1. Field of the Invention
This invention pertains, in general, to a capacitive discharge ignition (“CDI”) system, and in particular but not by way of limitation, to a supplemental CDI system utilizing an energy storage device for initiation or re-initiation of combustion within internal combustion engines, thereby requiring minimal mechanical energy for initiation or re-initiation of combustion in an engine.
2. History of Related Art
Mechanical-start ignition systems for internal combustion engines are the bane to many users, regardless of the purpose of the engine. This is because the engines, which may be started by kick-starts, pull-starts, or other mechanical-based starting mechanisms, require a large amount of force to provide sufficient spark energy for ignition initiation. This problem becomes readily apparent during re-starting the engine, which may be very hot from prolonged system operation.
Such engines typically utilize magneto-based ignition systems. A magneto is an electric generator, which establishes a magnetic flux through the use of one or more permanent magnets. The magneto is a self-contained unit used advantageously for ignition where a generator and a battery are not needed to supply power to other accessories.
The position of the rotor 125 shown in
Referring now to
One end of both the primary winding 130 and of the secondary winding 135 is grounded (
Referring to
Because the magneto 100 requires some sort of mechanical input to initiate rotation of the rotor 125 therein, on starting, the speed of the magneto 100 may be so low that the EMF is not sufficient to produce a hot spark and/or multiple sparks, and thus initiate combustion in an engine. During re-start of the engine, similar problems occur, such as spark plug fouling, improper engine cylinder thermal properties (i.e. too hot or too cold), improper fuel/air ratio, and similar problems.
In mechanically-timed ignitions, one method of overcoming such problems is by impulse starting, in which a rotor of a magneto is driven through a spring. During cranking the rotor is restrained from turning until the engine moves to the proper firing position, at which time the rotor is suddenly released. The energy stored in the spring produces a high, instantaneous, angular velocity to the rotor, resulting in a high EMF and a hot spark.
Such impulse starters are commonly used in older aircraft applications. However, as can be appreciated by the user of the engine, supplying enough mechanical energy during cranking can be tedious, time-consuming, and wearing. For example, in the motorcycle racing industry, re-starting a hot engine by multiple kick-starts can result in loss of precious amounts of time. Similar frustration is found by the avid (or not-so-avid) lawn care consumer, who must exert large amounts of physical energy while pulling the crank to start or re-start the engine.
In the motorcycle industry in particular, typical motorcycle engine ignition has low spark energy at the lower RPM where starting occurs. Several methods have been used to provide more energy to the spark plugs, and will be described briefly below.
First, spark plugs have been provided with small diameter center electrodes. These have shown to reduce the voltage necessary to ionize the spark plug gap and thus quickly bring the engine to steady-state performance. Such an approach has been shown to assist poor engine performance when fuel/air ratios are too lean (during a cold engine start up) or too rich (during a hot engine start up).
Second, motorcycles have been fitted with automatic and manual compression releases. These releases allow the engine to be kick-started easier through the release of compression in the cylinders, thus increasing the speed of rotation of the rotor, increasing the corresponding spark energy from the magneto.
Third, timing on the ignition systems has been adjusted to optimize the ignition of the fuel/air mixture. These complex systems require precise adjustments to obtain the most efficient mixture of fuel/air in the engine, and assist in minimizing the possibility of kickback, which is the firing of the engine in reverse. The reversal of the engine often causes injury to the rider and mechanical failure in the starting engine.
A choke lever may also be used to enrich the fuel/air mixture in the carburetor. Such an approach is especially useful in cold start situations due to the increased density of the cold air at engine start-up. A hot start lever may likewise be provided to lean out the fuel/air mixture in the carburetor, which also is useful when the engine stalls and an accelerator pump or the like is errantly activated in an attempt to prevent engine stall.
Probably the most obvious approach to solve the start/re-start problems in this industry would be installation of an electric starting motor, such as those used in automotive applications. An electric starting motor would spin the engine fast enough and with multiple revolutions to overcome the low spark energy at start up while allowing the engine to reach ideal fuel/air mixture.
Unfortunately, these systems have proven to be less-than-ideal, and as a result are not widely accepted. In particular, each of these systems adds increased weight, which is undesirable, especially in motorcycle racing, lawn mowing, landscaping and similar applications. Further, addition of such components may alter the weight distribution and balance of the mechanism, which is unacceptable in certain applications. Each system further adds significantly increased cost and complexity, and results in unsolvable breakdowns that require professional assistance to repair. Such components may also add increased rotational mass (particularly in the example of the electric starting motor), which is especially noticeable in racing applications where engine acceleration is critical. Finally, each component may be subject to dirt and water contamination, which will foul the starting and charging system of the application, and require significant time to repair.
