus, as the exposed surface wears out, the superhydrophobicity is more quickly lost.


Surface roughness (Tables 9 and 10) for the samples in this example, suggest that TS720 content of about 11% with white POLANE® 700T provides highly durable SH and/or OP coatings that display thickness dependent abrasion resistance. Where smoother surfaces finishes are desired, clear POLANE® 700T can be employed to achieve highly durable SH and/or OP coatings that display thickness dependent abrasion resistance


Surface Roughness Data


The surface roughness data for all four coatings with a fixed TS720 content of 11% are shown in FIGS. 26-28. FIG. 26 shows that white POLANE® 700T results in more surface roughness with or without first particle than clear POLANE® 700T. FIG. 27 shows the difference between coating formed with clear and white POLANE® compositions without first particle additions. For a coating thickness of 50 μm, the surface roughness of the coatings with white 700T is ˜1.3× that of clear 700T.


Data in FIG. 28 compared the surface roughness with first particle between white 700T and clear 700T. Again, for a coating thickness of 50 μm, the white 700T results in a factor of ˜1.6×. Thus, if surface roughness is critical, the 60:40 BAYHYDROL® 140AQ should be blended with clear 700T.


Example 8
Top Coating of One-Step Coatings Made with Bayhydrol®140AQ to Achieve Enhanced Oleophobic Performance

Aluminum plates, 4×4-inch, were base-coated with a composition prepared by mixing:

    • 1. 60:40 mixture of BAYHYDROL® 140AQ: clear POLANE® 700T by volume as the binder;
    • 2. 7% (by weight of binder) Tiger Drylac clear matte first particle;
    • 3. 11% (by weight) TS720; and
    • 4. 50% (by weight) water.
    • After drying or approximately 30 min at room temperature in ambient humidity, the base coat was top coated with either top coat composition No. 1 or No. 2.
  • Top Coat No. 1: Top coat composition No. 1 consisted of 1% M5 (untreated fumed silica), (0.5% SiCl4, and 0.5% (Gelest 8174) (tridecafluoro-1,1,2,2-tetrahyrctyltrichlorsilane). The top coated plate was cured for 1 h at 200° F. The top coated plate was SH and OP. It lasted 5 min under a shower and demonstrated an abrasion resistance of 600 Taber cycles at a 250 g load with CS10 wheels
  • Top Coat No. 2: Top coat composition No. 2 employed the same component composition as top coat No. 1, with the exceptions that the M5 silica content was increased from 1 to 2% and the silane content was increased from 0.5 to 1%. The plate top coated with composition No. 2 was cured for 1 h at 200° F. This plate lasted 5-10 min under a shower and demonstrated an abrasion resistance of 900 Taber cycles at a 250 g load with CS10 wheels.
  • Shower Test: A measure of the durability of superhydrophobicity can be made by measuring time exposure to a constant water shower which is required to wet a specimen. This equipment consists of a shower spray head positioned 6 feet above the sample through which a full flow of water is delivered from normal facility water supply.


Example 9
A One-Step Coating Composition Yielding Superhydrophobic and Oleophobic Coatings

A coating composition comprising:

    • BAYHYDROL® 124—24.0 grams
    • POLANE® 700T (white)—16.0 grams
    • M5T=9.0 grams (Cab-o-Sil M5 silica treated with (3,3,4,4,5,5,6,6,6-Nonafluorohexyl)trichlorosilane (SIN 6597.6) as described below)
    • Corvel Black—2.8 grams and
    • H2O—20.0 grams


      was prepared by blending the components as follows:


BAYHYDROL® 124 (24.0 grams) and POLANE® 700T (16.0 grams) were blended together for 20 minutes. The addition of M5T (9.0 grams, M5 silica treated with (3,3,4,4,5,5,6,6,6-Nonafluorohexyl)trichlorosilane (SIN 6597.6)) to the solution was followed by mixing in a ball mill for 30 minutes. Addition of Corvel Black (2.8 grams) and H2O (20.0 grams) to the solution was followed by an additional 30 minutes of mixing in a ball mill.


The coating was applied using a Central Pneumatic spray gun with the nozzle size of 0.020-0.025 inches. A coating thickness of 1.2-1.4 mils was applied to a 4×4 inch Al-plate. The plate was cured at room temperature for 30 minutes followed by curing at 200F for 1-2 hours. After curing, the plates were tested for superhydrophobicity, oleophobicity, Taber abrasion resistance, and shower resistance to loss of superhydrophobicity. The results of the tests show the coating displays superhydrophobicity (contact angle=167.33, after Taber abrasion testing=(155.23). The coatings also display oleophobic/superoleophobic behavior (contact angle=153.67). The coating lost its superhydrophobicity after 500 Taber abrasion cycles with a 250 gram load. Superhydrophobicity is lost after 55-60 minutes in shower testing (described above); however, superhydrophobicity returns after drying.


Example 10
Volatile Organic Compounds (VOCs) Content of Coatings with Bayhydrol® 140AQ

Of the binder components employed in this disclosure, BAYHYDROL® 140AQ employed more volatile organic solvent (toluene) than any other component. As it is desirable for environmental reasons to reduce the VOC contents of products, including those employed in making SH and OP coatings, an analysis of the expected VOC content of exemplary coating composition components is set forth for reference. The calculated VOC content, based on ingredients for various coatings/coating components, is set forth in Table 11.









TABLE 11







Volatile Organic Compound Values for Select


Coatings (Minus Water and Exempt Solvents)









Approximate VOC Content


Coating Component/Compositions
(pounds per gallon)











Composition 1:
0.3


60:40 BAYHYDROL ® 140AQ:clear/white



POLANE ® 700T, 9-20% TS720 second



particles, 0-7% first particle Corvel Black or



Tiger Drylac)



Composition 2:
0


0.5-1% Fluorinated silanizing agent, 0.5%



SiCl4, 1-2% M5, balance Acetone



Composition 3:
4.7


POLANE ® B component
2.2


POLANE ® A components



Composition 4:
5.4


5-1% Fluorinated silane, 0.5% SiCl4, 1-3%



M5, balance Hexane









It can be seen from Table 11 that Composition 1, which is a BAYHYDROL® 140AQ-based coating, has approximately 0.3 lb/gallon of VOCs. That coating delivers SH behavior with a very significant abrasion resistance based on Taber Abrader durability data with limited VOCs released in the coating process. The application of a top coat top coat of Composition 2 to the coating formed from Composition 1 adds no additional VOCs, but the coating now also delivers the OP behavior in addition to hydrophobic behavior. In contrast, coatings formed using solvent based POLANE® A and B (Composition 3), with a top coat (Composition 4) delivers excellent abrasion durability and wetting resistance but with a significant release of VOC compounds.


Example 11
A One-Step Coating with Different Levels of Treated Cab-O-Sil M5 Particles Treated with a Silanizing Agent

M5 silica particles treated with tridecafluorotetrahydrooctyltrichlorosilane were incorporated into binder a binder composition and applied using different spraying techniques. The base composition consisted of:

    • BAYHYDROL® 124 (Bayer)=24.0 g
    • POLANE® 700T (with white pigment, Sherwin Williams)=16.0 g
      • (In some cases, as indicated, clear POLANE® 700T of the same amount was used)
    • M5T (fumed silica particles treated with SIT 8174.0 (Gelest, tridecafluoro-tetrahydrooctyltrichlorosilane)=4.4 g
    • Water=18.20 g


The treated particles were added to the BAYHYDROL® 124/700T mix to make a paste. The paste was diluted with water to achieve the consistency for spraying or painting. The composition was applied to 4×4-in. aluminum plates by using the following procedures: (All plates were tested for surface roughness and resistance to SH and/or OP loss using Taber abrasion. The loss of oleophobicity with Taber abrasion was also measured for each sample


Example 11
Part A

BAYHYDROL® 124/POLANE® 700T (White)—40.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—4.4 g (11% w/w to the binder)


H2O—18.0-20.0 g


The composition was applied using an air spray gun with 1.4 mm nozzle and the surface of the plates to be coated placed vertically. Visual inspection of plates after curing (drying at 200° F.) showed sagging of the coating due to water running down the plate during application. Some of the areas of the coating were much lighter visually then other areas that seemed to have proper coating coverage.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded an Ra values of 2.307, 1.392, 1.824, 1.842, and 1.679, and Rz values of 16.0, 11.0, 13.7, 12.7, and 11.7. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 200, with one sticky spot due to a thick coating area. Taber abrasion resistance for loss of superoleophobicity yielded a value of 3.5. Shower resistance to loss of superhydrophobicity greater than 1 hours with some wetting at 2 hours. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.


Example 11
Part B

BAYHYDROL® 124/POLANE® 700T (White)—40.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—4.4 g (11% w/w to the Binder)


H2O—18.0-20.0 g


The composition was applied using an air spray gun and the surface of the plates to be coated placed horizontally. Visual inspection of plates after curing (drying at 200° F.) showed good coverage, smoothness, and substantially uniform coatings.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded an Ra values of 2.377, 2.386, 2.657, and 1.679, and Rz values of 16.1, 17.0, 18.5, 12.7, and 11.7. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 400-500 abrasion cycles for superhydrophobicity. Taber abrasion resistance for loss of superoleophobicity yielded a value of 15 abrasion cycles. Shower resistance to loss of superhydrophobicity greater than 2 hours. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.


Example 11
Part C

BAYHYDROL® 124/POLANE® 700T (White)—40.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—4.4 g (11% w/w to the Binder)


H2O—18.0-20.0 g


The composition was applied using an air spray gun with small nozzle (600 micron opening) and the surface of the plates to be coated placed horizontally Visual inspection of plates after curing (drying at 200° F.) showed good coverage and smoothness. The small nozzle is less effective at spraying a good uniform coating when simultaneously spraying multiple plates with a large area to be coated.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded Ra values of 2.903, 3.581, and 2.920 and Rz values of 16.5, 19.7, and 14.6. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 200 abrasion cycles, worn to bare metal. Taber abrasion resistance for loss of superoleophobicity yielded a value of 10. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.


