Supplemental request for MAX-TL Ultracentrifuge and rotor

Information

  • Research Project
  • 10386257
  • ApplicationId
    10386257
  • Core Project Number
    R35GM139550
  • Full Project Number
    3R35GM139550-01S1
  • Serial Number
    139550
  • FOA Number
    PA-20-272
  • Sub Project Id
  • Project Start Date
    1/1/2021 - 3 years ago
  • Project End Date
    12/31/2025 - a year from now
  • Program Officer Name
    ADKINS, RONALD
  • Budget Start Date
    1/1/2021 - 3 years ago
  • Budget End Date
    12/31/2021 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
    S1
  • Award Notice Date
    8/10/2021 - 3 years ago

Supplemental request for MAX-TL Ultracentrifuge and rotor

SUMMARY/ABSTRACT (for R35 GM139550) Our research program combines detailed biochemical reconstitution experiments with powerful cell-based assays, with a goal of gaining fundamental mechanistic insights about RNA polymerase II (pol II) function and its regulation. The 12-subunit human pol II enzyme transcribes all protein-coding and many non-coding RNAs in the human genome. Pol II transcription initiation is regulated by the 4.0 MDa Pre-Initiation Complex (PIC), which contains TFIIA, IIB, IID, IIE, IIF, IIH, pol II, and Mediator. Together with sequence-specific, DNA-binding transcription factors (TFs), the PIC helps direct the timing, location, and direction of pol II transcription, genome- wide. How TFs and the PIC work together during different stages of pol II transcription (e.g. initiation, pausing, elongation) remain incompletely understood; moreover, new insights over the past 5+ years have transformed our understanding of transcription. For instance, enhancer RNA (eRNA) transcription and enhancer-promoter communication appear to drive lineage- or signal-specific (or oncogenic) gene expression programs, and liquid phase separated molecular condensates correlate with pol II activity in cells. Although new mechanistic models have emerged, such models cannot be reliably tested using only cell-based methods, in part because of the enormous complexity of cellular systems. For instance, the identity and concentration of the proteins, nucleic acids, and biochemicals that are present at any given gene in a population of cells cannot possibly be defined. In the next 5 years, we propose to leverage our unique expertise in biochemical reconstitution with cutting- edge cellular methods to address the following high-impact areas: 1) Liquid phase-separated molecular condensates and pol II function. We seek to define how (or whether) molecular condensates regulate transcription, including whether distinct compositions help control different stages of pol II transcription (e.g. initiation vs. elongation). 2) Regulation of pol II initiation, pausing, and elongation by the transcriptional kinases CDK7 (TFIIH subunit), CDK8 (Mediator-associated kinase), and CDK9 (P-TEFb kinase). We will assess what each kinase, alone and in combination with the others, contributes to the regulation of pol II activity. This will include potential ?downstream? impacts on elongation rates or RNA processing. 3) Enhancer RNA (eRNA) transcription and super-enhancer function. We will dissect the mechanistic requirements for bidirectional eRNA transcription, to determine whether they are distinct from typical protein-coding genes. Furthermore, we seek to reconstitute super-enhancer function in vitro, which would serve as a framework for understanding the ?rules? by which super-enhancers drive high-level transcription in human cells. (Although this aspect is ambitious, we note our recent success with reconstitution of pol II promoter-proximal pausing, which the field long considered difficult if not impossible.) Finally, we emphasize that an equally important aspect of our research plan is to rigorously test the models that emerge from our detailed and systematic in vitro assays through targeted, follow-up cell- based assays, which will implement genome-editing, chemical biology, transcriptomics, and other approaches.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    3
  • Direct Cost Amount
    49204
  • Indirect Cost Amount
  • Total Cost
    49204
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:49204\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
  • Study Section Name
  • Organization Name
    UNIVERSITY OF COLORADO
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    007431505
  • Organization City
    Boulder
  • Organization State
    CO
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    803031058
  • Organization District
    UNITED STATES