Supplemental heating and cooling sources for a heating, ventilation and air conditioning system

Information

  • Patent Grant
  • 9682608
  • Patent Number
    9,682,608
  • Date Filed
    Wednesday, January 30, 2013
    11 years ago
  • Date Issued
    Tuesday, June 20, 2017
    6 years ago
Abstract
An HVAC system includes a primary HVAC unit and a supplemental heat exchanger. The primary HVAC unit is disposed within a passenger compartment of a motor vehicle and configured for at least one of heating and cooling a passenger compartment. The supplemental heat exchanger is spaced apart from the primary HVAC unit and also disposed within the passenger compartment of the motor vehicle. The supplemental heat exchanger is configured to supplement at least one of the heating and the cooling of the passenger compartment by the primary HVAC unit.
Description
FIELD OF THE INVENTION

The present disclosure relates to a heating, ventilation and air conditioning (HVAC) system for a motor vehicle.


BACKGROUND OF THE INVENTION

During the design of a motor vehicle, overall shape and dimensions of a vehicle body are defined. This determines a maximum amount of space available for each vehicle system and components to be installed in the motor vehicle.


HVAC systems such as air conditioning units generally require significant space for installation in the motor vehicle. It is desirable that the HVAC system geometry and position do not interfere with the vehicle's driver and passengers. For this reason, the HVAC system is often positioned in the instrument panel or front partition panel, which maximizes available foot space for the driver and front seat passenger.


Flat, modular HVAC systems have been used in order to optimally position HVAC systems within the motor vehicle. These types of HVAC systems also require significant mounting space in a longitudinal direction of the vehicle. One type of flat, modular HVAC system is described in Assignee's U.S. Pat. No. 7,735,330 to Richter et al., the entire disclosure of which is hereby incorporated herein by reference.


There is a continuing need for a system and a method for supplementing at least one of a heating and a cooling of a passenger compartment in motor vehicle, particularly in which a primary heating and cooling is provided by the flat, modular HVAC system. Desirably, the system and the method supplement the heating and the cooling provided by the flat, modular HVAC system using available vehicle sources, and permits supplemental heating and cooling in only zones of the motor vehicle that are occupied.


SUMMARY OF THE INVENTION

In concordance with the instant disclosure, a system and a method for supplementing at least one of a heating and a cooling of a passenger compartment in motor vehicle, particularly in which a primary heating and cooling is provided by the flat, modular HVAC system, and which supplements the heating and the cooling provided by the flat, modular HVAC system using available vehicle sources and permits supplemental heating and cooling in only zones of the motor vehicle that are occupied, is surprisingly discovered.


In one embodiment, an HVAC system includes a primary HVAC unit and a supplemental heat exchanger. The primary HVAC unit is disposed within a passenger compartment region of a motor vehicle. It is configured for at least one of heating and cooling a passenger compartment. The supplemental heat exchanger is spaced apart from the primary HVAC unit and also disposed within the passenger compartment region of the motor vehicle. The supplemental heat exchanger is configured to supplement at least one of the heating and the cooling of the passenger compartment by the primary HVAC unit.


In another embodiment, the supplemental heat exchanger of the HVAC system is positioned in one of an A-pillar and a B-pillar of the passenger compartment. The supplemental heat exchanger has an inlet in fluid communication with an engine coolant supply conduit through which hot coolant from an engine of the motor vehicle flows for the supplemental heating of the passenger compartment.


In a further embodiment, the supplemental heat exchanger is positioned in one of an A-pillar and a B-pillar of the passenger compartment, and has an inlet in fluid communication with a refrigerant supply conduit. Refrigerant from an air conditioning refrigeration system of the motor vehicle flows through the refrigerant supply conduit for the supplemental cooling of the passenger compartment.





DRAWINGS

The above, as well as other advantages of the present disclosure, will become readily apparent to those skilled in the art from the following detailed description, particularly when considered in the light of the drawings described herein.



