The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2008-261563 filed in Japan on Oct. 8, 2008.
1. Field of the Invention
The present invention relates to an image forming apparatus that uses a developing unit with a configuration that enables a developer fed along a predetermined circulation path to be carried on a moving surface of a developer carrying member to be used for development, and then returned from the surface of the developer carrying member to the circulation path.
2. Description of the Related Art
A developing device described in Japanese Patent Application Laid-open No. H9-160364 is known as one type of developing units related to the present invention.
The development roll 910 is placed on a lateral side of the second developer containing chamber 903. The development roll 910 includes a development sleeve including a nonmagnetic pipe that is rotationally driven, and a magnet roller (not shown) that is unrotatably housed inside the development sleeve. The developer in the second developer containing chamber 903 is carried on the surface of the rotating development sleeve by a magnetic force produced by the magnet roller and fed to a development area in which the development sleeve and a photoconductor (not shown) face with each other. The surface of the sleeve is then developed with the developer, and the developer on the sleeve surface is returned to the second developer containing chamber 903. The toner concentration is reduced because the developer contributes to the development. A control unit (not shown) estimates an amount of toner consumed during the development of an image based on a result of calculation of the number of pixels in the image based on image information, and drives a toner supplying unit (not shown) for a time corresponding to a result of the estimation. In this way, supplemental toner is added to the toner in the first developer containing chamber 901 through a toner supply opening 915 located near an upstream end in a direction of developer feeding in the first developer containing chamber 901, thereby restoring the toner concentration of the developer. This toner supply enables to restore the toner concentration more promptly than in a configuration in which toner supply is performed after a toner concentration sensor detects a reduction in the toner concentration of a developer.
However, in a successive image-forming operation in which images are successively output onto plural sheets of recording paper, when image area ratios of the pages are greatly different from each other, it is difficult to stabilize the toner concentration of the developer for a reason explained below. That is, in the first developer containing chamber 901 that contains the developer being fed and not drawn up by the development roll 910, fluctuation in the toner concentration resulting from toner consumption associated with the development starts quite later than the consumption. When an image corresponding to one page is output for example, most of the developer used for the development of the image still remains in the second developer containing chamber 903 immediately after the output of the image. With subsequent rotation of the second feed screw 904, the development enters the first developer containing chamber 901 little by little, which gradually reduces the toner concentration of the developer in the first developer containing chamber 901. It takes a relatively long time that most of the developer used for the development in the development area has entered the first developer containing chamber 901. It means that the fluctuation in the toner concentration of the developer in the first developer containing chamber 901 due to the output of the image corresponding to one page continues for a long time. Nevertheless, an operation of supplying the toner corresponding to an amount of consumption for one page is performed for a short time. It implies that, immediately after a page with a high image area ratio is output, a large amount of toner is supplied to the first developer containing chamber 901 before the toner concentration of the developer therein is sufficiently reduced. This causes the toner concentration of the developer in the first developer containing chamber 901 to be higher than desired. When a page with a low image area ratio is then output, the developer with the toner concentration greatly reduced by the output of the previous page is drawn from the second developer containing chamber 903 to the first developer containing chamber 901 although only a small amount of toner is supplied to the first developer containing chamber 901. This causes the toner concentration of the developer in the first developer containing chamber 901 to be lower than desired. As a result, it becomes difficult to stabilize the toner concentration of the developer.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to one aspect of the present invention, there is provided an image forming apparatus including: a latent-image carrying member on which a latent image is formed; an image-information obtaining unit that obtains image information; a latent-image forming unit that forms the latent image on the latent-image carrying member based on the image information; a developing unit that develops the latent image by causing a toner to adhere to the latent image on the latent-image carrying member in a development area, which is an area in which a developer carrying member and the latent-image carrying member face with each other, by conveying a developer, which contains the toner and a carrier, included in a supply area that is an area facing the developer carrying member in a predetermined circulation path to the development area by carrying the developer on a moving surface of the developer carrying member while conveying the developer along the circulation path, and returns the developer used for the development in the development area to the supply area with a surface movement of the developer carrying member; a toner supplying unit that supplies the toner to a non-supply area that is an area different from the supply area in the circulation path through a toner supply opening provided at a predetermined position in the non-supply area; and a control unit that controls an amount of supplying the toner by controlling driving of the toner supplying unit based on the image information. The controller is configured to, in a successive image-forming operation in which driving control patterns for the toner supplying unit that are patterns of toner supply amount fluctuation canceling toner concentration fluctuation expected to occur in the developer that has passed through the supply area are generated based on the image information, driving of the toner supplying unit is controlled based on the driving control patterns, and image forming operations for plural pages are successively performed, perform a process of successively generating the driving control pattern for each of the pages based on the image information and synthesizing an unused portion of the driving control pattern generated based on the image information of a previous page, that is obtained by eliminating a portion already reflected on the driving control for the toner supplying unit from the driving control pattern generated based on the previous page, with a driving control pattern generated based on a subsequent page, or, in the successive image-forming operation, perform a process of converting the toner-supply-amount fluctuation pattern generated based on the image information of the previous page into the driving control pattern to be used for the driving control of the toner supplying unit, synthesizing a portion of the toner-supply-amount fluctuation pattern of the previous page unconverted into the driving control pattern with the toner-supply-amount fluctuation pattern generated based on the subsequent image information, and converting a synthesized toner-supply-amount fluctuation pattern into the driving control pattern to be used for the driving control of the toner supplying unit.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplarily embodiments of the present invention will be explained below, which are applied to an electrophotographic printer (hereinafter, simply “printer”) as an image forming apparatus.