As a result, all of these solutions go virtually unused in the magneto-based ignition industry, or if they are used, the user deals with the undesired compromise. The current magneto-ignition engines start poorly even in ideal situations, or not at all in less than ideal situations. And most of the current magneto-ignition engines require more tune-ups and repairs than should be necessary. Overall, these engine-starting problems cause far more frustration that need be, at a cost much higher than it should be.
These problems only get worse. Current and pending legislation in the United States mandates the use of four-stroke motorcycle engines, which have notoriously poor starting performance due to environmental concerns. These same concerns affect every industry utilizing magneto-ignition systems, and are forcing many manufacturers to adapt to four-stroke engines.
Add to these problems the harmful environmental effects such existing magneto-based ignition engines create. In particular, the multiple starts and re-starts of these engines release harmful hydrocarbons and other byproducts of fuel that does not combust within the engine. With recent and projected restrictions on the release of harmful environmental products both in U.S. and abroad, these problems will only become more apparent.
These deficiencies are solved by the present invention, which comprises the incorporation of a supplemental CDI device connected to a magneto-based ignition system for an internal combustion engine having a first CDI device. The first or primary CDI device includes a magneto-based ignition system electrically connected thereto, and to a supplemental CDI device. The supplemental CDI device includes an energy storing device, which may be rechargeable, a control for actuating the supplemental CDI device, a capacitive storing and discharge circuit for storing and delivering spark energy. A charging circuit may be provided for recharging the power in the energy storage device during steady-state operation of the internal combustion engine, a means to deliver the power from the capacitive storing circuit to the internal combustion engine, and a means to recharge the energy storage device during steady-state operation of the internal combustion engine.
The supplemental CDI device is adapted to receive, store and discharge stored energy from the energy storing device into a primary coil connected to a magneto. The primary coil, in turn, directs the stored energy to a secondary coil that is connected to a combustion source, which is used to initiate combustion in an internal combustion engine.
In operation, the supplemental CDI device is electronically connected to a magneto-based ignition system. During initial startup, mechanical energy provided by such devices as a pull-start mechanism or a kick-start mechanism, or even an electric start motor, is used to trigger the supplemental CDI device to bypass the magneto and first CDI device, to go to the primary coil and ignite the fuel/air mixture in a cylinder of the engine. After ignition, the supplemental CDI device is deactivated, and the first CDI device is activated. At this point the magneto continues to generate energy, at least a portion of which is stored in the energy storing device of the supplemental CDI system.
Should the engine cease to run, the supplemental CDI device is re-activated. Minimal mechanical energy is then required from a mechanical power source to rotate the magneto due to supplemental energy from the energy storing device of the supplemental CDI device, which results in the transfer of energy from the supplemental CDI device to the primary coil of the magneto and the delivery of high-powered energy pulses to the combustion source, thus insuring rapid re-ignition of the engine with minimal mechanical energy input.
Ignition in the engine occurs independent of the first CDI timing, because a control circuit within the supplemental CDI device is adapted to bypass the first CDI device and magneto. Likewise, ignition occurs due to increased spark energy delivered by the supplemental CDI device and multiple sparks, regardless of whether the fuel/air mixture is lean, rich or whether the combustion source is fouled. Upon restart of the engine, the control circuit disables the supplemental CDI device and re-enables the first CDI device.
The present invention thus provides for a rapid, low-energy re-start of an internal combustion engine utilizing a supplemental CDI device in a magneto-based ignition system.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following detailed description when taken in conjunction with the following Drawings, with like reference numerals denoting like elements, wherein:
Referring first to
The magneto 310 is coupled to at least one piston shaft 320 having a piston 325 in the internal combustion engine. A primary coil 330 and a pick-up coil 335 are connected to the magneto 310 at one end, and to a supplemental CDI device 300 at the other end. The supplemental CDI device 300, which is described in more detail herein and below, is electrically connected to a first CDI device 340 and includes an energy storing device 345, which may be incorporated therein.
An initiate/reset switch 350 may also be connected to the supplemental CDI device 300 for initiating actuation of the supplemental CDI device 300 or resetting same. The first CDI device 340, in turn, is electrically connected to an ignition coil 355. The ignition coil 355 is connected to one or more spark plugs 360, which are used to initiate combustion in the internal combustion engine.