Example 11
Part D

BAYHYDROL® 124/POLANE® 700T (Clear)—40.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—4.4 g (11% w/w to the Binder)


H2O—18.0-20.0 g


Procedure: Small Gun with Plates Horizontal. Visual inspection of plates after curing showed good coverage, very smooth, and high uniformity.


The composition was applied using an air spray gun with small nozzle (0.6 mm or 600 micron opening) and the surface of the plates to be coated placed horizontally Visual inspection of plates after curing (drying at 200° F.) showed good coverage, a very smooth finish, and high uniformity over the surface.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded Ra values 0.847, 0.840, and 1.143 microns, and Rz values of 6.46, 6.50, and 9.17 microns. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 300 abrasion cycles. Taber abrasion resistance for loss of superoleophobicity yielded a value of 5 abrasion cycles. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.


Example 11
Part E

BAYHYDROL® 124/POLANE® 700T (Clear)—60.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—5.3 g (8.8% w/w to the binder)


H2O—10.0 g


The composition was applied using an air spray gun with small nozzle (0.6 mm or 600 micron opening) and the surface of the plates to be coated placed horizontally Visual inspection of plates after curing (drying at 200° F.) showed good coverage, a very smooth finish, and high uniformity over the surface.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded Ra values 1.310, 0.997 microns, and 1.266, and Rz values of 10.2, 7.34, and 9.79 microns. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 400 abrasion cycles. Taber abrasion resistance for loss of superoleophobicity yielded a value of 5 abrasion cycles. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.


Example 11
Part F

BAYHYDROL® 124/POLANE® 700T (Clear)—60.0 g


M5T (8174 Tridecafluorotetrahydrooctyltrichlorosilane)—4.4 g (7.3% w/w to the Urethane)


H2O—10.0 g


The composition was applied using an air spray gun with small nozzle (0.6 mm or 600 micron opening) and the surface of the plates to be coated placed horizontally Visual inspection of plates after curing (drying at 200° F.) showed good coverage, a very smooth finish, and high uniformity over the surface.


The plates were found to be superhydrophobic and superoleophobic. Roughness measures yielded Ra values 0.777, 0.643, and 0.607 microns, and Rz values of 8.44, 6.53, and 5.50 micron. Taber abrasion measurements using a 250 g load (CS10 wheels) gave values of 300 abrasion cycles. Taber abrasion resistance for loss of superoleophobicity yielded a value of 5 abrasion cycles. Exposure to rain showed superhydrophobicity after one hour of rain exposure outdoors.









TABLE 12







Summary of Data for Example 11














Surface
Taber
Taber





Rough-
Cycles
Cycles





ness Ra
for End
for End
Shower


Coating
Spray
(mi-
of SH
of SO
Time


Composition
Gun
cron)
(#)
(#)
(h)















124/700T(W) = 40 g
Large Gun
1.81
200
4
2


M5T (8174) = 4.4 g
Plate






Water = 18-20 g
Vertical






124/700T(W) = 40 g
Large Gun
2.47
450
15
2


M5T (8174) = 4.4 g
Plate






Water = 18-20 g
Horizontal






124/700T(W) = 40 g
Small Gun
3.13
200
10



M5T (8174) = 4.4 g
Plate






Water = 18-20 g
Horizontal






124/700T(C) = 40 g
Small Gun
0.943
300
5



M5T (8174) = 4.4 g
Plate






Water = 18-20 g
Horizontal






124/700T(C) = 40 g
Small Gun
1.191
400
5



M5T (8174) = 3.53 g
Plate






Water = 6.67 g
Horizontal






124/700T(C) = 40 g
Small Gun
0.675
300
5



M5T (8174) = 2.93 g
Plate






Water = 6.67 g
Horizontal









Example 12
A One-Step Coatings with Glass Bead First Particle Addition

To the compositions of Example 11 was added 7% (by weight of the binder) of glass bubbles (S60, from 3M Company, see Table 1). Coatings without first particles added were prepared with clear POLANE 700T and those with S60 were Prepared with white POLANE 700T. The coatings were applied on 4×4 inch steel plates with gun using four different nozzle sizes to create different coating thicknesses. All of the plates were cured at 200° F. for 1 hour (h) after which coating thickness was measured and Taber abrasion wear resistance to the point where they lost superhydrophobicity assessed. The Taber testing was conducted at three different loads (250, 500, and 1000 g). All of the Taber data and coating thickness (in mils and microns) are summarized in Table 13.









TABLE 13







Taber Data for Example 11 for Various Thicknesses


at Loads of 250, 500, and 1000 g
















Taber




Plate
Thickness

Load
mi-


System
#
(mil)
Tabers
(g)
crons















60/40 Bay 124/700T
1
1.30
300
250
33.02


clear (No Filler) -
2
1.28
200
500
32.512


1.3 nozzle
3
1.08
150
1000
27.432


60/40 Bay 124/700T
4
2.28
800
250
57.912


white (7% S60) -
5
1.84
425
500
46.736


1.3 nozzle
6
2.22
175
1000
56.388


60/40 Bay 124/700T
7
2.84
200
250
72.136


clear (No Filler) -
8
2.16
150
500
54.864


1.5 nozzle
9
1.96
400
1000
49.784


60/40 Bay 124/700T
10
2.54
1650
250
64.516


white (7% S60) -
11
2.38
700
500
60.452


1.5 nozzle
12
2.90
175
1000
73.66


60/40 Bay 124/700T
13
1.78
300
250
45.212


clear (No Filler) -
14
2.46
150
500
62.484


1.8 nozzle
15
2.04
575
1000
51.816


60/40 Bay 124/700T
16
3.22
2550
250
81.788


white (7% S60) -
17
3.18
850
500
80.772


1.8 nozzle
18
3.44
200
1000
87.376


60/40 Bay 124/700T
19
2.24
350
250
56.896


clear (No Filler) -
20
2.64
350
500
67.056


2.2 nozzle
21
3.06
800
1000
77.724


60/40 Bay 124/700T
22
3.78
2500
250
96.012


white (7% S60) -
23
4.92
1525
500
124.968


2.2 nozzle
24
4.54
425
1000
115.316









Four additional plates were coated to create coatings thicker than those appearing in Table 13. The coatings on the additional plates range in thickness from 4 to 12 mils. Data for this study are presented in Table 13 (continued) and included in FIG. 32.









TABLE 13 (continued)







Taber Data for Very Thick Coatings using 1000-g Load
















Taber




Palate
Thick-

Load
Mi-


System
#
ness
Tabers
(g)
crons















60/40 BAYHYDROL
25
12.1
1400
1000
307.34


124/White POLANE 700T
26
8.18
1000
1000
207.772


(7% S60) small gun
27
6.40
800
1000
162.56



28
4.24
400
1000
107.669









Data from Table 13 are plotted in FIGS. 29-32, Those plots show Taber abrasion resistance data for each applied load (250, 500, and 1000 g).

Claims
  • 1. A coating composition for the application of superhydrophobic and oleophobic coatings on surfaces comprising: a polyurethane dispersion (PUD) comprising one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane; andabout 5 to about 30% by weight of second particles comprising one or more siloxanes, and/or one or more alkyl, haloalkyl, fluoroalkyl, or perfluoroalkyl containing moieties;said composition optionally comprising up to about 26% by weight of third particles;
  • 2. The composition of claim 1, wherein said composition does not comprise first particles and the coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 150-800 Taber abrasion cycles at a 1,000 g load, for a thickness range of 25-75 microns, and/or 200-1,400 Taber abrasion cycles at a 250 g load for a thickness range of 25-75 microns, on a planar surface using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 3. The composition of claim 1, wherein said composition further comprises first particles.
  • 4. The composition of claim 3, wherein the first particles are selected from oxides of metalloids, metal oxides, one or more thermoplastics, one or more thermoset plastics, one or more metals, one or more glasses, and/or one or more hollow spheres.
  • 5. The composition of claim 3, wherein the coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 100-600 Taber abrasion cycles at a 250 g load for a thickness range of 40-85 microns using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 6. The composition of claim 1, wherein said polyurethane dispersion comprises third particles.
  • 7. The composition of claim 1, wherein the composition comprises a mixture of polyacrylic urethanes and polycarbonate urethanes.
  • 8. The composition of claim 1, wherein said second particles comprise one or more alkylsilane and/or fluoroalkylsilane groups.
  • 9. The composition of claim 8, wherein said alkylsilane and/or fluoroalkylsilane result from the reaction of silica or metal oxide particles with one or more silanes selected from the group consisting of: a compound of formula I, (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO6645.0); n-octyltriethoxysilane (SIO6715.0); and 3,3,4,4,5,5,6,6,6-nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).
  • 10. The composition of claim 9, wherein said second particles are present from about 20 to about 30% by weight.
  • 11. The composition of claim 1, that when dried and cured produces a surface with an arithmetic mean roughness (Ra) of less than about 20 microns.
  • 12. The composition of claim 1, comprising from about 30% to about 50% polyurethanes by weight.
  • 13. The composition of claim 1, wherein said polyurethane dispersion comprises at least one polyester urethane, polyacrylic urethane, and/or polycarbonate urethane composition that when dried and cured produces a coating that has: (a) a modulus at 100% elongation of 1300 psi or greater, and/or (b) an elongation percent at break of 150% or greater.
  • 14. The composition of claim 1, further comprising 30-40, 40-50 or 50-60 g of one or more compatible solvents per 100 g of coating composition.
  • 15. The composition of claim 14, wherein said one or more compatible solvents are VOC-exempt solvents, and wherein said coating composition comprises less than 0.3 pounds per gallon of volatile non-exempt organic compounds.
  • 16. The composition according to claim 15, wherein said one or more VOC-exempt solvents consists of water.
  • 17. A superhydrophobic and oleophobic coating formed by the application of the composition of claim 1.
  • 18. The coating of claim 17, wherein said coating formed on a flat flexible surface can withstand being bent to a right angle around a ¼ inch cylinder greater than about 100 times without loss of hydrophobicity or oleophobicity.
  • 19. A method of coating at least part of a surface comprising the application of a composition of claim 1.
  • 20. A superhydrophobic or superhydrophobic and oleophobic coating formed by the application of the composition of claim 16.
  • 21. A coating composition for the application of superhydrophobic and oleophobic coatings on surfaces comprising: a water-based polyurethane dispersion (PUD) as a binder, the PUD comprising one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane;about 5 to about 30% by weight of second particles comprising one or more siloxanes, alkyl, fluoroalkyl, or perfluoroalkyl containing moieties;said composition optionally comprising up to about 26% by weight of third particles;
  • 22. The coating composition of claim 21, where the one or more compatible solvents comprises 30-40, 40-50 or 50-60 g of water.
  • 23. The composition of claim 21, wherein said composition does not comprise first particles and the coating resulting from the application of said composition to a planar surface retains its superhydrophobicity after 150-800 Taber abrasion cycles at a 1,000 g load, for a thickness range of 25-75 microns, and/or 200-1,400 Taber abrasion cycles at a 250 g load for a thickness range of 25-75 microns, on a planar surface using a CS10 wheel, as judged by the inability of more than 50% of the water droplets applied to the area of the coating subjected to said abrasion cycles to remain on the surface when the planar surface is inclined at an angle of 3 degrees.
  • 24. The coating composition of claim 23, where the one or more compatible solvents comprises 30-40, 40-50 or 50-60 g of water.
  • 25. A coating composition for the application of superhydrophobic coatings on surfaces comprising: a polyurethane dispersion (PUD) comprising one or more of a polyester urethane, a polyacrylic urethane and/or a polycarbonate urethane; andabout 5 to about 30% by weight of second particles comprising one or more siloxanes, and/or one or more alkyl, haloalkyl, fluoroalkyl, or perfluoroalkyl containing moieties;said composition optionally comprising up to about 26% by weight of third particles;
Parent Case Info