FIG. 1A is a schematic top plan view of a heating, ventilation, and cooling system for a motor vehicle, illustrating one location for a supplemental heating and cooling source;



FIG. 1B is a schematic top plan view of a heating, ventilation, and cooling system for a motor vehicle, illustrating another location for a supplemental heating and cooling source;



FIG. 1C is a schematic top plan view of a heating, ventilation, and cooling system for a motor vehicle, illustrating another location for a supplemental heating and cooling source;



FIG. 2 is a schematic illustration of a supplemental heat exchanger according to one embodiment of the disclosure for both supplemental heating and supplemental cooling at the locations in the motor vehicle shown in FIGS. 1A-C;



FIG. 3 is a schematic illustration of a supplemental heat exchanger according to another embodiment of the disclosure for supplemental cooling-only at the locations in the motor vehicle shown in FIGS. 1A-C;



FIG. 4 is a schematic illustration of a supplemental heat exchanger according to a further embodiment of the disclosure for supplemental heating-only at the locations in the motor vehicle shown in FIGS. 1A-C; and



FIG. 5 is a side elevation view of the heating, ventilation, and cooling system of FIG. 1B.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description and appended drawings describe and illustrate various embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner.


With reference to FIGS. 1-4, an HVAC system 2 according to the present disclosure is shown. The HVAC system 2 includes a primary HVAC unit 4 and at least one supplemental heat exchanger 6, 8, 10. The primary HVAC unit 4 is disposed within a region of a passenger compartment 12 of a motor vehicle 14, and is configured for at least one of heating and cooling the passenger compartment 12. In particular embodiments, the primary HVAC unit 4 is positioned lengthwise along a floor 16 of the passenger compartment 12 between a pair of front seats 18. One of ordinary skill in the art should appreciate that other types of primary HVAC units 4, including orientations and placement within the motor vehicle 14, may also be used within the scope of the present disclosure.


The at least one supplemental heat exchanger 6, 8, 10 is spaced apart from the primary HVAC unit 4 within the region of the passenger compartment 12. The at least one supplemental heat exchanger 6, 8, 10 is configured to supplement at least one of the heating and the cooling of the passenger compartment 12 by the primary HVAC unit 4. In particular examples, the at least one supplemental heat exchanger 6, 8, 10 is configured to transfer heat to or from a fluid such as engine coolant (e.g., a glycol coolant) or a refrigerant (e.g., an air conditioning refrigerant) provided to the supplemental heat exchanger 6, 8, 10 from an external source. In other examples, the at least one supplemental heat exchanger 6, 8, 10 may be configured to generate supplemental heat or cooling by other means, including electric resistive means for heating and piezoelectric means for cooling. Heat sinks may also be used. One of ordinary skill in the art may select suitable types of supplemental heat exchangers 6, 8, 10 for use with the HVAC system 2, as desired.


As shown in FIG. 1A, the supplemental heat exchanger 6 may be positioned at the floor 16 of the passenger compartment 12. The supplemental heat exchanger 6 also may be positioned adjacent one of the front seats 18. The supplemental heat exchanger 6 may be fluid communication with at least one floor duct vent 20 for communication of heated or cooled air to the passenger compartment 12. The supplemental heater exchanger 6 may be in fluid communication with the at least one floor duct vent 20 via a floor duct 22 arranged at the floor 16 of the passenger compartment 12. In other embodiments, the supplemental heat exchanger 6 is disposed either adjacent, or within, the floor duct vent 20. Other arrangements of the supplemental heat exchanger 6 within the passenger compartment 12 may also be used within the scope of the disclosure.


