The invention relates to a heating, ventilation, and air conditioning (HVAC) system for a motor vehicle and, more particularly, to a modular HVAC system having minimal packaging requirements and thermal storage aspects.
This section provides background information related to the present disclosure which is not necessarily prior art.
During the design of a motor vehicle, the shape and dimensions of the vehicle body are defined. This determines a maximum amount of space available for vehicle systems and components to be installed. The result of this process is often referred to as establishing the packaging requirements of components. The packaging requirements of HVAC systems, particularly air conditioning units, requires intensive development work because such equipment requires significant space that encroaches upon the interior passenger space of the vehicle. HVAC systems typically include a plurality of heat exchangers, a blower motor, and other electrical and mechanical components which must be accounted for in the packaging requirements.
Such development work is focused on minimizing a size of the HVAC system and on the position of the HVAC system within in the vehicle such that interference with passengers is minimized. As a result, the HVAC system is often placed in an instrument panel to maximize the foot space available to the driver and front seat passenger. However, placing an HVAC system in the instrument panel maximizes the space the instrument panel occupies in a front of the vehicle, thus increasing mounting space in a longitudinal direction of the vehicle.
Other issues with HVAC systems relate to energy utilization that may tax a power plant of the vehicle or an energy storage device of the vehicle. To minimize the energy utilization and maximize available occupant volume of the cabin environment, one approach is to heat and cool only the zone where an occupant is located. In certain instances, supplemental heating and cooling can be used to augment the thermal transfer capacity of the HVAC system.
There remains a need for an HVAC system that does not occupy space in an instrument panel while occupying a minimized amount of space in the interior of a vehicle that can provide supplemental heating and cooling capacity.
The present technology includes systems, processes, articles of manufacture, and compositions that relate an HVAC system having supplemental thermal storage capacity that does not occupy space in an instrument panel while occupying a minimized amount of space in the interior of a vehicle.
An HVAC system for a motor vehicle according to the present technology includes a housing, a blower assembly, and a thermal storage device. The housing has a length greater than a width, where the housing is disposed with the length substantially parallel to a longitudinal axis of the motor vehicle. The blower assembly is disposed within the housing and is adjacent an instrument panel of the vehicle. The thermal storage device is in thermal communication with air caused to flow through the HVAC system.
In some embodiments, the HVAC system includes a housing having a length greater than a width, the housing disposed with the length substantially parallel to a longitudinal axis of the motor vehicle. A blower assembly is disposed within the housing and adjacent an instrument panel of the vehicle. A heat exchanger is disposed within the housing, where the heat exchanger is in thermal communication with air caused to flow through the HVAC system. A thermal storage device is in thermal communication with the heat exchanger, where the thermal storage device including a phase change material.
In other embodiments, the HVAC system includes a housing, a blower assembly, a heat exchanger, and a thermal storage device. The housing has a length greater than a width, the housing disposed with the length substantially parallel to a longitudinal axis of the motor vehicle. The blower assembly is disposed within the housing, the blower assembly disposed adjacent an instrument panel of the vehicle. The heat exchanger is disposed within the housing, where the heat exchanger is in thermal communication with air caused to flow through the HVAC system. The thermal storage device is in thermal communication with the heat exchanger, where the thermal storage device includes a coolant loop in thermal communication with the heat exchanger and one of a coolant reservoir and a phase change material disposed outside of the housing.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
The following description of technology is merely exemplary in nature of the subject matter, manufacture and use of one or more inventions, and is not intended to limit the scope, application, or uses of any specific invention claimed in this application or in such other applications as may be filed claiming priority to this application, or patents issuing therefrom. Regarding the methods disclosed, the order of the steps presented is exemplary in nature, and thus, the order of the steps can be different in various embodiments. Except in the examples, or where otherwise expressly indicated, all numerical quantities in this description are to be understood as modified by the word “about” in describing the broadest scope of the technology.