This application is a continuation of International Application No. PCT/US2012/025982, which was filed Feb. 21, 2012 and which claims the benefit of U.S. Provisional Application No. 61/445,001, which was filed Feb. 21, 2011, each of which applications is hereby incorporated by reference in its entirety.

US Referenced Citations (678)
Number Name Date Kind
870439 Kade Nov 1907 A
2191701 Wood Feb 1940 A
2976386 Salton Mar 1961 A
3185426 Bjerke May 1965 A
3212106 Noel Oct 1965 A
3244541 Fain et al. Apr 1966 A
3354022 Dettre et al. Nov 1967 A
3579540 Ohlhausen May 1971 A
3716502 Loew Feb 1973 A
3931428 Reick Jan 1976 A
3950588 McDougal Apr 1976 A
3963349 Albright et al. Jun 1976 A
3967030 Johnson et al. Jun 1976 A
3975197 Mikelsons Aug 1976 A
3976572 Reick Aug 1976 A
3980153 Andrews Sep 1976 A
4142724 Reick Mar 1979 A
4151327 Lawton Apr 1979 A
4199142 Reick Apr 1980 A
4301197 Franz et al. Nov 1981 A
4301213 Davies Nov 1981 A
4308353 Saito et al. Dec 1981 A
4311755 Rummel Jan 1982 A
4377665 Shiraki et al. Mar 1983 A
4397988 Sherman Aug 1983 A
4415405 Ruddle et al. Nov 1983 A
4451619 Heilmann et al. May 1984 A
4453533 Scheidler et al. Jun 1984 A
4474852 Craig Oct 1984 A
4492217 Scheidler Jan 1985 A
4536454 Haasl Aug 1985 A
4581149 Horodysky et al. Apr 1986 A
4591530 Lui May 1986 A
4614464 Christensen Sep 1986 A
4622702 Allen Nov 1986 A
4624900 Fau Nov 1986 A
4646948 Jennings Mar 1987 A
4680173 Burger Jul 1987 A
4687707 Matsuo et al. Aug 1987 A
4716183 Gamarra et al. Dec 1987 A
4733843 Bessinger Mar 1988 A
4738426 Bessinger Apr 1988 A
D295950 Johnston May 1988 S
4745139 Haasl et al. May 1988 A
4749110 Maeno et al. Jun 1988 A
4753977 Merrill Jun 1988 A
4768237 Torti Sep 1988 A
4782112 Kondo et al. Nov 1988 A
4835014 Roth et al. May 1989 A
4837260 Sato et al. Jun 1989 A
4855176 Ohwaki et al. Aug 1989 A
4870907 McKee Oct 1989 A
4923260 Poulsen May 1990 A
4971912 Buhl et al. Nov 1990 A
4983459 Franz et al. Jan 1991 A
5011727 Kido et al. Apr 1991 A
5011963 Ogawa et al. Apr 1991 A
5032641 Nanishi et al. Jul 1991 A
5041304 Kusano et al. Aug 1991 A
5057050 Hill Oct 1991 A
5084191 Nagase et al. Jan 1992 A
5104938 Toyama et al. Apr 1992 A
5112911 Mori et al. May 1992 A
5121134 Albinson et al. Jun 1992 A
5156611 Haynes et al. Oct 1992 A
5192603 Slater et al. Mar 1993 A
5202361 Zimmerman et al. Apr 1993 A
5212215 Nanri et al. May 1993 A
5225274 Ogawa et al. Jul 1993 A
5228764 Cherry et al. Jul 1993 A
5228905 Grunewalder et al. Jul 1993 A
5238746 Soga et al. Aug 1993 A
5240774 Ogawa et al. Aug 1993 A
5274159 Pellerite et al. Dec 1993 A
5284707 Ogawa et al. Feb 1994 A
5294252 Gun Mar 1994 A
5300239 Ozaki et al. Apr 1994 A
5308705 Franz et al. May 1994 A
5312573 Rosenbaum et al. May 1994 A
5314940 Stone May 1994 A
5316799 Brunken et al. May 1994 A
5317129 Taplan et al. May 1994 A
5324566 Ogawa et al. Jun 1994 A
5328768 Goodwin Jul 1994 A
5338345 Scarborough et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5352733 Hart Oct 1994 A
5362145 Bird et al. Nov 1994 A
5364299 Hill et al. Nov 1994 A
5366810 Merrifield et al. Nov 1994 A
5368892 Berquier Nov 1994 A
5372888 Ogawa et al. Dec 1994 A
5380585 Ogawa et al. Jan 1995 A
5385966 Hermansen et al. Jan 1995 A
5395657 Strepparola et al. Mar 1995 A
5424130 Nakanishi et al. Jun 1995 A
5429433 Bird et al. Jul 1995 A
5435839 Ogawa Jul 1995 A
5437894 Ogawa et al. Aug 1995 A
5437900 Kuzowski Aug 1995 A
5441338 Kane et al. Aug 1995 A
5441809 Akhter Aug 1995 A
5458976 Horino et al. Oct 1995 A
5466770 Audenaert et al. Nov 1995 A
5489328 Ono et al. Feb 1996 A
5500216 Julian et al. Mar 1996 A
5527536 Merkle et al. Jun 1996 A
5534580 Mitsui et al. Jul 1996 A
5539054 LaFleur Jul 1996 A
5540493 Kane et al. Jul 1996 A
5556667 Teranishi et al. Sep 1996 A
5558940 Michels et al. Sep 1996 A
5564809 Kane et al. Oct 1996 A
5576096 Ono et al. Nov 1996 A
5578361 Tsujioka et al. Nov 1996 A
5584957 Schultheis et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5599893 Asai et al. Feb 1997 A
5612433 Ono et al. Mar 1997 A
5618627 Merrifield et al. Apr 1997 A
5618883 Plamthottam et al. Apr 1997 A
5651921 Kaijou Jul 1997 A
5658969 Gerace Aug 1997 A
5674967 Goodwin Oct 1997 A
5679460 Schakenraad et al. Oct 1997 A
5688864 Goodwin Nov 1997 A
5697991 Frazer Dec 1997 A
5707740 Goodwin Jan 1998 A
5719226 Kegley Feb 1998 A
5725789 Huber et al. Mar 1998 A
5735589 Herrmann et al. Apr 1998 A
5747561 Smirnov et al. May 1998 A
5753734 Maruyama May 1998 A
5777043 Shafer et al. Jul 1998 A
5798144 Varanasi et al. Aug 1998 A
5800918 Chartier et al. Sep 1998 A
5813741 Fish et al. Sep 1998 A
5814411 Merrifield et al. Sep 1998 A
5824421 Kobayashi et al. Oct 1998 A
5830529 Ross Nov 1998 A
5840201 Elledge Nov 1998 A
5843338 Inoue et al. Dec 1998 A
5853690 Hibino et al. Dec 1998 A
5853800 Dombrowski et al. Dec 1998 A
5856378 Ring et al. Jan 1999 A
5858551 Salsman Jan 1999 A
5876806 Ogawa Mar 1999 A
5890907 Minasian Apr 1999 A
5910557 Audenaert et al. Jun 1999 A
5921411 Merl Jul 1999 A
5924359 Watanabe Jul 1999 A
5945482 Fukuchi et al. Aug 1999 A
5947574 Avendano Sep 1999 A
5948685 Angros Sep 1999 A
5952053 Colby Sep 1999 A
5958601 Salsman Sep 1999 A
5980990 Goodwin Nov 1999 A
6013724 Mizutani et al. Jan 2000 A
6017609 Akamatsu et al. Jan 2000 A
6017831 Beardsley et al. Jan 2000 A
6017997 Snow et al. Jan 2000 A
6020419 Bock et al. Feb 2000 A
6024948 Samain et al. Feb 2000 A
6025025 Bartrug et al. Feb 2000 A
6033738 Teranishi et al. Mar 2000 A
6040382 Hanes Mar 2000 A
6045650 Mitchnick et al. Apr 2000 A
6068911 Shouji et al. May 2000 A
6090447 Suzuki et al. Jul 2000 A
6093559 Bookbinder et al. Jul 2000 A
6096380 Takebe et al. Aug 2000 A
6105233 Neal Aug 2000 A
6114446 Narisawa et al. Sep 2000 A
6117555 Fujimori et al. Sep 2000 A
6119626 Miyazawa et al. Sep 2000 A
6120720 Meier et al. Sep 2000 A
6136210 Biegelsen et al. Oct 2000 A
6153304 Smith et al. Nov 2000 A
6162870 Yamada et al. Dec 2000 A
6187143 Juppo et al. Feb 2001 B1
6191122 Lux et al. Feb 2001 B1
6201058 Mahr et al. Mar 2001 B1
6207236 Araki et al. Mar 2001 B1
6214278 Yamada et al. Apr 2001 B1
6221434 Visca et al. Apr 2001 B1
6224974 Wuu May 2001 B1
6228435 Yoshikawa et al. May 2001 B1
6228972 Hikita et al. May 2001 B1
6235383 Hong et al. May 2001 B1
6235833 Akamatsu et al. May 2001 B1
6245387 Hayden Jun 2001 B1
6248850 Arai Jun 2001 B1
6264751 Kamura et al. Jul 2001 B1
6280834 Veerasamy et al. Aug 2001 B1
6288149 Kroll Sep 2001 B1
6291054 Thomas et al. Sep 2001 B1
6333074 Ogawa et al. Dec 2001 B1
6333558 Hasegawa Dec 2001 B1
6337133 Akamatsu et al. Jan 2002 B1
6340502 Azzopardi et al. Jan 2002 B1
6342268 Samain Jan 2002 B1
6352758 Huang et al. Mar 2002 B1
6358569 Badyal et al. Mar 2002 B1
6361868 Bier et al. Mar 2002 B1
6376592 Shimada et al. Apr 2002 B1
6379751 Schaefer et al. Apr 2002 B1
6383642 Le Bellac et al. May 2002 B1
6403397 Katz Jun 2002 B1
6410673 Arai et al. Jun 2002 B1
6419985 Ishizuka Jul 2002 B1
6423372 Genzer et al. Jul 2002 B1
6423381 Colton et al. Jul 2002 B1
6432181 Ludwig Aug 2002 B1
6451432 Azzopardi et al. Sep 2002 B1
6451876 Koshy Sep 2002 B1
6458420 Akamatsu et al. Oct 2002 B1
6458467 Mizuno et al. Oct 2002 B1
6461537 Turcotte et al. Oct 2002 B1
6461670 Akamatsu et al. Oct 2002 B2
6462115 Takahashi et al. Oct 2002 B1