In another embodiment, shown in FIGS. 1B and 5, the supplemental heat exchanger 8 may be positioned at a roof 24 of the passenger compartment 12. For example, the supplemental heat exchanger 8 may be positioned in an A-pillar of the passenger compartment 12. The supplemental heat exchanger 8 may be in fluid communication with at least one overhead duct vent 26 adjacent one of the front seats 18. The supplemental heater exchanger 8 may be in fluid communication with the overhead duct vent 26 via an overhead duct 28 arranged at the roof 22 of the passenger compartment 12. In other embodiments, the supplemental heat exchanger 8 is disposed either adjacent, or within, the overhead duct vent 28. A skilled artisan may select other arrangements of the supplemental heat exchanger 8 within the passenger compartment 12, as desired.


As shown in FIG. 1C, the supplemental heat exchanger 10 may be positioned in a B-pillar at the roof 24 of the passenger compartment 12. The supplemental heat exchanger 10 may be in fluid communication with at least one overhead duct vent 30 adjacent a rear seat 32 of the passenger compartment 12. The supplemental heater exchanger 10 may be in fluid communication with the overhead duct vent 30 via an overhead duct 34 arranged at the roof 22 of the passenger compartment 12. In other embodiments, the supplemental heat exchanger 10 is disposed either adjacent, or within, the overhead duct vent 30. A skilled artisan may select other arrangements of the supplemental heat exchanger 8 within the passenger compartment 12, as desired.


Although embodiments have been described herein where the at least one supplemental heat exchanger 6, 8, 10 is located at the A-pillar and the B-pillar of the passenger compartment 12, it should be appreciated the at least one supplemental heat exchanger 6, 8, 10 may alternatively be positioned at the C-pillar, and that such positioning is also within the scope of the instant disclosure.


The HVAC system 2 may also include at least one booster fan 36. The at least one booster fan 36 may be disposed in at least one of the floor duct 22 and the overhead ducts 28, 34. For example, the at least one booster fan 36 may be a variable speed fan. The at least one booster fan 36 is configured to increase an air flow through the ducts 22, 28, 34 from the at least one supplement heater exchanger 6, 8, 10. Other types of booster fans 36 may also be employed, as desired.


Advantageously, the at least one supplemental heat exchanger 6, 8, 10 may employ available vehicle sources. As shown in FIGS. 2 and 4, the at least one supplemental heat exchanger 6, 8, 10 may have an inlet 38 in fluid communication with an engine coolant supply conduit 40. Hot coolant from an engine 42 of the motor vehicle may flow through the engine coolant supply conduit 40 to the at least one supplemental heat exchanger 6, 8, 10 for the supplemental heating of the passenger compartment 12.


Referring to FIG. 2, the HVAC system 2 may further include an engine coolant regulator valve 43 that is in fluid communication with the engine coolant supply conduit 40. The engine coolant regulator valve 43 is configured to control the flow of the hot coolant from the engine 42 to the supplemental heat exchanger 6, 8, 10, as desired.


The supplemental heat exchanger 6, 8, 10 also has an outlet 44 in fluid communication with an engine coolant return conduit 46 for recirculation of the engine coolant back to the engine 42 after the engine coolant flows through the supplemental heat exchanger 6, 8, 10.


As shown in FIG. 4, where the at least one heat exchanger 6, 8, 10 is in direct communication with the engine 42 and supplements by heating-only, an engine coolant regulator valve 48 may be provided in fluid communication with the engine coolant return conduit 46. The engine coolant regulator valve 48 in communication with the engine coolant return conduit 46 is configured to control the flow of the coolant from the supplemental heat exchanger 6, 8, 10 to the engine 42.


With renewed reference to FIG. 2, the HVAC system 2 may further include a pump 50. The pump 50 may be in fluid communication with the engine coolant return conduit 46, and facilitate the recirculation of the engine coolant back to the engine 42 after undergoing heat exchange with the at least one heat exchanger 6, 8, 10.


In the embodiment shown in FIG. 2, where the at least one heat exchanger 6, 8, 10 may be used for both supplemental heating and supplemental cooling, a cooling subsystem 52 may be provided. The cooling subsystem 52 may be in fluid communication with a refrigerant supply conduit 54, a refrigerant return conduit 56, and each of the engine coolant supply conduit 40 and the engine coolant return conduit 46. The cooling subsystem 52 is configured to cool the engine coolant being supplied to the supplemental heat exchanger 6, 8, 10 for the supplemental cooling of the passenger compartment 12.


