The present invention relates to a supplemental device for attachment to an injection device.
A variety of diseases exists that require regular treatment by injection of a medicament. Such injection can be performed by using injection devices, which are applied either by medical personnel or by patients themselves. As an example, type-1 and type-2 diabetes can be treated by patients themselves by injection of insulin doses, for example once or several times per day. For instance, a pre-filled disposable insulin pen can be used as an injection device. Alternatively, a re-usable pen may be used. A re-usable pen allows replacement of an empty medicament cartridge by a new one. Either pen may come with a set of one-way needles that are replaced before each use. The insulin dose to be injected can then for instance be manually selected at the insulin pen by turning a dosage knob and observing the actual dose from a dose window or display of the insulin pen. The dose is then injected by inserting the needle into a suited skin portion and pressing an injection button of the insulin pen.
It has been described, for instance in WO 2011/117212 to provide a supplemental device comprising a mating unit for releasably attaching the device to an injection device. This device includes a camera and is configured to perform optical character recognition (OCR) on captured images visible through a dosage window of the injection pen, thereby to determine a dose of medicament that has been dialled into the injection device.
A first aspect of the invention provides a supplemental device for attachment to an injection device, the supplemental device comprising:
The housing may contain a first electromechanical switch and a second electromechanical switch and the actuators of the first and second electromechanical switches may be arranged so as to contact the rotatable surface of the injection device at different relative circumferential positions.
The rotatable surface may be corrugated and each switch may have a first state when its respective actuator is located in a trough of a corrugation and a second state when its respective actuator is located on a crest of a corrugation. The first state may be an open state and the second state may be a closed state.
The supplemental device may be configured such that, when it is attached to an injection device having a corrugated rotatable surface and when the rotatable surface is in a rotational position representing an integer dose value, the first and second switches both have either the first state or the second state. An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of the first and second switches to change from an initial state to the opposite state and back to the initial state. An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of the first and second switches to change from an initial state to the opposite state.
An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of one of the two switches to change from an initial state to the opposite state while the state of the other of the two switches does not change.
The supplemental device may be configured such that, when it is attached to an injection device having a corrugated rotatable surface and when the rotatable surface is in a rotational position representing an integer dose value, the first switch has the first state and the second switch has the second state. An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of the first and second switches to change from their respective initial states to the opposite states and back to their initial states. An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of the first and second switches to change from their respective initial states to the opposite states.
The processor arrangement may be configured to determine a direction of rotation of the rotatable surface from the order in which the states of the first and second switches change.
An increase or decrease of one integer dose unit in the rotational position of the rotatable surface may cause the state of one of the two switches to change from an initial state to the opposite state and back to the initial state and causes the state of the other of the two switches to change from an initial state to the opposite state.
A second aspect of the invention provides a system comprising the supplemental device of the first aspect of the invention and an injection device having a corrugated rotatable surface configured to rotate when a dose is dialled into or out of the injection device.
The rotatable surface may be a cylindrical surface and a 360 degree rotation of the cylindrical surface may correspond to 24 integer dose units.
Embodiments will now be described, by way of example only, with reference to the accompanying drawings, in which:
In the following, embodiments of the present invention will be described with reference to an insulin injection device. The present invention is however not limited to such application and may equally well be deployed with injection devices that eject other medicaments, or with other types of medical devices.
The injection device 1 of
Turning the dosage knob 12 may cause a mechanical click sound to provide acoustical feedback to a user. The numbers displayed in dosage window 13 are printed on a sleeve that is contained in housing 10 and mechanically interacts with a piston in insulin container 14. When needle 15 is stuck into a skin portion of a patient, and then injection button 11 is pushed, the insulin dose displayed in display window 13 will be ejected from injection device 1. When the needle 15 of injection device 1 remains for a certain time in the skin portion after the injection button 11 is pushed, a high percentage of the dose is actually injected into the patient's body. Ejection of the insulin dose also causes a mechanical click sound, which is however different from the sounds produced when using dosage knob 12.
Injection device 1 may be used for several injection processes until either insulin container 14 is empty or the expiration date of injection device 1 (e.g. 28 days after the first use) is reached. Furthermore, before using injection device 1 for the first time, it may be necessary to perform a so-called “prime shot” to remove air from insulin container 14 and needle 15, for instance by selecting two units of insulin and pressing injection button 11 while holding injection device 1 with the needle 15 upwards.