6471761 Fan et al. Oct 2002 B2
6476095 Simendinger, III Nov 2002 B2
6479612 Del Pesco et al. Nov 2002 B1
6482524 Yamamoto et al. Nov 2002 B1
6488347 Bienick Dec 2002 B1
6559234 Arai et al. May 2003 B1
6564935 Yamamoto et al. May 2003 B1
6566453 Arai et al. May 2003 B1
6579620 Mizunno et al. Jun 2003 B2
6582825 Amarasekera et al. Jun 2003 B2
6584744 Schultheis et al. Jul 2003 B1
6589641 Stirniman et al. Jul 2003 B1
6596060 Michaud Jul 2003 B1
6610363 Arora et al. Aug 2003 B2
6613860 Dams et al. Sep 2003 B1
6623863 Kamitani et al. Sep 2003 B2
6641654 Akamatsu et al. Nov 2003 B2
6649222 D'Agostino et al. Nov 2003 B1
6652640 Asai et al. Nov 2003 B2
6660339 Datta et al. Dec 2003 B1
6660363 Barthlott Dec 2003 B1
6660686 Inagaki et al. Dec 2003 B2
6683126 Keller et al. Jan 2004 B2
6685992 Ogawa et al. Feb 2004 B1
6689200 Scarborough et al. Feb 2004 B2
6692565 Johansen, Jr. et al. Feb 2004 B2
6706798 Kobayashi et al. Mar 2004 B2
6720371 Furuta et al. Apr 2004 B2
6729704 Ames May 2004 B2
6733892 Yoneda et al. May 2004 B1
6743467 Jones et al. Jun 2004 B1
6767984 Toui et al. Jul 2004 B2
6770323 Genzer et al. Aug 2004 B2
6780497 Walter Aug 2004 B1
6786562 Obrock et al. Sep 2004 B2
6793821 Lee et al. Sep 2004 B2
6800354 Baumann et al. Oct 2004 B2
6806299 Baumann et al. Oct 2004 B2
6808835 Green et al. Oct 2004 B2
6811716 Stengaard et al. Nov 2004 B1
6811844 Trouilhet Nov 2004 B2
6811884 Goodwin Nov 2004 B2
6835778 Swisher et al. Dec 2004 B2
6845788 Extrand Jan 2005 B2
6852389 Nun et al. Feb 2005 B2
6852390 Extrand Feb 2005 B2
6855375 Nakagawa et al. Feb 2005 B2
6855759 Kudo et al. Feb 2005 B2
6858284 Nun et al. Feb 2005 B2
6871923 Dietz et al. Mar 2005 B2
6872441 Baumann et al. Mar 2005 B2
6884904 Smith et al. Apr 2005 B2
6890360 Cote et al. May 2005 B2
6923216 Extrand et al. Aug 2005 B2
6926946 Ogawa et al. Aug 2005 B2
6931888 Shekunov et al. Aug 2005 B2
6938774 Extrand Sep 2005 B2
6942746 Niejelow et al. Sep 2005 B2
6966990 Chattopadhyay et al. Nov 2005 B2
6976585 Extrand Dec 2005 B2
6976998 Rizzo et al. Dec 2005 B2
6982242 Liss et al. Jan 2006 B2
6992858 Kaneko Jan 2006 B2
6994033 Kweon Feb 2006 B2
6994045 Paszkowski Feb 2006 B2
6998051 Chattopadhyay et al. Feb 2006 B2
7004184 Handique et al. Feb 2006 B2
7005372 Levy et al. Feb 2006 B2
7019069 Kobayashi et al. Mar 2006 B2
7022416 Teranishi Apr 2006 B2
7026018 Kranovich Apr 2006 B2
7037591 Henze et al. May 2006 B2
7048889 Arney et al. May 2006 B2
7052244 Fouillet et al. May 2006 B2
7056409 Dubrow Jun 2006 B2
7057832 Wu et al. Jun 2006 B2
7057881 Chow et al. Jun 2006 B2
7074273 Shimomura et al. Jul 2006 B2
7074294 Dubrow Jul 2006 B2
7083748 Chattopadhyay et al. Aug 2006 B2
7083828 Muller et al. Aug 2006 B2
7109256 Amano et al. Sep 2006 B2
7112369 Wang et al. Sep 2006 B2
7124450 Davidson Oct 2006 B2
7141276 Lehmann et al. Nov 2006 B2
7144947 Camus et al. Dec 2006 B2
7148181 Tanaka et al. Dec 2006 B2
7150904 D'Urso et al. Dec 2006 B2
7153357 Baumgart et al. Dec 2006 B2
7157018 Scheidler Jan 2007 B2
7166235 Majeti et al. Jan 2007 B2
7175723 Jones et al. Feb 2007 B2
7179758 Chakrapani et al. Feb 2007 B2
7179864 Wang Feb 2007 B2
7188917 Bienick Mar 2007 B2
7198855 Liebmann-Vinson et al. Apr 2007 B2
7204298 Hodes et al. Apr 2007 B2
7211223 Fouillet et al. May 2007 B2
7211313 Nun et al. May 2007 B2
7211329 Metz et al. May 2007 B2
7211605 Coronado et al. May 2007 B2
7213309 Wang et al. May 2007 B2
D547640 Remmers Jul 2007 S
7238751 Wang et al. Jul 2007 B2
7253130 Chiang et al. Aug 2007 B2
7258731 D'Urso et al. Aug 2007 B2
7264845 Papadaki et al. Sep 2007 B2
7265180 Chang et al. Sep 2007 B2
7265468 Mancl et al. Sep 2007 B1
7268179 Brown Sep 2007 B2
7273658 Benayoun et al. Sep 2007 B2
7285331 Reihs et al. Oct 2007 B1
7288311 Kawashima et al. Oct 2007 B2
7288592 Stark et al. Oct 2007 B2
7291653 Baumann et al. Nov 2007 B2
7297375 Wegner et al. Nov 2007 B2
7306895 Kano et al. Dec 2007 B2
7309278 Shibata Dec 2007 B2
7312057 Bookbinder et al. Dec 2007 B2
7323033 Kroupenkine et al. Jan 2008 B2
7338835 Bao Mar 2008 B2
7342551 King Mar 2008 B2
7344619 Helmeke Mar 2008 B2
7344758 Franchina et al. Mar 2008 B2
7344783 Shea Mar 2008 B2
7354328 Lee Apr 2008 B2
7354624 Millero et al. Apr 2008 B2
7354650 Nakajima et al. Apr 2008 B2
D568344 Baacke et al. May 2008 S
7368510 Lee et al. May 2008 B2
7393515 Hoshino et al. Jul 2008 B2
7396395 Chen et al. Jul 2008 B1
7419615 Strauss Sep 2008 B2
7449233 Arora Nov 2008 B2
7468333 Kimbrell, Jr. et al. Dec 2008 B2
7497533 Remmers Mar 2009 B2
7524531 Axtell, III et al. Apr 2009 B2
7527832 Sakoske et al. May 2009 B2
7531598 Müller et al. May 2009 B2
7544411 Baumann et al. Jun 2009 B2
D596931 Fernandez Jul 2009 S
D596932 Kleinsasser Jul 2009 S
7563505 Reihs Jul 2009 B2
7568583 Wing et al. Aug 2009 B2
7607744 Casoli et al. Oct 2009 B2
D607020 Baacke et al. Dec 2009 S
D612404 Picken et al. Mar 2010 S
D612405 Eicher Mar 2010 S
D613316 Schmidt Apr 2010 S
7726615 Rutz Jun 2010 B2
7731316 Wing Jun 2010 B2
7748806 Egan Jul 2010 B2
7767758 Moorlag et al. Aug 2010 B2
7901731 Russell et al. Mar 2011 B2
7919180 Furukawa Apr 2011 B2
7935209 Ward May 2011 B2
7943234 Lawin et al. May 2011 B2
7950756 Collins et al. May 2011 B2
7989619 Guire et al. Aug 2011 B2
8231191 Leconte et al. Jul 2012 B2
8258206 Kanagasabapathy et al. Sep 2012 B2
8286561 Driver et al. Oct 2012 B2
8513342 Gao et al. Aug 2013 B2
8580884 Ding Nov 2013 B2
8596205 Driver et al. Dec 2013 B2
8715906 Blanchet et al. May 2014 B2
8779025 Stone Jul 2014 B1
8899704 Bienick Dec 2014 B2
9067821 Bleecher et al. Jun 2015 B2
9096786 Sikka et al. Aug 2015 B2
9139744 Sikka et al. Sep 2015 B2
9243175 Sikka et al. Jan 2016 B2
9279073 Bleecher et al. Mar 2016 B2
20010018130 Hayden Aug 2001 A1
20010019773 Akamatsu et al. Sep 2001 A1
20010024728 Kamitani et al. Sep 2001 A1
20010030808 Komatsu et al. Oct 2001 A1
20010055677 Wuu Dec 2001 A1
20020001676 Hayden Jan 2002 A1
20020034627 Jacquiod et al. Mar 2002 A1
20020045007 Arora et al. Apr 2002 A1
20020049276 Zwick Apr 2002 A1
20020077412 Kobayashi et al. Jun 2002 A1
20020111402 Mizuno et al. Aug 2002 A1
20020115736 Koshy Aug 2002 A1
20020161130 Arai et al. Oct 2002 A1
20020177655 Pratt et al. Nov 2002 A1
20020192472 Metz et al. Dec 2002 A1
20020197490 Amidaiji et al. Dec 2002 A1
20030009049 Smith et al. Jan 2003 A1
20030013795 Nun et al. Jan 2003 A1
20030021902 Yamamoto et al. Jan 2003 A1
20030026972 Reihs Feb 2003 A1
20030040243 Ward Feb 2003 A1
20030040568 Furuta et al. Feb 2003 A1
20030065093 Custro et al. Apr 2003 A1
20030070677 Handique et al. Apr 2003 A1
20030072723 Gers-Barlag et al. Apr 2003 A1
20030073067 Bookfinder et al. Apr 2003 A1
20030077533 Murota et al. Apr 2003 A1
20030091809 Scarborough et al. May 2003 A1
20030096120 Schafheutle et al. May 2003 A1
20030110976 Abidh et al. Jun 2003 A1
20030117051 Kweon Jun 2003 A1
20030119684 Tsao Jun 2003 A1
20030125656 Davankov et al. Jul 2003 A1
20030143339 Kobayashi Jul 2003 A1
20030149218 Cote′ et al. Aug 2003 A1
20030166840 Urry et al. Sep 2003 A1
20030170401 Shimomura et al. Sep 2003 A1
20030176572 Maekawa et al. Sep 2003 A1
20030176574 St. Clair et al. Sep 2003 A1
20030179494 Kaneko Sep 2003 A1
20030194565 Schaefer Oct 2003 A1