In a particular embodiment, the cooling subsystem 52 is a chiller having an inlet 58 in fluid communication with the refrigerant supply conduit 54, and an outlet 60 in fluid communication with the refrigerant return conduit 56. In turn, the refrigerant supply conduit 54 and the refrigerant return conduit 56 may be in fluid communication with an air conditioning refrigeration system 62 of the motor vehicle. Other types of refrigeration systems 62 for cooling the engine coolant may also be employed, as desired.


As further depicted in FIG. 2, a control valve 64 may be provided in fluid communication with the engine coolant return conduit 46. The control valve 64 is configured to selectively direct the flow of the engine coolant from the supplemental heat exchanger 6, 8, 10 to one of the cooling subsystem 52 and the engine 42 of the motor vehicle. It should be appreciated that a selective actuation of the control valve 64 may thereby dictate whether the supplemental heat exchanger 6, 8, 10 provides supplemental heating, for example, where the control valve 64 is closed, or supplement cooling, for example, where the control valve 64 is opened. It is also contemplated that the control valve 64 may be partially opened to permit a fine temperature control of coolant being provided by the engine 42 to the at least one heat exchanger 6, 8, 10.


The HVAC system 2 may further include a refrigerant regulator valve 66. The refrigerant regular valve 66 is in fluid communication with the refrigerant supply conduit 54. The refrigerant regulator valve 66 is configured to control the flow of the refrigerant from the air conditioning refrigeration system 62 to the chiller 52. Like the control valve 64, it should be appreciated that an actuation of the refrigerant regular valve 66 may permit a fine temperature control of the coolant being provided by the engine 42 to the at least one heat exchanger 6, 8, 10.


Referring now to FIG. 3, where the at least one heat exchanger 6, 8, 10 is in direct communication with the air conditioning refrigeration system 62 and may be used for supplemental cooling-only, the inlet 38 of the at least one supplemental heat exchanger 6, 8, 10 is in fluid communication with the refrigerant supply conduit 54. Refrigerant from the air conditioning refrigeration system 62 of the motor vehicle may flow directly to the at least one supplemental heat exchanger 6, 8, 10 through the refrigerant supply conduit 54 for the supplemental cooling of the passenger compartment 12. The outlet 44 of the at least one supplemental heat exchanger 6, 8, 10 may also be in fluid communication with the refrigerant return conduit 56 through which the refrigerant is returned to the air conditioning refrigeration system 62 of the motor vehicle after flowing through the at least one supplemental heat exchanger 6, 8, 10.


A refrigerant regulator valve 68 may be provided in fluid communication with the refrigerant return conduit 56, and configured to control the flow of the refrigerant from the supplemental heat exchanger 6, 8, 10 to the air conditioning refrigeration system 62 of the motor vehicle. Other means for controlling the flow of refrigerant to and from the at least one supplemental heat exchanger 6, 8, 10 may also be used within the scope of the present disclosure.


In other embodiments, it should be understood that the HVAC system 2 may also use at least one of a positive temperature coefficient (PTC) heater and a thermal electric device (TED) as the at least one supplemental heat exchanger 6, 8, 10. As a further example, a PTC heater or a TED heater may be placed in ducts of the HVAC system 2 and be used to further augment the at least one supplemental heat exchanger 6, 8, 10 in communication with external sources of the motor vehicle, as desired. There may also be a secondary loop that routes cold coolant to the at least one supplemental heat exchanger 6, 8, 10 where a TED heater is used (via a refrigerant chiller), or hot coolant to the at least one supplemental heat exchanger 6, 8, 10.