The HVAC system 10 includes a housing 14, a blower assembly 24, a first heat exchanger 26, and a second heat exchanger 28. The dimensions and shape of the housing mirror the general dimensions and shape of the components of the HVAC system 10 disposed therein. As shown in
As shown in
The blower assembly 24 includes a fan, a motor, and other electrical components for drawing air into the HVAC system 10, through the heat exchangers 26, 28, and into the interior of the vehicle 12. The blower assembly 24 is in fluid communication with a fresh air cowl 32 via a conduit 34. The conduit 34 may be disposed partially or completely in the instrument panel 30, below the instrument panel 30, or in an engine compartment 35 of the vehicle 12, as desired. In the embodiment shown in
The first heat exchanger 26 is disposed downstream from the blower assembly 24 and upstream from the second heat exchanger 28. As shown in
The second heat exchanger 28 is disposed downstream from the first heat exchanger 26. As shown in
In use, fresh air is drawn into the HVAC system 10 from an exterior of the vehicle 12 through the fresh air cowl 32 and through the conduit 34 by the blower assembly 24. The fresh air may be supplemented or replaced by recirculated air drawn through the HVAC system 10 from the interior of the vehicle 12 through a recirculated air opening 38. The recirculated air opening 38 is disposed adjacent the instrument panel 30, and may be disposed under the instrument panel 30, in front of the instrument panel 30, or as part of the instrument panel 30, as desired. The air is caused to flow through the heat exchangers 26, 28 by the blower assembly 24. In a cooling mode the air is caused to flow through the first heat exchanger 26 and then caused to flow through a vehicle distribution system (not shown) to cool an interior of the vehicle 12. In a heating mode, the air is caused to flow through the second heat exchanger 28 and caused to flow through a vehicle distribution system to heat an interior of the vehicle 12. The air flowing through the second heat exchanger 28 may also be heated by the supplemental heater 44. The vehicle distribution system comprises conduits or ducting (not shown) and vents (not shown). The HVAC system 10 may be used as a stand-alone HVAC system for the vehicle 12, or the HVAC system 10 may supplement a standard HVAC system as known in the art. The HVAC system 10 may be in fluid communication with vehicle distribution systems having ducting and vents to provide heated or cooled air to the front passenger compartment, rear passenger compartment, both the front and the rear passenger compartments of the vehicle, to and through the front seats 22 and/or the rear seats 40, and/or to and through a steering wheel 42 of the vehicle.
Because the blower assembly 24 is either below the instrument panel 30 (
With reference to
The thermal storage device 46 can be disposed entirely inside the housing 14, as shown in
As shown, one or more thermal storage devices 46 can be in thermal communication with one or more heat exchangers 26, 28 disposed within the housing. For example, the first thermal storage device 48 can be in thermal communication with the first heat exchanger 26, where the first heat exchanger 26 can be an evaporator, and the second thermal storage device 50 can be in thermal communication with the second heat exchanger 28, where the second heat exchanger 28 is a heater core.
The thermal storage device 46 can include a phase change material to operate as heat source or a heat sink. For example, the phase change material can serve as a store of latent heat that can be transferred to the HVAC system 10 in order to provide supplemental thermal energy for heating one or more occupant zones within the vehicle 12. Alternatively, heat from the first heat exchanger 26 or the second heat exchanger 28 can be transferred to the first thermal storage device 48 or the second thermal storage device 50, respectively, and subsequently to the phase change material where it is stored. Examples of various phase change materials include salt hydrates, fatty acids and esters, various paraffins, and ionic liquids.
In a particular embodiment of the present technology, the HVAC system 10 for the motor vehicle 12 includes the housing 14, the blower assembly 24, a heat exchanger such as the first heat exchanger 26 or the second heat exchanger 28, and the thermal storage device 46. The housing 14 has the length 16 greater than the width 20 and is disposed with the length 16 substantially parallel to the longitudinal axis of the motor vehicle 12. The blower assembly 24 is disposed within the housing 14 and is disposed adjacent the instrument panel 30 of the vehicle 12. The heat exchanger 46 is disposed within the housing 14 and is in thermal communication with air caused to flow through the HVAC system 10. The thermal storage device 46 is in thermal communication with the heat exchanger (e.g., first heat exchanger 26 or second heat exchanger 28) and includes a phase change material.