20030203771 Rosenberg et al. Oct 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20040005469 Metz et al. Jan 2004 A1
20040020104 Feldhege et al. Feb 2004 A1
20040025747 Kamitani et al. Feb 2004 A1
20040039128 Sasagawa et al. Feb 2004 A1
20040050297 Kobayashi et al. Mar 2004 A1
20040053058 Kamitani et al. Mar 2004 A1
20040056575 Dietz et al. Mar 2004 A1
20040097616 Hoppler et al. May 2004 A1
20040102124 Suzuki May 2004 A1
20040102588 Arai et al. May 2004 A1
20040121168 Goodwin et al. Jun 2004 A1
20040137814 Kimbrell, Jr. et al. Jul 2004 A1
20040138083 Kimbrell, Jr. et al. Jul 2004 A1
20040142557 Levy et al. Jul 2004 A1
20040154106 Oles et al. Aug 2004 A1
20040192844 Ikematsu et al. Sep 2004 A1
20040201048 Seki et al. Oct 2004 A1
20040202872 Fang et al. Oct 2004 A1
20040209203 Kano et al. Oct 2004 A1
20040213904 Muller et al. Oct 2004 A1
20040216227 Papadaki et al. Nov 2004 A1
20050000463 Mochizuki Jan 2005 A1
20050004264 Tanabe Jan 2005 A1
20050008859 Forgacs Jan 2005 A1
20050009953 Shea Jan 2005 A1
20050020763 Milic Jan 2005 A1
20050022313 Scheidler Feb 2005 A1
20050053793 Benay-Oun et al. Mar 2005 A1
20050075020 Benayoun et al. Apr 2005 A1
20050075455 Chang et al. Apr 2005 A1
20050106762 Chakrapani et al. May 2005 A1
20050121782 Nakamura et al. Jun 2005 A1
20050143547 Stark et al. Jun 2005 A1
20050165194 Benayoun et al. Jul 2005 A1
20050170098 Baumann et al. Aug 2005 A1
20050197447 Gu et al. Sep 2005 A1
20050221098 Azzopardi et al. Oct 2005 A1
20050239211 Uchihara et al. Oct 2005 A1
20050245395 Tanaka et al. Nov 2005 A1
20060013983 Sebastian et al. Jan 2006 A1
20060029808 Zhai et al. Feb 2006 A1
20060040164 Vyas et al. Feb 2006 A1
20060051561 Badyal Mar 2006 A1
20060052556 Franchina et al. Mar 2006 A1
20060057390 Kittle et al. Mar 2006 A1
20060058458 Hasskerl et al. Mar 2006 A1
20060062695 Haab et al. Mar 2006 A1
20060062929 Kittle et al. Mar 2006 A1
20060081394 Li et al. Apr 2006 A1
20060089466 Shimomura et al. Apr 2006 A1
20060110541 Russell et al. May 2006 A1
20060110542 Dietz et al. May 2006 A1
20060113443 Remmers Jun 2006 A1
20060147634 Strauss Jul 2006 A1
20060147705 Huang et al. Jul 2006 A1
20060151739 Sandner et al. Jul 2006 A1
20060154048 Teranishi et al. Jul 2006 A1
20060162373 McMillin et al. Jul 2006 A1
20060172641 Hennige et al. Aug 2006 A1
20060185555 Giessler et al. Aug 2006 A1
20060205874 Uzee et al. Sep 2006 A1
20060207032 Reiners et al. Sep 2006 A1
20060213791 Holden Sep 2006 A1
20060213792 Nguyen et al. Sep 2006 A1
20060213849 Bienick Sep 2006 A1
20060222865 Hoshino et al. Oct 2006 A1
20060240218 Parce Oct 2006 A1
20060263516 Jones et al. Nov 2006 A1
20060266258 Asakura et al. Nov 2006 A1
20060269758 Helmeke Nov 2006 A1
20060281889 Kobayashi et al. Dec 2006 A1
20060286305 Thies et al. Dec 2006 A1
20060292345 Dave et al. Dec 2006 A1
20070003705 Strauss Jan 2007 A1
20070005024 Weber et al. Jan 2007 A1
20070009657 Zhang et al. Jan 2007 A1
20070014970 Nun et al. Jan 2007 A1
20070026193 Luzinov et al. Feb 2007 A1
20070036906 Reeve Feb 2007 A1
20070046160 Egan Mar 2007 A1
20070065668 Idei Mar 2007 A1
20070075199 Stewart et al. Apr 2007 A1
20070141114 Muisener et al. Jun 2007 A1
20070141306 Kasai et al. Jun 2007 A1
20070148407 Chen et al. Jun 2007 A1
20070166513 Sheng et al. Jul 2007 A1
20070172650 O'Rear, III et al. Jul 2007 A1
20070172658 Deruelle et al. Jul 2007 A1
20070172661 Fechner et al. Jul 2007 A1
20070176379 Sonnendorfer et al. Aug 2007 A1
20070196656 Rowell Aug 2007 A1
20070202342 Whiteford et al. Aug 2007 A1
20070213230 Pfeiffer et al. Sep 2007 A1
20070215004 Kuroda et al. Sep 2007 A1
20070218265 Harris et al. Sep 2007 A1
20070224898 Deangelis et al. Sep 2007 A1
20070231517 Golownia Oct 2007 A1
20070238807 Safir et al. Oct 2007 A1
20070259156 Kempers et al. Nov 2007 A1
20070274871 Jiang Nov 2007 A1
20070275245 Persson et al. Nov 2007 A1
20070298216 Jing et al. Dec 2007 A1
20080008838 Arpac et al. Jan 2008 A1
20080012459 Picken et al. Jan 2008 A1
20080015306 Wright et al. Jan 2008 A1
20080017071 Moebus et al. Jan 2008 A1
20080018709 Takenaka et al. Jan 2008 A1
20080020127 Whiteford et al. Jan 2008 A1
20080021212 Whiteford et al. Jan 2008 A1
20080032403 Saito et al. Feb 2008 A1
20080039558 Lazzari et al. Feb 2008 A1
20080039576 Griswold et al. Feb 2008 A1
20080044635 O'Neill et al. Feb 2008 A1
20080050567 Kawashima et al. Feb 2008 A1
20080063870 O'Rear et al. Mar 2008 A1
20080066648 Asakura et al. Mar 2008 A1
20080070146 Fomitchev et al. Mar 2008 A1
20080081858 Okazaki Apr 2008 A1
20080088192 Hsu Apr 2008 A1
20080090004 Zhang et al. Apr 2008 A1
20080101041 Chang et al. May 2008 A1
20080102347 Blunk May 2008 A1
20080107864 Zhang et al. May 2008 A1
20080131653 Lyons et al. Jun 2008 A1
20080160257 Takada et al. Jul 2008 A1
20080166549 Shieh et al. Jul 2008 A1
20080171805 Mingarelli Jul 2008 A1
20080172937 Palmer et al. Jul 2008 A1
20080176991 Osawa et al. Jul 2008 A1
20080193740 Nesbitt Aug 2008 A1
20080197760 Leconte et al. Aug 2008 A1
20080199657 Capron et al. Aug 2008 A1
20080199659 Zhao Aug 2008 A1
20080205950 Moorlag et al. Aug 2008 A1
20080206550 Borlner Aug 2008 A1
20080207581 Whiteford et al. Aug 2008 A1
20080213601 Yamamoto et al. Sep 2008 A1
20080220170 Van Der Flaas Sep 2008 A1
20080220676 Marin et al. Sep 2008 A1
20080221009 Kanagasabapathy et al. Sep 2008 A1
20080221263 Kanagasabapathy et al. Sep 2008 A1
20080226694 Gelbert et al. Sep 2008 A1
20080237126 Hoek et al. Oct 2008 A1
20080241512 Boris et al. Oct 2008 A1
20080241523 Huignard et al. Oct 2008 A1
20080245273 Vyorkka et al. Oct 2008 A1
20080246804 Kawase et al. Oct 2008 A1
20080248263 Kobrin Oct 2008 A1
20080250978 Baumgart et al. Oct 2008 A1
20080261024 Xenopoulos et al. Oct 2008 A1
20080268233 Lawin et al. Oct 2008 A1
20080269358 Inoue et al. Oct 2008 A1
20080280699 Jarvholm Nov 2008 A1
20080286556 D'Urso et al. Nov 2008 A1
20080295347 Braham Dec 2008 A1
20080296252 D'Urso et al. Dec 2008 A1
20080306202 Lin et al. Dec 2008 A1
20080310660 Lin Dec 2008 A1
20090010870 Greiner et al. Jan 2009 A1
20090011222 Xiu et al. Jan 2009 A1
20090011227 Furukawa Jan 2009 A1
20090011960 Wu Jan 2009 A1
20090018249 Kanagasabapathy et al. Jan 2009 A1
20090025508 Liao et al. Jan 2009 A1
20090025609 Egami et al. Jan 2009 A1
20090032088 Rabinowitz Feb 2009 A1
20090035519 Gaeta et al. Feb 2009 A1
20090036978 Kleiner et al. Feb 2009 A1
20090042469 Simpson Feb 2009 A1
20090058247 Collins et al. Mar 2009 A1
20090064894 Baumgart et al. Mar 2009 A1
20090076430 Simpson et al. Mar 2009 A1
20090084574 Balfour et al. Apr 2009 A1
20090084914 Picken et al. Apr 2009 A1
20090085453 Daley et al. Apr 2009 A1
20090087670 Peng et al. Apr 2009 A1
20090095941 Nakata et al. Apr 2009 A1
20090099301 Naraghi et al. Apr 2009 A1
20090105409 Munzmay et al. Apr 2009 A1
20090105679 Joubert et al. Apr 2009 A1
20090111344 Murphy et al. Apr 2009 A1
20090115302 Benz et al. May 2009 A1
20090123728 Cheung et al. May 2009 A1
20090134758 Vardon May 2009 A1
20090136737 Ring et al. May 2009 A1
20090142604 Imai et al. Jun 2009 A1
20090155566 Gentleman et al. Jun 2009 A1
20090162592 Baikerikar et al. Jun 2009 A1
20090163637 Li et al. Jun 2009 A1
20090182085 Escobar Barrios et al. Jul 2009 A1
20090186070 Guire et al. Jul 2009 A1
20090188877 Stewart Jul 2009 A1
20090193743 Wiercinski Aug 2009 A1