The HVAC system 2 may further include at least one controller (not shown) which permits a selective actuation of the at least one supplemental heat exchanger 6, 8, 10 in the passenger compartment 12 of the motor vehicle, for example, by actuation of one or more of the valves associated with a supply of heat exchange fluid to the at least one supplemental heat exchanger. Likewise, the HVAC system 2 may include sensors (not shown) such as temperature sensors, pressure sensors, and the like that are in communication with the at least one controller. The selective actuation by the at least one controller may be automated in response to signals from the sensors, or in response to a manual selection of supplemental heating and cooling by an occupant of the motor vehicle, as desired.


Advantageously, the HVAC system 2 of the present disclosure efficiently heats and cools the passenger compartment 12 of the motor vehicle by permitting a supplemental heating and cooling of only occupied zones of the motor vehicle. Accordingly, the HVAC system 2 of the disclosure is efficient and permits far greater energy savings in comparison to HVAC systems previously known in the art.


While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes may be made without departing from the scope of the disclosure, which is further described in the following appended claims.

Claims
  • 1. An HVAC system for a passenger compartment of a motor vehicle, comprising: a primary HVAC unit disposed within the passenger compartment of the motor vehicle and configured for at least one of heating and cooling a passenger compartment;a supplemental heat exchanger spaced apart from the primary HVAC unit and also disposed within the passenger compartment of the motor vehicle, the supplemental heat exchanger configured to supplement at least one of the heating and the cooling of the passenger compartment by the primary HVAC unit, wherein the supplemental heat exchanger has an inlet in fluid communication with an engine coolant supply conduit through which hot coolant from an engine of the motor vehicle flows for the supplemental heating of the passenger compartment and an outlet in fluid communication with an engine coolant return conduit for recirculation of the engine coolant back to the engine after the engine coolant flows through the supplemental heat exchanger; anda cooling subsystem in fluid communication with a refrigerant supply conduit, a refrigerant return conduit, and each of the engine coolant supply conduit and the engine coolant return conduit, wherein the cooling subsystem is configured to cool the engine coolant being supplied to the supplemental heat exchanger for the supplemental cooling of the passenger compartment.
  • 2. The HVAC system of claim 1, wherein the primary HVAC unit is positioned lengthwise with respect to the passenger compartment and along a floor of the passenger compartment between a pair of front seats.
  • 3. The HVAC system of claim 2, wherein the supplemental heat exchanger is positioned at a roof of the passenger compartment.
  • 4. The HVAC system of claim 2, wherein the supplemental heat exchanger is positioned in an A-pillar of the passenger compartment.
  • 5. The HVAC system of claim 2, wherein the supplemental heat exchanger is positioned in a B-pillar of the passenger compartment.
  • 6. The HVAC system of claim 1, further including an engine coolant regulator valve in fluid communication with the engine coolant supply conduit, the engine coolant regulator valve configured to control the flow of the hot coolant from the engine to the supplemental heat exchanger.
