BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWINGS
FIG. 1 is a schematic diagram of one illustrative embodiment of the invention transposed onto a map.
FIGS. 2A-2B are schematic diagrams showing the relationships between several entities.
FIG. 3 is a schematic diagram showing a depalletizing-repalletizing operation at a regional distribution center.
FIGS. 4A-4E is a schematic diagram and several tables used to demonstrate an supply chain optimization method employed in one embodiment of the invention.
FIG. 5 is a top plan view of a regional distribution center.
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.”
As shown in FIG. 1, in one illustrative embodiment of the invention, a plurality of geographically diverse suppliers 14 supply goods to a regional distribution center (RDC) 110 in quantities that are optimal with respect to the RDC 110. The RDC 110 reorganizes the goods into quantities that are optimal for each of a plurality of operating companies 112, who then distribute the goods to a plurality of wholesale customers 12. The wholesale customers 12 then distribute the goods to their respective retail customers. The RDC 110 is located at a location such that shipping to the operating companies 112 can occur within a predetermined period of time, such as one 24 hour period.
The ordering, scheduling and control relationships between the various entities involved in the invention are shown in FIG. 2A. Typically, a wholesale customer 12 orders, from an operating company 112, a quantity of a product sufficient to meet the needs of its customers over a given period. For example, if the wholesale customer 12 was a restaurant that orders paper napkins, then the operating company 112 could be a restaurant supply company that supplies paper napkins. Periodically, the operating company 112 transmits order projections to the RDC 110. Such order projections could be based on several factors, for example: seasonal expectations of required quantities of the products it provides to its customers; expectations based on market growth; expectations based short term anticipated events (e.g., an announcement of a major sporting event coming to the operating company's territory might trigger an increased expectation of the need for paper cups); and ordering trends of current customers. When the operating company 112 anticipates that its stock of a certain item falls below a preset threshold, it will also send a replenishment order to the RDC 110. The order projections may also be transmitted to a central office 210 for statistical analysis and the replenishment orders may also be sent to the central office 210 so that it may issue a purchase order to the supplier 14. The supplier 14 transmits a transportation schedule to the RDC 110 to indicate when shipments to the other entities can be expected.
An exemplary delivery scheme from the supplier 14 is shown in FIG. 2B. The supplier 14 may ship directly to the RDC 110, in which case the RDC 110 delivers aggregated orders to the operating company 112. The operating company 112 then ships customer-specific orders to the wholesale customer 12. If it is determined to be optimal, then the supplier may also ship directly to the operating company 112 or to the customer 12. (This situation could arise, for example, when either the operating company 112 or the wholesale customer 12 orders an entire truckload of a product.)
An aggregation system 300 that would be employed at the RDC 110 is shown in FIG. 3, in which products are ordered in supplier-optimal amounts from various suppliers 14. Typically, a supplier-optimal amount is an amount for which the unit price of the product is minimal—such as an entire pallet or an entire truckload of the product. Also, truck volumes and routs may be optimized to minimize transport costs for the first product and the second product. This results in an amount that reflects the reduced per-unit handling and transportation charges associated with the product, a well as a bulk ordering incentive to the supplier 14. The supplier-optimal amounts of the products are received in a receiving area 310 and they are disassembled and placed in a storage area 320. Subsequently, they are then reassembled into operating company-optimal amounts in a loading area 330. The company-optimal amounts are amounts that are optimal to the individual operating companies 112. For example, it may be cheapest to purchase a 16 unit pallet of product “A” from supplier “A,” a 12 unit pallet of product “B” from supplier “B” and a 36 unit pallet of product “C” from supplier “C.” However, it might be most efficient to supply operating company “1” with only two units of product “A,” four units of product “B” and eight units of product “C” for a given shipment. This shipment to operating company “1” would take into account such factors as operating company “1′” projected needs and warehousing capacity, as well as the transportation costs associated with the shipment. Similar operating company-specific shipments could be assembled for other operating companies. Thus, the RDC ensures that products are ordered in a manner so as to optimize the efficiency of ordering from the suppliers 14 and the products are aggregated in a manner so as to optimize the efficiency of transporting the products to the operating companies supplier-optimal amounts 112.
One demonstration of an exemplary manner in which the ordering and transport decisions are made is shown in FIGS. 4A-4E. Various supply chain permutations are shown in FIGS. 4A-4E. The costs associated with each of these permutations a stored in a computer database by a digital computer. Possible transportation leg combinations are shown in FIG. 4A, in which each leg of a transportation chain between the supplier 14 and the customer is designated by a two-letter code, as follows:
- SF—the supplier 14 ships to a forward warehouse 402;
- SR—the supplier 14 ships to the RDC 110;
- SO—the supplier 14 ships to the operating company 110;
- SC—the supplier 14 ships to the wholesale customer 12;
- FR—the forward warehouse 402 ships to the RDC 110;
- FO—the forward warehouse 402 ships to the operating company 110;
- FC—the forward warehouse 402 ships to the wholesale customer 12;
- RO—the RDC 110 ships to the operating company 110;
- RC—the RDC 110 ships to the wholesale customer 12; and
- OC—the operating company 110 ships to the wholesale customer 12.