20090195136 Wing et al. Aug 2009 A1
20090208739 Husemann et al. Aug 2009 A1
20090212505 McMillin et al. Aug 2009 A1
20090240004 Maier et al. Sep 2009 A1
20090263604 Arai et al. Oct 2009 A1
20090286023 Dobreski et al. Nov 2009 A1
20090298369 Koene et al. Dec 2009 A1
20090324910 Gemici et al. Dec 2009 A1
20100001625 Eckartsberg et al. Jan 2010 A1
20100003493 Cheng et al. Jan 2010 A1
20100004373 Zhu et al. Jan 2010 A1
20100006223 Krawinkel et al. Jan 2010 A1
20100026156 Leconte et al. Feb 2010 A1
20100052491 Vardon Mar 2010 A1
20100102693 Driver et al. Apr 2010 A1
20100109498 Ramm et al. May 2010 A1
20100117502 Kang et al. May 2010 A1
20100133970 Shin et al. Jun 2010 A1
20100176703 Kim Jul 2010 A1
20100181884 De La Garza et al. Jul 2010 A1
20100196702 Furukawa Aug 2010 A9
20100213334 Davenport Aug 2010 A1
20100272913 Russell et al. Oct 2010 A1
20100314575 Gao et al. Dec 2010 A1
20100330347 Badyal et al. Dec 2010 A1
20110020637 Ikishima et al. Jan 2011 A1
20110027531 Uchida et al. Feb 2011 A1
20110033662 Ikishima et al. Feb 2011 A1
20110111656 Gao et al. May 2011 A1
20110184082 Wright et al. Jul 2011 A1
20110206925 Kissel et al. Aug 2011 A1
20110217544 Young et al. Sep 2011 A1
20110243985 Pagani et al. Oct 2011 A1
20110251318 Ishizaki et al. Oct 2011 A1
20110303156 Sikka et al. Dec 2011 A1
20110313082 Popp Dec 2011 A1
20120009396 Sikka et al. Jan 2012 A1
20120040577 Kissel et al. Feb 2012 A1
20120045954 Bleecher et al. Feb 2012 A1
20130139309 Bleecher et al. Jun 2013 A1
20130216820 Riddle et al. Aug 2013 A1
20140205804 Jones et al. Jul 2014 A1
20140296409 Sikka et al. Oct 2014 A1
20140349061 Sikka et al. Nov 2014 A1
20150005424 Jones et al. Jan 2015 A1
20150030779 Bleecher et al. Jan 2015 A1
20150097475 Sikka et al. Apr 2015 A1
20150320646 Kameya et al. Nov 2015 A1
20150368500 Sikka et al. Dec 2015 A1
Foreign Referenced Citations (232)
Number Date Country
1 002 256 Dec 1976 CA
2175848 Dec 1996 CA
2 796 305 Sep 2011 CA
10 2010 022 265 May 2010 DE
0 166 363 Jan 1986 EP
0 207 282 Jul 1987 EP
0 307 915 Mar 1989 EP
0 317 057 May 1989 EP
0 332 141 Sep 1989 EP
0 386 991 Sep 1990 EP
0 399 568 Nov 1990 EP
0 446 391 Sep 1991 EP
0 452 723 Oct 1991 EP
0 472 215 Feb 1992 EP
0 476 510 Mar 1992 EP
0 493 270 Jul 1992 EP
0 545 201 Jun 1993 EP
0 623 656 Nov 1994 EP
0 649 887 Apr 1995 EP
0 657 393 Jun 1995 EP
0 714 870 Jun 1996 EP
0 714 921 Jun 1996 EP
0 719 743 Jul 1996 EP
0 719 821 Jul 1996 EP
0 739 714 Oct 1996 EP
0 745 567 Dec 1996 EP
0 745 568 Dec 1996 EP
0 752 459 Jan 1997 EP
0 770 706 May 1997 EP
0 799 791 Oct 1997 EP
0 811 430 Dec 1997 EP
0 863 191 Sep 1998 EP
0 903 389 Mar 1999 EP
0 904 343 Mar 1999 EP
0 914 873 May 1999 EP
0 915 103 May 1999 EP
0 930 351 Jul 1999 EP
1 047 735 Nov 2000 EP
1 048 696 Nov 2000 EP
1 097 979 May 2001 EP
1 108 735 Jun 2001 EP
1 113 064 Jul 2001 EP
1 136 539 Sep 2001 EP
1 180 533 Feb 2002 EP
1 187 872 Mar 2002 EP
1 193 289 Apr 2002 EP
1 215 252 Jun 2002 EP
1 261 559 Dec 2002 EP
1 360 253 Nov 2003 EP
1 362 904 Nov 2003 EP
1 387 011 Feb 2004 EP
1 387 169 Feb 2004 EP
1 392 619 Mar 2004 EP
1 392 772 Mar 2004 EP
1 401 903 Mar 2004 EP
1 407 792 Apr 2004 EP
1 429 919 ZA1 Jun 2004 EP
1 433 821 Jun 2004 EP
0 969 718 Sep 2004 EP
1 473 355 Nov 2004 EP
1 475 234 Nov 2004 EP
1 479 738 Nov 2004 EP
1 492 837 Jan 2005 EP
1 503 813 Feb 2005 EP
1 524 290 Apr 2005 EP
1 583 615 Oct 2005 EP
1 902 091 Jan 2007 EP
1 752 284 Feb 2007 EP
1 857 497 Nov 2007 EP
1 873 218 Jan 2008 EP
1 875 279 Jan 2008 EP
1 883 669 Feb 2008 EP
1 908 804 Apr 2008 EP
1 988 129 Nov 2008 EP
1 997 619 Dec 2008 EP
2 346 678 Jul 2011 EP
2 678 400 Aug 2012 EP
2 547 832 Jan 2013 EP
2 791 255 Jun 2013 EP
2 864 430 Apr 2015 EP
1 341 605 Dec 1973 GB
1 465 495 Feb 1977 GB
2 484 751 Apr 2012 GB
62-246960 Oct 1987 JP
H05-186738 Jul 1993 JP
H07-090691 Apr 1995 JP
H10-309768 Nov 1998 JP
2002-020575 Jan 2002 JP
2004-143352 May 2004 JP
2004162133 Jun 2004 JP
2004308984 Nov 2004 JP
2005082616 Mar 2005 JP
2005-533946 Nov 2005 JP
2006131938 May 2006 JP
2006-176559 Jul 2006 JP
2007144917 Jun 2007 JP
2007182491 Jul 2007 JP
2007-526366 Sep 2007 JP
2008228958 Oct 2008 JP
2009071672 Apr 2009 JP
2009-100879 May 2009 JP
2009-120792 Jun 2009 JP
10-2003-052853 Jun 2003 KR
10-2009-90240 Oct 2010 KR
175646 Aug 1994 MX
183533 Dec 1996 MX
192053 May 1999 MX
195031 Jan 2000 MX
199899 Nov 2000 MX
201072 Mar 2001 MX
203880 Aug 2001 MX
205074 Nov 2001 MX
PA01011653 Dec 2002 MX
215752 Aug 2003 MX
PA02006399 Sep 2003 MX
PA04010165 Feb 2005 MX
PA05006898 Aug 2005 MX
PA02012841 Jan 2006 MX
234477 Feb 2006 MX
PA06003323 Mar 2006 MX
WO 86-05389 Sep 1986 WO
WO 91-04305 Apr 1991 WO
WO 93-16131 Aug 1993 WO
WO 94-13734 Jun 1994 WO
WO 96-04123 Feb 1996 WO
WO 96-07621 Mar 1996 WO
WO 97-07993 Mar 1997 WO
WO 98-20960 May 1998 WO
WO 99-23137 May 1999 WO
WO 99-23437 May 1999 WO
WO 99-40431 Aug 1999 WO
WO 99-47578 Sep 1999 WO
WO 99-48339 Sep 1999 WO
WO 99-57185 Nov 1999 WO
WO 99-64363 Dec 1999 WO
WO 00-05321 Feb 2000 WO
WO 00-14297 Mar 2000 WO
WO 00-25938 May 2000 WO
WO 00-34361 Jun 2000 WO
WO 00-39240 Jul 2000 WO
WO 00-46464 Aug 2000 WO
WO 00-66241 Nov 2000 WO
WO 01-19745 Mar 2001 WO
WO 01-62682 Aug 2001 WO
WO 01-74739 Oct 2001 WO
WO 01-79142 Oct 2001 WO
WO 01-79371 Oct 2001 WO
WO 01-98399 Dec 2001 WO
WO 02-14417 Feb 2002 WO
WO 02-28951 Apr 2002 WO
WO 02-062910 Aug 2002 WO
WO 02-074869 Sep 2002 WO
WO 02-098983 Dec 2002 WO
WO 03-010255 Feb 2003 WO
WO 03-012004 Feb 2003 WO
WO 03-030879 Apr 2003 WO
WO 03-037702 May 2003 WO
WO 03-045693 Jun 2003 WO
WO 03-063646 Aug 2003 WO
WO 03-080258 Oct 2003 WO
WO 03-082998 Oct 2003 WO
WO 03-093568 Nov 2003 WO
WO 2004-009920 Jan 2004 WO
WO 2004-012625 Feb 2004 WO
WO 2004-043319 May 2004 WO
WO 2004-058418 Jul 2004 WO
WO 2004-104116 Dec 2004 WO
WO 2004-110132 Dec 2004 WO
WO 2005-021843 Mar 2005 WO
WO 2005-023935 Mar 2005 WO
WO 2005-028562 Mar 2005 WO
WO 2005-068399 Jul 2005 WO
WO 2005-077429 Aug 2005 WO
WO 2006044641 Apr 2006 WO
WO 2006-044642 Apr 2006 WO
WO 2006-081891 Aug 2006 WO
WO 2006-083600 Aug 2006 WO
WO 2006-101934 Sep 2006 WO
WO 2006-135755 Dec 2006 WO
WO 2007-011731 Jan 2007 WO
WO 2007-027276 Mar 2007 WO
WO 2007-052260 May 2007 WO
WO 2007-053266 May 2007 WO
WO 2007-056427 May 2007 WO
WO 2007-070801 Jun 2007 WO
WO 2007-075407 Jul 2007 WO
WO 2007-092746 Aug 2007 WO
WO 2007-102960 Sep 2007 WO
WO 2007-104494 Sep 2007 WO
WO 2007-126432 Nov 2007 WO
WO 2007-126743 Nov 2007 WO
WO 2007-130294 Nov 2007 WO
WO 2007-149617 Dec 2007 WO
WO 2008-004827 Jan 2008 WO
WO 2008-004828 Jan 2008 WO
WO 2008-006078 Jan 2008 WO
WO 2008-021791 Feb 2008 WO
WO 2008-035347 Mar 2008 WO
WO 2008-035917 Mar 2008 WO
WO 2008-050895 May 2008 WO
WO 2008-051221 May 2008 WO
WO 2008-066828 Jun 2008 WO
WO 2008-078346 Jul 2008 WO
WO 2008-106494 Sep 2008 WO
WO 2008-112158 Sep 2008 WO
WO 2008-123650 Oct 2008 WO
WO 2008-123955 Oct 2008 WO
WO 2008-123961 Oct 2008 WO
WO 2008-134243 Nov 2008 WO
WO 2008-137973 Nov 2008 WO
WO 2008-151991 Dec 2008 WO
WO 2008-153687 Dec 2008 WO
WO 2009-003847 Jan 2009 WO
WO 2009-005465 Jan 2009 WO
WO 2009-012116 Jan 2009 WO
WO 2009-018327 Feb 2009 WO
WO 2009-032988 Mar 2009 WO
WO 2009-037717 Mar 2009 WO
WO 2009-041752 Apr 2009 WO
WO 2009-061199 May 2009 WO
WO 2009-076108 Jun 2009 WO
WO 2009-148611 Dec 2009 WO
WO 2009-158567 Dec 2009 WO