  • 7. The HVAC system of claim 1, further including an engine coolant regulator valve in fluid communication with the engine coolant return conduit, the engine coolant regulator valve configured to control the flow of the coolant from the supplemental heat exchanger to the engine.
  • 8. The HVAC system of claim 1, further including a pump in fluid communication with the engine coolant return conduit for causing the recirculation of the engine coolant back to the engine.
  • 9. The HVAC system of claim 1, further including a control valve in fluid communication with the engine coolant return conduit, the control valve configured to selectively direct the flow of the engine coolant from the supplemental heat exchanger to one of the cooling subsystem and the engine of the motor vehicle.
  • 10. The HVAC system of claim 1, wherein the cooling subsystem is a chiller having an inlet in fluid communication with the refrigerant supply conduit and an outlet in fluid communication with the refrigerant return conduit.
  • 11. The HVAC system of claim 10, wherein the refrigerant supply conduit and the refrigerant return conduit are in fluid communication with an air conditioning refrigeration system of the motor vehicle.
  • 12. The HVAC system of claim 11, further including a refrigerant regulator valve in fluid communication with the refrigerant supply conduit, the refrigerant regulator valve configured to control the flow of the refrigerant from the air conditioning refrigeration system to the chiller.
  • 13. The HVAC system of claim 1, wherein the supplemental heat exchanger has an inlet in fluid communication with a refrigerant supply conduit through which refrigerant from an air conditioning refrigeration system of the motor vehicle flows for the supplemental cooling of the passenger compartment.
  • 14. The HVAC system of claim 1, further including a booster fan and a duct providing communication between the passenger compartment and the supplemental heat exchanger.
  • 15. An HVAC system for a passenger compartment of a motor vehicle, comprising: a primary HVAC unit disposed within the passenger compartment of the motor vehicle and configured for at least one of heating and cooling a passenger compartment;a supplemental heat exchanger spaced apart from the primary HVAC unit and also disposed within the passenger compartment of the motor vehicle, the supplemental heat exchanger configured to supplement at least one of the heating and the cooling of the passenger compartment by the primary HVAC unit, wherein the supplemental heat exchanger is one of a positive temperature coefficient (PTC) heater and a thermal electric device (TED).
  • 16. An HVAC system, comprising: a primary HVAC unit disposed within a passenger compartment of a motor vehicle and configured for at least one of heating and cooling a passenger compartment; anda supplemental heat exchanger spaced apart from the primary HVAC unit and also disposed within the passenger compartment of the motor vehicle, the supplemental heat exchanger configured to supplement at least one of the heating and the cooling of the passenger compartment by the primary HVAC unit,wherein the supplemental heat exchanger is positioned in one of an A-pillar and a B-pillar of the passenger compartment and has an inlet in fluid communication with a refrigerant supply conduit through which refrigerant from an air conditioning refrigeration system of the motor vehicle flows for the supplemental cooling of the passenger compartment.
US Referenced Citations (111)
Number Name Date Kind
2050381 Rogers Aug 1936 A
2185033 Melcher Dec 1939 A
2185034 Melcher Dec 1939 A
2336089 Gould Dec 1943 A
2347141 Werdehoff Apr 1944 A
2476295 Hans Jul 1949 A