Referring now to
The programmable capacitive storing and discharge circuit 415 may be adjusted to deliver power stored in the energy storing device 405 to the internal combustion engine, and may control the recharge of the energy storing device 405 during operation of the internal combustion engine. The programmable functionality of the capacitive discharge and storing circuit 415 provides the user the ability to adjust ignition timing, change performance parameters, and otherwise modify the supplemental CDI device 400, as required by the circumstances. It is to be appreciated that the energy storing device 400 may comprise a battery or a non-rechargeable battery, or other energy storage media, depending on the requirements of the application.
Referring now to
The supplemental CDI initiation actuator 560 may comprise a user-operated switch, or an automated control system, the function of which is described in more detail below, wherein a sensor or the like is utilized to determine engine properties and indicate when operation of the supplemental CDI device 550 is required or unnecessary. The supplemental CDI initiation actuator 560 may thus be adapted to engage or disengage the supplemental CDI device 550 manually or automatically. In the motorcycle embodiment of the present invention, the mechanical power input source 530 may comprise a kick-start mechanism, but certain substitutions, such as a pull-start mechanism or a bump-start process such as those used in standard transmission engines and the like may be substituted with no adverse effect on the system.
In addition, the mechanical startup mechanism may be a part of an electrical starting device, where such a device would be appreciated. Toward this end, it is conceived that the supplemental CDI system 510 may be utilized in a variety of applications, such as motorcycles, portable motors including power generators and the like, hand-held lawn grooming equipment, and automotive, aeronautical and aerospace applications. It is also to be appreciated that the supplemental CDI device may be retrofit on present applications or integrated in future applications to improve performance, where desired.
Referring now to
The supplemental capacitive discharge device is then actuated, referenced by 650. The supplemental CDI device is enabled, referenced by 650. Mechanical energy is again provided to rotate the rotor, referenced by 660, although it is important to note that only minimal mechanical energy is required during this step due to the energy storage device in the supplemental CDI device. The supplemental capacitive discharge device, powered by the energy storage device, then initiates combustion within the engine by delivering high-powered energy to combustion initiators, such as spark plugs, and thereby initiates the combustion process, referenced by 670.
The supplemental capacitive discharge device is then disengaged upon engine combustion or other suitable circumstances, referenced by 680, and the first capacitive discharge device resumes operation. Power generated by the magneto upon re-start is again stored in the energy storage device, referenced by 630. Thus, the method provides for an efficient, low-energy requirement initiation of combustion in an engine. It is to be appreciated that the apparatus and method may be used to initiate combustion during cold-start or hot-start conditions, should circumstances require.
Referring now to
If the RPM is over the threshold amount, which may be changed on any given application, according to parameters known in the art, the supplemental CDI device is disabled and ignition is transferred to a primary CDI device, indicated by 760. The process may then be terminated by the user, indicated by 770. If not, the process is repeated until threshold combustion is initiated within the engine.
Because the user of a supplemental CDI system of the present invention may not know when to engage or disengage the supplemental CDI device, a control circuit may be provided to engage or disengage the supplemental CDI device upon predetermined conditions, such as a minimal RPM rate in the engine, or thermal variations due to the initiation of steady-state combustion in the engine. Such a device is contemplated to be within the scope of the present invention. However, such control may be left to the user depending on the application. However, it is contemplated as within the scope of this invention that the user may be provided with controls governing the engagement/disengagement of the supplemental CDI device until combustion is initiated and at desired operation.
Given the advantages provided by the present invention, it is to be appreciated that the energy storage device may be fully charged upon initial ignition of the internal combustion engine. In this condition, minimal mechanical energy is required to initiate combustion due to the provision of energy from the fully-charged energy storage device.
The present invention therefore solves many of the problems in the art. In particular, the present invention assists in reducing harmful emissions through the decrease of hydrocarbons that will result from a single attempt at starting or restarting an engine. The lightweight design of the system provides excellent benefits to those in the lawncare industry, motorcycle industry, portable engine and generator industry, and related fields. The ability to have the energy device recharged further limits consumption of materials, thereby reducing costs and increasing product efficiency. The post-manufacturing installation capability of the present invention on present applications will satisfy most, if not all, practitioners. Finally, the present invention provides the much-needed benefit of a fast start or re-start of the internal combustion engine, with little effort by the user of the internal combustion engine.
Practitioners will further appreciate that the embodiments disclosed above are exemplary only, and that the present invention is not limited thereto, but rather includes all that is reasonably within the literal and equitable scope of the claims that follow.