The supplemental device 2 may have a display unit 21. Information, such as dosage readings, dosage history, instructions, warnings or supplemental device settings may be displayed via the display unit 21. The supplemental device 2 may also have one or more user inputs (not shown). These may comprise buttons or touch sensitive regions on the housing 20 of the device 2. These user inputs may allow a user to turn on/off the supplemental device 2, to trigger actions (for instance to cause establishment of a connection to or a pairing with another device, and/or to trigger transmission of information from supplemental device 2 to another device), or to confirm something.
The supplemental device 2 also comprises a processor arrangement (not visible) and a memory (not visible) for storing program instructions. The program and processor arrangement together control operation of the supplemental device 2, including receiving and interpreting signals from switches (described in greater detail below) housed within the device.
Referring now to
The supplemental device 2 may house an electromechanical switch arrangement (not shown). The electromechanical switch arrangement may comprise a self-contained unit which is fitted to the supplemental device 2. The electromechanical switch arrangement may for example be housed in a recess in the underside of the supplemental device 2 (the part which contacts the injection device 1). The electromechanical switch arrangement may be secured to the supplemental device 2 by friction or by an interlocking arrangement (not shown), or alternatively by screws, adhesive or the like. In some alternative embodiments, the electromechanical switch arrangement is an integral part of the housing 20 of the supplemental device 2. A lower part of the electromechanical switch arrangement is concave in shape and matches the curvature of the injection device 1. The lower part of the electromechanical switch arrangement abuts several of the crests 117 of the corrugated dialling sleeve 119 but the dialling sleeve 119 is free to rotate relative to supplemental device 2. The lower part of the electromechanical switch arrangement may have one or more apertures.
At least two switches are mounted inside the electromechanical switch arrangement. Each switch may be an electromechanical micro switch of any suitable type. Each switch has an actuator 400 (also referred to herein as a protrusion, member or limb) and is arranged such that the free end of the actuator passes through an aperture in the electromechanical switch arrangement and protrudes from the housing 20 of the supplemental device 2. An internal spring may bias each switch actuator 400 towards a protruding position, in which the switch actuator abuts and is forced against the surface of the dialling sleeve 119 when the supplemental device 2 is attached, as illustrated in
In some embodiments, the injection device 1 is configured such that a small portion of the dialling sleeve 119 adjacent the dosage button 12 extends out of the housing 10 of the injection device 1 when no dose has been dialled. This allows the switch actuators 400 to contact the dialling sleeve 119 at all times during operation of the device.
Each switch may have electrical contacts supported on an internal surface. These contacts are arranged to be engaged by corresponding electrical contacts on an internal part of each switch actuator 400. The skilled person will be aware of other contact arrangements which may be used as the exact internal structure of the switches is not limiting on the scope of the invention. In any case, the contacts are arranged such that the state of the switch (open or closed) depends on whether the switch actuator 400 is located in a trough 116 or on a crest 117 of the dialling sleeve 119. The supplemental device 2 comprises a processor arrangement. The processor arrangement is configured to control the application of signals to the contacts and to detect when each switch is open or closed.
In some embodiments of the invention, the electromechanical switch arrangement comprises two switches, each switch having an actuator. The two switch actuators are arranged to be spaced circumferentially relative to the dialling sleeve 119 such that each actuator contact the dialling sleeve at a different angular position. The switch actuators may be arranged to be at the same or different longitudinal positions relative to the dialling sleeve. Alternatively, the supplemental device 2 may comprise two separate electromechanical switch arrangements, each comprising a switch and being retained by different part of the supplemental device 2 such that the actuators of the respective switches are spaced circumferentially relative to the dialling sleeve 119. Further description of these embodiments will now be given with reference to
When a user wishes to dial in a dose to the injection device 1, the user grips the dosage knob 12 and rotates it. In some examples of the injection device 1, one full rotation (360 degrees) of the dialling sleeve corresponds to 24 medicament units. The mechanism internal to the injection device 1 is such that only integer units may be dialled into the device. Biasing means internal to the injection device ensure that the dialling sleeve 119 is at equilibrium only when an integer number of dose units are dialled in.