2664308 Appel Dec 1953 A
2713777 Mansmann Jul 1955 A
2722106 Henney Nov 1955 A
2774227 Schjolin Dec 1956 A
2804756 Faulhaber Sep 1957 A
2922290 Carraway Jan 1960 A
3218820 Spatt Nov 1965 A
3218821 Spatt Nov 1965 A
3278121 Komenda Oct 1966 A
3444700 Beyer May 1969 A
3451469 Hall Jun 1969 A
3455595 Eggert, Jr. Jul 1969 A
3550678 Pfouts Dec 1970 A
3862549 Fernandes Jan 1975 A
3896872 Pabst Jul 1975 A
3906740 Thomas Sep 1975 A
3977206 Simmons Aug 1976 A
3996762 Calme Dec 1976 A
4201064 Krug May 1980 A
4258555 Scharm Mar 1981 A
4494597 Fukami Jan 1985 A
4732011 Haiya Mar 1988 A
4945977 D'Agaro Aug 1990 A
5054378 Speece Oct 1991 A
5222372 DeRees Jun 1993 A
5277038 Carr Jan 1994 A
5417177 Taguchi May 1995 A
5450894 Inoue Sep 1995 A
5553662 Longardner et al. Sep 1996 A
6059016 Rafalovich May 2000 A
6068046 Pommier et al. May 2000 A
6120370 Asou Sep 2000 A
6276166 Sarkisian et al. Aug 2001 B1
6315354 Tani Nov 2001 B1
6491578 Yoshinori Dec 2002 B2
6497275 Elliot Dec 2002 B1
6607029 Danieau Aug 2003 B2
6691527 Bureau et al. Feb 2004 B2
6709328 Jain Mar 2004 B1
6758265 Henry Jul 2004 B2
6851470 Laukhuf Feb 2005 B2
6854513 Shirota et al. Feb 2005 B2
6923497 Umebayashi Aug 2005 B2
7128141 Ping Oct 2006 B2
7147071 Gering et al. Dec 2006 B2
7156156 Haller et al. Jan 2007 B2
7246657 Oga Jul 2007 B2
7318469 Hosokawa Jan 2008 B2
7380587 Naruse Jun 2008 B2
7434608 Shindo Oct 2008 B2
7455136 Pleune Nov 2008 B2
7478670 Richter et al. Jan 2009 B2
7530386 Nagayama May 2009 B2
7578341 Ichishi Aug 2009 B2
7581582 Longdill Sep 2009 B2
7581584 Yoneno Sep 2009 B2
7640967 Bradley Jan 2010 B2
7735330 Richter et al. Jun 2010 B2
7828050 Esaki Nov 2010 B2
7879122 Richter et al. Feb 2011 B2
8191618 Gering et al. Jun 2012 B2
8196648 Matsukawa Jun 2012 B2
8302417 Major et al. Nov 2012 B2
8443871 Hayashi May 2013 B2
8591299 DiGasbarro Nov 2013 B2
8757249 Bandai Jun 2014 B2
8955628 Murray Feb 2015 B2
9180891 Van Polen Nov 2015 B2
20010004008 Aoki Jun 2001 A1
20030019619 Nakagawa Jan 2003 A1
20030115887 Currle Jun 2003 A1
20040074244 Ichishi Apr 2004 A1
20040089006 Kamiya May 2004 A1
20050011640 Tohda Jan 2005 A1
20050045320 Richter et al. Mar 2005 A1
20050061498 Tohda Mar 2005 A1
20050067140 Sogame Mar 2005 A1
20050087332 Umeo Apr 2005 A1
20050092005 Wunderlich May 2005 A1
20050116054 Richter et al. Jun 2005 A1
20060000592 Bosquet Jan 2006 A1
20070095517 Schall May 2007 A1
20080230204 Richter et al. Sep 2008 A1
20090038774 Ogiso Feb 2009 A1
20090188266 Hung et al. Jul 2009 A1
20090266094 Major et al. Oct 2009 A1
20100006258 Richter et al. Jan 2010 A1
20110016900 Oriet Jan 2011 A1
20110036117 Frohling et al. Feb 2011 A1
20110067421 Shiraishi et al. Mar 2011 A1
20110174000 Richter et al. Jul 2011 A1
20120003910 Richter Jan 2012 A1
20120129439 Ota May 2012 A1
20120138697 Richter Jun 2012 A1
20120152511 Chang et al. Jun 2012 A1
20120160446 Creed Jun 2012 A1
20120174602 Olivier et al. Jul 2012 A1
20120247747 DiGasbarro Oct 2012 A1
20120261110 Katoh et al. Oct 2012 A1
20120291986 Richter Nov 2012 A1
20130000265 Richter et al. Jan 2013 A1
20130008971 Richter et al. Jan 2013 A1
20130068440 Kamiyama Mar 2013 A1
20130333858 Klinkhammer Dec 2013 A1
20140060795 Yu Mar 2014 A1
Foreign Referenced Citations (17)
Number Date Country
102734867 Oct 2012 CN
19629114 Jan 1998 DE
19814581 Oct 1999 DE
10112969 Sep 2002 DE
10147113 Apr 2003 DE
10307641 Apr 2004 DE
102004051874 May 2006 DE
102005012557 Sep 2006 DE
102006009162 Nov 2006 DE
102006008218 Dec 2006 DE
102006049852 May 2007 DE
102008002408 Dec 2009 DE
H068726 Jan 1994 JP
2006232264 Sep 2006 JP
2009149127 Jul 2009 JP
2009241773 Oct 2009 JP
1999-0006310 Jan 1999 KR
Related Publications (1)
Number Date Country
20140209269 A1 Jul 2014 US