In another particular embodiment of the present technology, the HVAC system 10 for a motor vehicle 12 includes the housing 14 having the length greater 16 than the width 20, the housing 14 being disposed with the length 16 substantially parallel to a longitudinal axis of the motor vehicle 12. The blower assembly 24 is disposed within the housing 14, the blower assembly 24 is also disposed adjacent the instrument panel 30 of the motor vehicle 12. The heat exchanger (e.g., the first heat exchanger 26 or the second heat exchanger 28) is disposed within the housing 14, the heat exchanger being in thermal communication with air caused to flow through the HVAC system 10. The thermal storage device 46 is in thermal communication with the heat exchanger (e.g., the first heat exchanger 26 or the second heat exchanger 28), the thermal storage device 46 including a coolant loop 52 in thermal communication with the heat exchanger (e.g., the first heat exchanger 26 or the second heat exchanger 28) and one of the coolant reservoirs 58, 60 and a phase change material disposed outside of the housing 14.
The present technology affords several advantages and benefits. These include the capacity to provide supplemental thermal energy to one or more zones within a vehicle. For example, an occupant may desire additional heating or cooling separate from another occupant of the vehicle. The supplemental thermal storage devices used in the HVAC systems described herein can therefore provide an increase in the heating or cooling capacity of the HVAC system or can provide a more rapid heating or cooling effect on demand. In this way, the present HVAC systems can better respond to the climate control requests of a particular occupant of the vehicle to provide zonal conditioning or the system can provide an improved response for the entire interior of the vehicle to the benefit of all occupants.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail. Equivalent changes, modifications and variations of some embodiments, materials, compositions and methods can be made within the scope of the present technology, with substantially similar results.
Number | Name | Date | Kind |
---|---|---|---|
5277038 | Carr | Jan 1994 | A |
5553662 | Longardner | Sep 1996 | A |
6068046 | Pommier et al. | May 2000 | A |
6276166 | Sarkisian et al. | Aug 2001 | B1 |
6361429 | Pawlak, III | Mar 2002 | B1 |
6691527 | Bureau et al. | Feb 2004 | B2 |
6854513 | Shirota et al. | Feb 2005 | B2 |
7147071 | Gering | Dec 2006 | B2 |
7156156 | Haller et al. | Jan 2007 | B2 |
7478670 | Richter et al. | Jan 2009 | B2 |
7735330 | Richter et al. | Jun 2010 | B2 |
7879122 | Richter et al. | Feb 2011 | B2 |
8191618 | Gering et al. | Jun 2012 | B2 |
8302417 | Major et al. | Nov 2012 | B2 |
20050045320 | Richter et al. | Mar 2005 | A1 |
20050116054 | Richter et al. | Jun 2005 | A1 |
20060000595 | Kang | Jan 2006 | A1 |
20080110184 | Hirooka | May 2008 | A1 |
20080230204 | Richter et al. | Sep 2008 | A1 |
20090188266 | Hung et al. | Jul 2009 | A1 |
20090266094 | Major et al. | Oct 2009 | A1 |
20100006258 | Richter et al. | Jan 2010 | A1 |
20110036117 | Frohling et al. | Feb 2011 | A1 |
20110067421 | Shiraishi et al. | Mar 2011 | A1 |
20110174000 | Richter et al. | Jul 2011 | A1 |
20120003910 | Richter | Jan 2012 | A1 |
20120138697 | Richter | Jun 2012 | A1 |
20120152511 | Chang et al. | Jun 2012 | A1 |
20120174602 | Olivier et al. | Jul 2012 | A1 |
20120291986 | Richter | Nov 2012 | A1 |
20130000265 | Richter et al. | Jan 2013 | A1 |
20130008971 | Richter et al. | Jan 2013 | A1 |
20130145792 | Toyama | Jun 2013 | A1 |
20140213167 | Goenka | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
10147113 | Apr 2003 | DE |
10307641 | Apr 2004 | DE |
102004051874 | May 2006 | DE |
102005012557 | Sep 2006 | DE |
102006009162 | Nov 2006 | DE |
102006008218 | Dec 2006 | DE |
102008002408 | Dec 2009 | DE |
Number | Date | Country | |
---|---|---|---|
20140213167 A1 | Jul 2014 | US |