WO 2010033288 Mar 2010 WO
WO 2010042191 Apr 2010 WO
WO 2010-042668 Apr 2010 WO
WO 2011-116005 Sep 2011 WO
WO 2011-151151 Dec 2011 WO
WO 2012-115986 Aug 2012 WO
WO 2013-090939 Jun 2013 WO
WO 2014-003852 Jan 2014 WO
WO 2015-048539 Apr 2015 WO
Non-Patent Literature Citations (110)
Entry
International Search Report and Written Opinion, International Application No. PCT/US12/25982 (published as International Publication No. WO 2012/115986) (Jun. 13, 2012) (9 pages).
U.S. Appl. No. 60/699,200, filed Jul. 14, 2005, Guire et al. (Innovative Surface Technologies, Inc.).
U.S. Appl. No. 60/807,143, filed Jul. 12, 2006, Guire et al. (Innovative Surface Technologies, Inc.).
U.S. Appl. No. 60/891,876, filed Feb. 27, 2007, Lawin et al. (Innovative Surface Technology, Inc.).
U.S. Appl. No. 61/058,902, filed Jun. 4, 2008, Driver et al.
U.S. Appl. No. 61/090,002, filed Aug. 19, 2008, Driver et al.
U.S. Appl. No. 61/133,273, filed Jun. 27, 2008, Driver et al.
U.S. Appl. No. 61/198,414, filed Jun. 16, 2009, Gao.
U.S. Appl. No. 61/216,540, filed May 18, 2009, Driver et al.
U.S. Appl. No. 61/252,229, filed Oct. 16, 2009, Gao.
EP App 06787306.7 prosecution history, now EP 1 902 091, as of May 22, 2013, Guire (Innovative Surface Technologies) (published as WO2007/11731).
“Composition,” in Collins English Dictionary, found at http://www.credoreference.com/entry/hcengdict/composition, 2000 (viewed Aug. 26, 2013).
“NeverWet—product characteristics,” found at http://www.neverwet.com/product-characteristics.php, NeverWet LLC (viewed Mar. 7, 2013).
“Yield strength, elastic limit, and ultimate strength,” found at http://inventor.grantadesign.com/en/notes/science/material/S04%20strength.htm, Granta Design Ltd. (viewed Feb. 10, 2015).
2009 R&D 100 Award Entry Form (p. 5 excerpt from another document) showing Fig. 1 Schematic of NICE (“no ice nanocoating”) (2009).
Bae et al., “Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent,” J Colloid Interface Sci, abstract only (May 3, 2009; epublication ahead of print).
Bayer Materials Science product information on Bayhydrol® 110 polyurethane dispersion (two first pages of this brochure) (Aug. 2002).
Bayer Materials Science product information on Bayhydrol® 122 polyurethane dispersion (Jan. 2004).
Bayer Materials Science product information on Bayhydrol® 124 polyurethane dispersion (Jan. 2004).
Bayer Materials Science product information on Bayhydrol® 140AQ, polyurethane dispersion (Aug. 2002).
Bayer Materials Science product information on Bayhydrol® A145, aqueous hydroxyl-functional polyurethane dispersion (Jan. 2010).
Beyler et al, “Thermal Decomposition of Polymers,” Chapter 7 of The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 1-110-1-131 (2002).
Bliznakov et al., “Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper,” Langmuir, 25(8):4760-4766, abstract only (Apr. 21, 2009).
Boinovich et al., “Principles of design of superhydrophobic coatings by deposition from dispersions,” Langmuir, 25(5):2907-2912, abstract only (Mar. 3, 2009).
Boinovich et al., “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Bravo et al., “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23(13):7293-7298, abstract only (Jun. 19, 2007; epublished May 25, 2007).
Choi et al., “Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface,” Phys Rev Lett, 96(6):066001, abstract only (Feb. 17, 2006; epublished Feb. 16, 2006).
Clark, M.D.T. et al. “Paints and Pigments” available at nzic.org.nz/ChemProcesses/polymers/10D.pdf (copyright 2005-2008 at http://nzic.org.nz/ChemProcesses/polymers/).
de Givenchy et al., “Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers,” Langmuir, 25(11):6448-6453, abstract only (Jun. 2, 2009).
Du, “Surfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries,” in Coatings Technology Handbook, Third Edition, Tracton (ed.), CRC Press (2005).
EPO Communication dated Dec. 5, 2011, regarding third-party observations filed in European Application No. 09771098.2.
Expancel DE product list, “Product Specification for Expancel® Microspheres,” Issue 10.2010, AkzoNobel (Oct. 2010).
Extended European search report for European Application No. 920119918, dated Jul. 22, 1997.
Extended European search report for European Application No. 09771098.2, dated Dec. 27, 2011.
Extended European search report for European Application No. 09819518, dated Jul. 22, 2014.
Fürstner et al., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces,” Langmuir, 21(3):956-961, abstract only (Feb. 1, 2005).
García et al., “Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces; preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica,” J Am Chem Soc, 129(16):5052-5060, abstract only (Apr. 25, 2007; epublished Mar. 31, 2007).
Gonçalves et al., “Superhydrophobic cellulose nanocomposites,” J. Colloid Interface Sci, 324(1-2):42-46, abstract only (Aug. 2008; epublished May 7, 2008).
Guo et al., “A novel approach to stable superhydrophobic surfaces,” Chemphyschem, 7(8):1674-1677, abstract only (Aug. 11, 2006; epublished Jul. 17, 2006).
International Preliminary Report on Patentability for International Application No. PCT/US2010/059909, dated Apr. 21, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2009/005512, dated Dec. 8, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2009/048775, dated Nov. 19, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2009/059909, dated Dec. 4, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2010/048711, dated Mar. 17, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2010/054936, dated Feb. 16, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2010/070200, dated Feb. 27, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2013/031751, dated Dec. 23, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2014/057848, dated Dec. 29, 2014.
Jauregui-Beloqui et al., “Thermoplastic polyurethane-fumed silica composites: influence of the specific surface area of fumed silica on the viscoelastic and adhesion properties,” Journal of Adhesive Science and Technology, 13(6):695-711, abstract only (1999).
Kietzig et al., “Patterned superhydrophobic metallic surfaces,” Langmuir, 25(8):4821-4827, abstract only (Apr. 21, 2009).
Kim et al., “A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold,” Chem Commun (Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
Kobayashi et al., Surface Tension of Poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-methylsiloxane], Macromolecules, 23:4929-4933 (1990).
Kraton® FG1924 G Polymer, Data Document, Identifier K123DDeO9U, the KRATON Polymers Group of Companies (Aug. 10, 2009).
Le Marechal et al., “Textile Finishing Industry as an Important Source of Organic Pollutants,” in Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update, Puzyn (ed.), Chapter 2, pp. 29-54, InTech (2012).
Lee et al., “Impact of a superhydrophobic sphere onto water,” Langmuir, 24(1):142-145, abstract only (Jan. 1, 2008; epublished Nov. 14, 2007).
Li et al., “Conversion of a metastable superhydrophobic surface to an ultraphobic surface,” Langmuir, 24(15):8008-8012, abstract only (Aug. 5, 2008; epublished Jul. 8, 2008).
Ling et al., “Stable and transparent superhydrophobic nanoparticle films,” Langmuir, 25(5):3260-3263, abstract only (Mar. 3, 2009).
