The present invention relates generally to blood pumps for use during heart surgery. More specifically, the present invention involves providing a supplemental port on a blood pump for delivering blood to a surgical site via a catheter or cannula arrangement to perfuse the tissue downstream from the surgical site.
During open heart surgery and in some emergency cardiopulmonary situations, it is necessary to have some means to bypass the heart with a blood pump. The bypass circuit may be used to completely replace the function of the heart or it may be employed to assist the heart. Typically in a bypass circuit, an inflow cannula is placed within the left ventricle and an outflow cannula is placed within the aorta. Bypass surgery typically is used to repair damaged or occluded vessels on the heart. To repair a vessel or occlusion, the surgeon usually will graft a new vessel that will supply blood to the affected area. Before applying the graft, the surgeon will occlude the target vessel proximally to the damaged area. One problem with doing this is that healthy tissue beyond or downstream from the damaged area no longer receives sufficient blood or oxygen during the operation.
Typically, such a circuit will be used for cardiopulmonary arterial bypass graph (CABG) surgery to support or supplement the heart. While CABG surgery may be accomplished on a beating heart or a still heart, the trend is moving towards beating heart surgery because it is less traumatic to the patient. When conducting beating heart CABG surgery, the patient's vessels and arteries require a replenished flow of oxygenated blood in order for the tissues to sustain without damage. When the surgeon is performing an anastomosis, the target vessel is occluded proximally to the surgical site. Problems associated with occluding the vessel include damage to tissue distal the anastomosis site. In extreme cases, the patient will require a second surgery to correct complications that were created by the first surgery.
The present invention is directed at overcoming, or at least reducing the effects of, one or more of the problems set forth above.
The present invention concerns a blood pump with a supplemental outflow port(s). A catheter can be attached to the supplemental port at a proximal end, while the distal end of the catheter may be placed where it is desired to have a supplemental blood flow.
During CABG surgery, typically one or more of the patient's vessels are occluded. Once the vessel is occluded, the surgeon may make an anastomosis beyond the occlusion. Typically, the vessel that was occluded does not have any blood flowing through it. One prior art way to remedy this problem is to insert a stent in the area where the anastomosis is going to be placed. Unfortunately, the stent may occupy a large cross-sectional area of the vessel, reducing the overall flow through the vessel such that the area distal to the stent does not receive sufficient oxygenated blood.
This supplemental outflow port of the present invention eliminates the need for a stent and provides for a continuous source of oxygenated blood and therefore may reduce the post-surgical damage to the surrounding tissue after an anastomosis has been performed.
The present invention also concerns a supplemental inflow port for use with a blood pump. The supplemental input port can be used to input blood from an area other than the main inflow region. For example, blood removed from the heart can be filtered and then introduced back into the patient through the supplemental inflow port.
In one broad aspect of the present invention, an apparatus is provided comprising a blood pump, a main inflow port operably connected to the blood pump, a main outflow port operably connected to the blood pump, and a supplemental port operably connected to the blood pump.
In one embodiment, the supplemental port is a supplemental outflow port.
In one embodiment, the supplemental outflow port is connected to a catheter adapted to supply blood to perfuse a vein or artery.
In one embodiment, the supplemental outflow port is connected to a cannula adapted to be positioned in the patient's aorta.
In one embodiment, the supplemental port is a supplemental inflow port.
In one embodiment, the supplemental inflow port is connected to a catheter connected to a supply of blood.
In one embodiment, the supply of blood is connected to a catheter adapted to be positioned in the body to remove blood from the patient.
In one embodiment, the apparatus further comprises a valve at the supplemental port.
In one embodiment, the main inflow port is connected to a cannula adapted to be positioned in a patient's atrium or ventricle.
In one embodiment, the main outflow port is connected to a cannula to be positioned in a patient's aorta.
In one embodiment, the main outflow port is connected to a cannula to be positioned within a patient's artery.
In one embodiment, the blood pump is connected to an oxygenator.
In another broad aspect of the present invention, an apparatus is provided comprising a blood pump including a main inflow port, a main outflow port, and a supplemental outflow port. The apparatus also includes a perfusion catheter connected to the supplemental outflow port, the catheter adapted to supply blood to an artery on the heart during a bypass operation on that artery.
In a still further broad aspect of the present invention, a method is provided comprising the steps of: (a) operably connecting a blood pump to a patient; (b) pumping blood from one part of the heart to another part of the heart; and (c) supplying blood through a supplemental port on the blood pump to an artery one the heart during a bypass operation to that artery.
In one embodiment, the blood passes through an oxygenator.
In one embodiment, the blood is supplied from the supplemental port to the artery through a catheter.
In one embodiment, the blood is supplied from the supplemental port to the artery through a cannula.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention is directed at providing an improved device and related methods for delivering blood and/or other fluids to perfuse tissue and/or organs located downstream from a surgical site. Referring initially to
Referring to
According to the present invention, positioning the distal end 26 of the perfusion catheter 24 as shown provides the ability to deliver oxygenated blood within the vessel 30 to perfuse the heart tissue located downstream from the occlusion 40, such as while the surgeon is performing an anastomosis to bypass the damaged or diseased section 32 in CABG procedures. In one embodiment, the distal end 26 of the perfusion catheter 24 may be equipped with a selectively inflatable balloon or similar occluding structure 28 designed to prevent the flow of blood upstream towards the damaged or diseased section 32. In this fashion, the balloon or occluding structure 28 helps to establish and maintain a bloodless field along a portion of the target blood vessel 30, thereby easing the challenge for the surgeon in performing the anastomosis.
Although shown as part of a left-heart bypass arrangement in
Referring finally to
The pump 10, equipped with the supplemental inflow port 18 according to the present invention, also advantageously allows the physician to infuse any of a variety of fluids into the blood stream of the patient. As well as the infusion of reconditioned or recaptured blood as shown in
As will be appreciated, other combination of the various methods and elements can be used as appropriate. For example, the blood pump of the present invention may be coupled to an oxygenator. While the present invention has been described with reference to the aforementioned examples, this description is not intended to be construed in a limiting sense. It should be readily understood that the components disclosed herein should all be made of materials suitable for medical use, which materials are well known in the art. It should also be understood that all aspects of the present invention are not limited to the specific depictions, and that relative proportions and sizing of the components may vary depending upon the particular situation or application.
Various modifications in form and detail of the embodiments shown herein will be apparent to skilled artisans upon reference to this disclosure. It is therefore contemplated that all attendant claims shall cover any such modifications or variations of the described embodiments as following within the true spirit and scope of the present invention.
This application is divisional of co-pending U.S. patent application Ser. No. 09/641,012, filed Aug. 16, 2000, which is a continuation-in-part of U.S. application Ser. No. 09/313,268, filed May 18, 1999, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 09641012 | Aug 2000 | US |
Child | 10991255 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09313268 | May 1999 | US |
Child | 09641012 | Aug 2000 | US |