Various combinations of these legs form different permutations of the supply chain. For example, SR-RO-OC denotes a transportation chain where the supplier 14 ships a product to the RDC 110 (the “SR” leg), which ships the product to the operating company 112 (the “RO” leg), which in turn ships the product to the wholesale customer 12 (the “OC” leg). A cost is determined 416 for each of these transport permutations, in view of various quantities ordered, as shown in FIG. 4E. Other costs are also calculated for other supply chain parameters. For example, FIG. 4B shows exemplary per unit inventory carrying costs 410 associated with several products as a function of the number of units carried (such as at the RDC 110). In another example, as shown in FIG. 4C, per unit handling costs 412 are determined as a function of the number of units handled for each product, and FIG. 4D shows that per unit transaction costs 414 are determined for each product as a function of the number of units of the product purchased. These costs may be determined based on experience and on the result of negotiations with the entities involved. For example, the transport costs might be determined based on a carrying contract negotiated with a trucking company and transaction costs might be based on the supplier's 14 product price list for the service company.
When an order is to be sent to a customer 12, the costs associated with the various permutations are added together to generate a total supply chain cost for each supply chain permutation. A computer retrieves from the database all of the relevant costs and calculates a total supply chain cost for each supply chain permutation. The supply chain permutation with the lowest supply chain cost is then selected. For example, if the customer 12 ordered 300 units of product A, and if the service company were to order only that amount, then the transaction cost would be $22×300=$6,600, the inventory handling cost would be $9×300=$2,700, the product handling costs would be $15×300=$4,500 and the lowest transport cost would be (using route SC) $106×300=$31,800. Thus, the total cost for this supply chain permutation would be $6,600+$2,700+$4,500+$31,800=$45,600 and the total per unit cost would be $45,600÷300=$152 per unit.
The service company might consider ordering 1000 units instead, assuming that there is a high probability that the additional 1000 units would be ordered by customers in the near term, with 500 units being stored at the RDC 110 and 200 units being stored at the operating company 112. In this case, the transaction cost would be $21×1,000=$21,000, the inventory handling cost would be $8×1,000=$8,000, the product handling costs would be $14×1,000=$14,000, the lowest transport cost would be (this time using route SR-RO-OC because 500 units would have to be shipped to the RDC 110 and 200 units would have to be shipped to the operating company 112 for storage) $110×1,000=$110,000. Thus, the total cost for this supply chain permutation would be $21,000+$8,000+$14,000+$110,000=$153,000 and the total per unit cost would be $153,000÷1,000=$153 per unit. However, this bulk ordering would result in an actually higher supply chain cost per unit ($153 per unit) than the cost per unit of ordering only 300 units ($152 per unit). Therefore, the service company would order only 300 units of product A. As will be readily appreciated, this is only a greatly simplified example and an actual embodiment might include many other factors (such as safety stock cost, etc.) commonly known to those in the supply chain management art. Also, supply chain events other than receiving an order from the customer could trigger this kind of calculation.
One configuration for an RDC 110 is shown in FIG. 5. Ideally, the RDC 110 is located close to one or more substantial transportation channels, such as a major highway 502, allowing truck 508 transportation, and a railway 504, allowing train 506 transportation, or even an airport (not shown). The regional distribution center 110 would include a substantial enclosure 510. A receiving dock 512 would be located at a first outer extremity of the enclosure 110. The receiving dock 512 would be positioned so as to receive inbound trucks 508, carrying supplier-optimal loads, from the highway 502. A shipping dock 532 would be located at a second outer extremity of the enclosure 110 and would be spaced apart from the receiving dock 512. The shipping dock 532 would be positioned for efficient access to the highway 502 for outbound trucks 508 carrying customer-optimal loads.
An enclosed rail siding 540, spaced apart from both the receiving dock 512 and the shipping dock 532, would allow receipt of goods from trains 506, as well a shipping goods via train 506. Located next to the receiving dock 512 would be a depalletizing area 514 that would house an automatic depalletizer. Next to the depalletizing area is a storage unit 520, that could include three separate storage areas: (1) a frozen storage area 522 for storing frozen perishable goods (e.g., frozen meat, frozen vegetables, etc.); (2) a cold storage area 524, for storing refrigerated perishable goods (e.g., dairy products, fresh vegetables, etc.); and (3) a dry storage area 526, for storing non-perishable goods (e.g., paper napkins, plastic cutlery, etc.). Each storage area would include a plurality of vertically spaced-apart racks (not shown) for storing products thereon.
An automatic depalletizer would be located in the depalletizing area 514 and would be used for depalletizing products received in pallets from the receiving dock 512 or the enclosed rail siding 540. A palletizing area 530 would be located between the shipping dock 532 and the storage areas and an automatic palletizer would be located in the palletizing area 530. The palletizer would be used to configure customer-optimal loads for transfer onto trucks 508 at the shipping dock 532 or trains 506 in the enclosed rail siding 540.
A moving system 528, such as a conveyor system moves products from the receiving dock 512 and the enclosed rail siding 540 to the depalletizer 514 and moves depalletized products from the depalletizer 514 to a selected storage area of the storage unit 520. The moving system 528 would also move depalletized products from the storage area 520 to the palletizer 530 and would move palletized products from the palletizer 530 to the shipping dock 532.
The above described embodiments are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.