In some embodiments the dialling sleeve 119 comprises 24 corrugations. In other words the dialling sleeve 119 has 24 troughs 116 and 24 crests 117. Referring now to
In the embodiment of
As can be seen in
Referring now to
In the embodiments of
Referring now to
In the embodiments shown in
In the embodiments shown in
With all of the embodiments described above, as the direction of rotation of the dialling sleeve can be determined the processor is also able to incrementally calculate the number of dose units dialled into the injection device 1. Provided that the supplemental device 2 is attached to the injection device 1 and activated when zero dose units are dialled in, this encoding method may be used to indicate the currently dialled dose to a user. For example the supplemental device, when attached to the injection device 1, may obscure the display window 13. Thus the processor may determine incrementally a dose dialled into the injection device 1 and display the dialled dose on the display unit 21 of the supplemental device 2. Alternatively or in addition, the supplemental device 2 may comprise an optical character recognition (OCR) system configured to read the dialled dose through the display window 13 and to display the result of this reading on the display unit 21. In some other embodiments the supplemental device 2 does not obscure the display window 13 when attached to the injection device 1. For example the display window 13 may be located further down the housing 10 of the injection device 1.
In some other embodiments, three or more electromechanical switches may be housed in the supplemental device 2, each having a switch actuator contacting the dialling sleeve 119. Although only two switches are required to determine a direction of rotation of the dialling sleeve 119, with more than two switches it is possible to achieve a quasi-absolute encoding of the dialling sleeve position and hence the currently dialled dose.
It will be appreciated that the above described embodiments are purely illustrative and not limiting on the scope of the claims. Other variations and modifications will be apparent to a person skilled in the art upon reading the application. For example, the electromechanical switches may be replaced by optical, magnetic, resistive or capacitive sensors.
For example, as shown in
For example, each electromechanical switch may be replaced by a camera 1006. LEDs 1008 may also be present to aid in optical recognition. The corrugations may be replaced by parallel black lines (e.g., defined by the black regions 1002) having the same separation as adjacent crests of the corrugation.
In another exemplary alternative, the electromechanical switches may be replaced by contacts which protrude from the housing 20 of the supplemental device 2. These contacts may be configured to engage with conductive and non-conductive regions on the surface of the dialling sleeve 119.
As shown in
The rotatable surface of the injection device is corrugated and each switch has a first state when its respective actuator is located in a trough of a corrugation and a second state when its respective actuator is located on a crest of a corrugation.
The supplemental device also comprises a processor arrangement 600 configured to detect a change in the state of each of the switches 501 and 502 and determine a direction of rotation of the rotatable surface of the injection device from the detected state changes.
In a further example, the electromechanical switches may be part of an injection device instead of a supplemental device. In a preferred embodiment of this example the corrugated surface is an inner surface. This improves handling as the overall device design is more compact. In addition having an inner corrugated surface leaves the outer surface smooth. Hence, when the outer surface is exposed it can be sealed against moisture and/or dust. Having the inner surface corrugated increases reliability because there is reduced ingression of dust and/or moisture and thus less impact on functionality.
Moreover, the disclosure of the present application should be understood to include any novel features or any novel combination of features either explicitly or implicitly disclosed herein or any generalisation thereof and during the prosecution of the present application or of any application derived therefrom, new claims may be formulated to cover any such features or combination of such features.
