Claims
- 1. In a method of superplastic forming wherein aluminum alloy metal is superplastically formed at superplastic forming temperature, the improvement comprising providing said aluminum alloy metal comprising aluminum and including some amount up to 10% of one or more of the elements from the group of scandium, yttrium, gadolinium, holmium, dysprosium, erbium, ytterbium, lutetium, and terbium, the grand total of said elements in said group not exceeding 20%, the amount, if any, of zirconium in said alloy being 0.25% or less.
- 2. The method according to claim 1 wherein said aluminum alloy contains one or more of the following elements: up to 20% Mg, up to 5% Si, up to 10% Ag, up to 10% Cu, up to 5% Ge, up to 7% Li, up to 49% Zn and up to 0.25% Zr.
- 3. The method according to claim 1 wherein said aluminum alloy contains 0.01 to 10% Sc and one or more of the elements up to 20% Mg, up to 5% Si, up to 10% Ag, up to 10% Cu, up to 5% Ge, up to 7% Li, up to 49% Zn and up to 0.2% Zr.
- 4. An improved superplastically formed articles of manufacture comprising an aluminum alloy comprising more than 50% aluminum and including some amount up to 10% of one or more elements from the group of scandium, yttrium, gadolinium, holmium, dysprosium, erbium, ytterbium, lutetium, and terbium, the grand total of said elements in said group not exceeding 20%, the amount, if any, of zirconium being 0.25% or less.
- 5. The improved article according to claim 4 wherein said aluminum alloy contains one or more of the following elements: 0.1 to 20% Mg, 0.1 to 4% Si, 0.1 to 10% Ag, 0.1 to 10% Cu, 0.1 to 5% Ge, and 0.1 to 7% Li and 0.1 to 49% Zn.
- 6. The improved article according to claim 4 wherein said aluminum alloy contains 0.1 to 5% Li.
- 7. The improved article according to claim 4 wherein said alloy contains 0.01 to 5% Sc.
- 8. In a method of superplastic forming wherein aluminum alloy stock is superplastically formed at superplastic forming temperature, the improvement comprising: providing said aluminum alloy comprising a heat treatable 2XXX, 6XXX or 7XXX aluminum alloy containing about 0.05 to 1% scandium and about 0.05 to 0.25% zirconium.
- 9. In the method according to claim 1 wherein said aluminum alloy further contains 0.05 to 5% one or more of the group of yttrium, gadolinium, holmium, dysprosium, erbium, ytterbium, lutetium.
- 10. In the method according to claim 8 wherein said alloy is selected from:
- (a) 7XXX alloys containing about 4 to 10% Zn, 1 to 3.5% Mg and 1 to 3.5% Cu;
- (b) 2XXX alloys containing about 3.8 to 6% Cu and one or more of about 0.2 to 1% Mn and about 0.3 to 3% Mg; and
- (c) 6XXX alloys containing about 0.2 to 2% Si and about 0.3 to 2% Mg, said alloy further containing about 0.1 to 0.7% scandium and about 0.05 to about 0.2% zirconium.
- 11. In the method according to claim 8 wherein said alloy contains about 4 to 10% zinc, about 1 to 3.5% magnesium, about 1 to 3.5% copper, about 0.1 to 0.7% scandium, and about 0.07 to 0.2% zirconium.
- 12. In a method according to claim 8 wherein said alloy contains 5.5 to 7.1% zinc, about 1.8 to 2.8% magnesium, about 1.8 to 2.8% copper, about 0.07 to about 0.2% zirconium, and about 0.1 to 0.7% scandium.
- 13. An improved superplastically formed article of manufacture comprising a heat treatable 2XXX, 6XXX or 7XXX aluminum alloy, said alloy further containing about 0.05 to 1% scandium and about 0.05 to 0.25% zirconium.