Litvinov et al., “Structure of a PDMS Layer Grafted onto a Silica Surface Studied by Means of DSC and Solid-State NMR,” Macromolecules, 35(11):4356-4364 (2002).
Manca et al., “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir, 25(11):6357-6362, abstract only (Jun. 2, 2009).
Marmur, “Super-hydrophobicity fundamentals: implications to biofouling prevention,” Biofouling, 22(1-2):107-115, abstract only (2006).
Ming et al., “Toward Superlyophobic Surfaces,” Contact Angle, Wettability and Adhesion (ed. Mittal), vol. 6, pp. 191-205, Koninklijke Brill NV, Leiden (2009).
Nosonovsky et al., “Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions,” Langmuir, 24(4):1525-1533, abstract only (Feb. 19, 2008; epublished Dec. 12, 2007).
Park et al., “Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials,” J. Colloid Interface Sci, 336(1):298-303, abstract only (Aug. 1, 2009; epublished Apr. 15, 2009).
Perez, Jr., et al., “Performance and Processing Enhancements of Aromatic Polyurea Elastomer Systems Prepared from High 2,4′-MDI Isocyanates,” in Polyurethanes Conference 2000: Defining the Future Through Technology, Boston, Massachusetts, pp. 219-232 (Oct. 8-11, 2000).
Piret et al., “Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces,” Langmuir, 24(5):1670-1672, abstract only (Mar. 4, 2008; epublished Feb. 6, 2008).
Puukilainen et al., “Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures,” Langmuir, 23(13):7263-7268, abstract only (Jun. 19, 2007; epublished May 23, 2007).
Sakai et al., “Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces,” Langmuir, 22(11):4906-4909, abstract only (May 23, 2006).
Sherwin Williams Chemical Coatings product information for CC-D14, POLANE® 2.8T, plus polyurethane enamel (Oct. 19, 2006).
Sherwin Williams Chemical Coatings product information for CC-D5, POLANE® T, polyurethane enamel (Sep. 2001).
Sherwin Williams Chemical Coatings product information for CC-E14, POLANE® 700T, water reducible enamel (May 2010).
Shirtcliffe et al., “Wetting and wetting transitions on copper-based super-hydrophobic surfaces,” Langmuir, 21(3):937-943, abstract only (Feb. 1, 2005).
Smith et al., “Modeling of PDMS—Silica Nanocomposites,” NSTI-Nanotech, 3:115-118 (2004).
SSW Holding Company, Inc. v. Schott Gemtron Corporation, Civil Docket, Civil Action No. 3:12-cv-00661-CRS (as of Dec. 6, 2013).
SSW Holding Company, Inc. v. Schott Gemtron Corporation, Complaint for Patent Infringement, Demand for Jury Trial, Civil Action No. 3:12-cv-00661-CRS (Oct. 16, 2012).
Su et al., “From Suerhydrophophilic to Superhydrophobic: Controlling Wettability of Hydroxide Zinc Carbonate Film on Zinc Plates,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Synytska et al., “Wetting on Fractal Superhydrophobic Surfaces from ‘Core-Shell’ Particles: A Comparison of Theory and Experiment,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Torró-Palau et al., “Characterization of polyurethanes containing different silicas,” International Journal of Adhesion and Adhesives, 21(1):1-9, abstract only (2001).
Two webpages re pigment particle size: http://www.specialchem4coatings.com/tc/color-handbook/index.aspx?id=size and http://www.specialchem4coatings.com/tc/tio2/index.aspx?id=whiteness, SpecialChem, S.A. (printed on Jul. 19, 2013).
Venkateswara et al., “Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method,” J Colloid Interface Sci, 332(2):484-490, abstract only (Apr. 15, 2009; epublished Jan. 14, 2009).
Wang et al., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity,” Chem Commun (Camb),7:877-879, abstract only (Feb. 21, 2008; epublished Dec. 18, 2007).
Yang et al., “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, 97(11):116103, abstract only (Sep. 15, 2006; epublished Septenber 14, 2006).
Zhang et al., “Application of superhydrophobic edge effects in solving the liquid outflow phenomena,” Langmuir, 23(6):3230-3235, abstract only (Mar. 13, 2007; epublished Jan. 25, 2007).
Zhou et al., “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings,” Journal of Materials Science, 39:1593-1594, abstract only (2004).
“Surfactant,” found at https://en.wikipedia.org/wiki/Surrfactant, Wikipedia (viewed Dec. 28, 2015).
“TABER® Test Method Reference,” found at http://www.taberindustries.com/documents/Taber Test Reference by Method.pdf (Jun. 2014, viewed Oct. 6, 2015) (2 pages).
Extended European search report for European Application No. 12749985.3, dated Oct. 15, 2015.
Extended European search report for European Application No. 12857248.4, dated Apr. 7, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2011/028541 (published as WO Publication No. 2011/116005), dated May 17, 2011.
Kovalchuk et al., “Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?,” Advances in Colloid and Interface Science, 210:65-71 (available online Apr. 13, 2014).
Kraton® FG1901 G Polymer, Data Document, Identifier K127DDh14U, the KRATON Polymers Group of Companies (Jun. 17, 2014).
Kraton™ Polymers for Modification of Thermoplastics, found at http://docs.kraton.com/kraton/attachments/downloads/81311AM.pdf (last accessed on Aug. 3, 2015).
Mohammadi et al., “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces,” Langmuir, 20:9657- 9662 (available online Oct. 2, 2004).
Prosecution History of U.S. Appl. No. 13/082,319, filed Apr. 7, 2011, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 13/082,327, filed Apr. 7, 2011, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 13/618,779, filed Sep. 14, 2012, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 14/229,047, filed Mar. 28, 2014, as downloaded on Jan. 14, 2016.
Prosecution History of U.S. Appl. No. 14/305,425, filed Jun. 16, 2014, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 14/320,315, filed Jun. 30, 2014, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 14/320,358, filed Jun. 30, 2014, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 14/323,660, filed Jul. 3, 2014, as downloaded on Jan. 5, 2016.
Prosecution History of U.S. Appl. No. 14/837,253, filed Aug. 27, 2015, as downloaded on Jan. 12, 2016.
International Preliminary Report on Patentability for International Application No. PCT/US2009/048775, dated January, Nov. 19, 2009.
Extended European search report for European Application No. 11756868.8, dated Feb. 5, 2016.
Extended European search report for European Application No. 13809987.4, dated Feb. 22, 2016.
Machine translation, German Application No. DE10306891, 8 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2002-020575 A, 15 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2004-143352 A, 13 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2006-176559 A, 15 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2009-120792 A, 24 pages, (prepared Aug. 6, 2015).
Shang et al., “Facile fabrication of superhydrophpobic surface via SiO2/fluoro-containing polymer composite particles,” CAPlus Abstract, Accession No. 2013:1045604, 2 pages (Jul. 5, 2013).
Related Publications (1)
Number Date Country
20140087134 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61445001 Feb 2011 US
Continuations (1)
Number Date Country
Parent PCT/US2012/025982 Feb 2012 US
Child 13972034 US