Number | Date | Country | Kind |
---|---|---|---|
13166723 | May 2013 | EP | regional |
The present application is a continuation of U.S. patent application Ser. No. 14/783,174, filed Oct. 8, 2015, which is a U.S. National Phase Application pursuant to 35 U.S.C. § 371 of International Application No. PCT/EP2014/058969 filed May 2, 2014, which claims priority to European Patent Application No. 13166723.0 filed May 7, 2013. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
533575 | Wilkens | Feb 1895 | A |
5226895 | Harris | Jul 1993 | A |
5279586 | Balkwill | Jan 1994 | A |
5304152 | Sams | Apr 1994 | A |
5320609 | Haber et al. | Jun 1994 | A |
5383865 | Michel | Jan 1995 | A |
5480387 | Gabriel et al. | Jan 1996 | A |
5505704 | Pawelka et al. | Apr 1996 | A |
5509905 | Michel | Apr 1996 | A |
5582598 | Chanoch | Dec 1996 | A |
5626566 | Petersen et al. | May 1997 | A |
5674204 | Chanoch | Oct 1997 | A |
5688251 | Chanoch | Nov 1997 | A |
5921966 | Bendek et al. | Jul 1999 | A |
5961495 | Walters et al. | Oct 1999 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6193698 | Kirchhofer et al. | Feb 2001 | B1 |
6221046 | Burroughs et al. | Apr 2001 | B1 |
6235004 | Steenfeldt-Jensen et al. | May 2001 | B1 |
6248095 | Giambattista et al. | Jun 2001 | B1 |
6278677 | Sako | Aug 2001 | B1 |
6899698 | Sams | May 2005 | B2 |
6936032 | Bush, Jr. et al. | Aug 2005 | B1 |
7241278 | Moller | Jul 2007 | B2 |
8197449 | Nielsen et al. | Jun 2012 | B2 |
9649448 | Madsen | May 2017 | B2 |
20020052578 | Moller | May 2002 | A1 |
20020120235 | Enggaard | Aug 2002 | A1 |
20030050609 | Sains | Mar 2003 | A1 |
20030130853 | Maire | Jul 2003 | A1 |
20030187405 | Gatti et al. | Oct 2003 | A1 |
20040059299 | Moller | Mar 2004 | A1 |
20040186441 | Graf et al. | Sep 2004 | A1 |
20040210199 | Atterbury et al. | Oct 2004 | A1 |
20040215153 | Graf et al. | Oct 2004 | A1 |
20040267207 | Veasey et al. | Dec 2004 | A1 |
20050085776 | Hommann et al. | Apr 2005 | A1 |
20050113765 | Veasey et al. | May 2005 | A1 |
20050182360 | Yeandel et al. | Aug 2005 | A1 |
20060153693 | Fiechter et al. | Jul 2006 | A1 |
20060224123 | Friedli et al. | Oct 2006 | A1 |
20060258988 | Keitel et al. | Nov 2006 | A1 |
20080033369 | Kohlbrenner et al. | Feb 2008 | A1 |
20080287865 | Nielsen et al. | Nov 2008 | A1 |
20090012479 | Moller et al. | Jan 2009 | A1 |
20090275916 | Harms et al. | Nov 2009 | A1 |
20140194825 | Nielsen | Jul 2014 | A1 |
20140194829 | Baek | Jul 2014 | A1 |
20150297835 | Hoeholt | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1671432 | Sep 2005 | CN |
1980703 | Jun 2007 | CN |
101107030 | Jan 2008 | CN |
102170929 | Aug 2011 | CN |
102458528 | May 2012 | CN |
0615762 | Sep 1994 | EP |
0937471 | Aug 1999 | EP |
937476 | Aug 1999 | EP |
2223714 | Sep 2010 | EP |
1993-184672 | Jul 1993 | JP |
1994-331387 | Dec 1994 | JP |
2003010327 | Jan 2003 | JP |
2007-506470 | Mar 2007 | JP |
2007-509662 | Apr 2007 | JP |
2008-516709 | May 2008 | JP |
2013-509213 | Mar 2013 | JP |
WO 1990009202 | Aug 1990 | WO |
199938554 | Aug 1999 | WO |
200110484 | Feb 2001 | WO |
WO 2004009163 | Jan 2004 | WO |
2006045523 | May 2006 | WO |
WO 2006045524 | May 2006 | WO |
2009062675 | May 2009 | WO |
WO 2010037828 | Apr 2010 | WO |
2010052275 | May 2010 | WO |
WO 2010089418 | Aug 2010 | WO |
WO 2010139642 | Dec 2010 | WO |
WO 2011007212 | Jan 2011 | WO |
2011117212 | Sep 2011 | WO |
WO 2012007046 | Jan 2012 | WO |
2012127046 | Sep 2012 | WO |
2013004844 | Jan 2013 | WO |
WO 2013010884 | Jan 2013 | WO |
WO 2013010886 | Jan 2013 | WO |
Entry |
---|
EP Search Report for European Application No. 13166723.0, dated Oct. 9, 2013, 10 pages. |
International Preliminary Report on Patentability in International Application No. PCT/EP2014/058969, dated Nov. 10, 2015, 6 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/EP2014/058969, dated Jul. 7, 2014, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200023138 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14783174 | US | |
Child | 16560652 | US |