- 14. The improved superplastically formed article according to claim 13 wherein said alloy is selected from:
- (a) 7XXX alloys containing about 4 to 10% Zn, 1 to 3.5% Mg and 1 to 3.5% Cu;
- (b) 2XXX alloys containing about 3.8 to 6% Cu and one or more of about 0.2 to 1% Mn and about 0.3 to 3% Mg; and
- (c) 6XXX alloys containing about 0.2 to 2% Si and about 0.3 to 2% Mg, said alloy further containing about 0.1 to 0.7% scandium and about 0.05 to about 0.2% zirconium.
- 15. The improved superplastically formed article according to claim 13 wherein said alloy contains about 4 to 10% zinc, about 1 to 3.5% magnesium, about 1 to 3.5% copper, about 0.1 to 1% scandium, and about 0.05 to 0.25% zirconium.
- 16. The improved superplastically formed article according to claim 13 wherein said alloy contains about 5.5 to 7.1% zinc, about 1.8 to 2.8% magnesium, about 1.8 to 2.8% copper, about 0.07 to about 0.2% zirconium, and about 0.1 to 0.7% scandium.
- 17. In a method of superplastic forming wherein aluminum alloy metal is superplastically formed at superplastic forming temperature, the improvement comprising: providing said aluminum alloy comprising a heat treatable aluminum alloy containing about 5.5 to 7.1% Zn, about 1.8 to 2.8% Mg, about 1.8 to 2.8% Cu, about 0.05 to 1% Sc and about 0.05 to 0.25% Zr.
- 18. In a method of superplastic forming wherein aluminum alloy metal is superplastically formed at superplastic forming temperature, the improvement comprising: providing said aluminum alloy comprising a heat treatable aluminum alloy containing about 4 to 10% Zn, about 1 to 3.5% Mg, about 1 to 3.5% Cu, about 0.1 to 1% Sc, and about 0.05 to 0.25% Zr.
- 19. In a method of superplastic forming wherein aluminum alloy metal is superplastically formed at superplastic forming temperature, the improvement comprising: providing said aluminum alloy comprising a heat treatable aluminum alloy containing about 3.8 to 6% Cu and one or more of about 0.2 to 1% Mn and about 0.3 to 3% Mg.
- 20. The method according to claim 1 wherein the superplastic forming of said aluminum alloy metal includes forging.
- 21. The method according to claim 8 wherein the superplastic forming of said aluminum alloy metal includes forging.
- 22. The method according to claim 10 wherein the superplastic forming of said aluminum alloy metal includes forging.
- 23. The method according to claim 18 wherein the superplastic forming of said aluminum alloy metal includes forging.
- 24. The method according to claim 19 wherein the superplastic forming of said aluminum alloy metal includes forging.
- 25. The article according to claim 4, the manufacture of which includes forging.
- 26. The article according to claim 5, the manufacture of which includes forging.
- 27. The article according to claim 13, the manufacture of which includes forging.
- 28. The article according to claim 14, the manufacture of which includes forging.
- 29. The article according to claim 15, the manufacture of which includes forging.
- 30. The article according to claim 16, the manufacture of which includes forging.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. application Ser. No. 085,851, filed Aug. 14, 1987 which, in turn, was a continuation-in-part of application Ser. No. 841,648, filed Mar. 20, 1986, now U.S. Pat. No. 4,689,090.
US Referenced Citations (10)
Non-Patent Literature Citations (2)
Entry |
"Influence of Fine Transition-Metal Particles and Grain Structure on Fracture Behavior of Al-Cu-Mg Alloys", A. M. Drits et al., Izvestiya Akademii Nauk SSSR, Metally, No. 4, pp. 150-155, 1985. |
"Superplasticity of Alloy of the Al-Cu-Mg System with Additions of Transition Metals", A. M. Diskin et al., Sov. Non-Ferrous Met. Res., 1986, 14(6), 499-500. |
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
85851 |
Aug 1987 |
|
Parent |
841648 |
Mar 1986 |
|