A basic configuration of the printer according to the present embodiment is explained.
The photoconductor unit 2Y includes a photoconductor 3Y in the form of a drum as a latent-image carrying member, a drum cleaning device 4Y, an electrostatic eliminator (not shown), a charging device 5Y, and the like. The charging device 5Y as a charging unit uniformly charges the surface of the photoconductor 3Y rotationally driven in a clockwise direction in
The second feed screw 11Y in the second developer containing chamber 14Y is rotationally driven by a driving unit (not shown) to feed the Y developer to the back side in
The light writing unit 20 is located below the process units 1Y, 1C, 1M, and 1K in
A first paper cassette 31 and a second paper cassette 32 are placed below the light writing unit 20, vertically superposed. Each of the paper cassettes contains plural sheets of recording paper P as recording materials in a state of a stack of recording paper. A first feed roller 31a and a second feed roller 32a abut on the top sheets of recording paper P, respectively. When the first feed roller 31a is rotationally driven by a driving unit (not shown) in a counterclockwise direction in
A transfer unit 40 that tightly extend and endlessly moves the intermediate transfer belt 41 in the counterclockwise direction in
The secondary-transfer backup roller 46 nips the intermediate transfer belt 41 with a secondary transfer roller 50 placed outside of the loop of the intermediate transfer belt 41, thereby forming a secondary transfer nip. The registration roller pair 35 described above sends the recording paper P sandwiched between rollers toward the secondary transfer nip in such a timing that the recording paper P can be synchronized with the four-color toner image on the intermediate transfer belt 41. The four-color toner image on the intermediate transfer belt 41 is secondarily transferred in a lump on the recording paper P within the secondary transfer nip due to a secondary-transfer electric field formed between the secondary transfer roller 50 applied with a secondary transfer bias and the secondary-transfer backup roller 46, and a nip pressure. The four-color toner image combines with a white color of the recording paper P, resulting in a full-color toner image.
Untransferred toner that has not been transferred onto the recording paper P is adhered to the intermediate transfer belt 41 that has passed through the secondary transfer nip. The residual toner is cleaned by the belt cleaning unit 42. The belt cleaning unit 42 causes a cleaning blade 42a to abut on the front surface of the intermediate transfer belt 41, thereby scraping the untransferred toner off the belt.
The first bracket 43 of the transfer unit 40 is rocked about a rotation axis of the auxiliary roller 48 at a predetermined rotational angle by turning a solenoid (not shown) on or off. When a monochrome image is to be formed, the printer according to the present embodiment rotates the first bracket 43 a little in the counterclockwise direction in
A fixing unit 60 is placed above the secondary transfer nip in
The temperature sensor (not shown) is placed outside of the loop of the fixing belt 64 to face the front surface of the fixing belt 64 with a predetermined gap therebetween, and senses a surface temperature of the fixing belt 64 immediately before an entry into the fixing nip. A result of the sensing is sent to a fixing power circuit (not shown). The fixing power circuit controls power supply to the heat source included in the heat roller 63 or the heat source included in the pressure and heat roller 61 based on a result of the sensing by the temperature sensor to switch on or off. In this way, the surface temperature of the fixing belt 64 is kept at about 140° C. The recording paper P passed through the secondary transfer nip is separated from the intermediate transfer belt 41 and then fed into the fixing unit 60. The recording paper P is heated and pressured by the fixing belt 64 in the course of feeding from a lower portion to an upper portion in
The recording paper P subjected to the fixing process is passed through between rollers of an ejecting roller pair 67 and then ejected outside the printer. A stack unit 68 is formed on the top face of an enclosure of the printer body, and the recording paper P ejected outside the printer by the ejecting roller pair 67 is successively stacked on the stack unit 68.
Toner bottles 72Y, 72C, 72M, and 72K, which are four toner containers that contain Y, C, M, and K toner, respectively, are placed above the transfer unit 40. Toner of respective colors in the toner bottles 72Y, 72C, 72M, and 72K is properly supplied by a toner supply device 70 to the developing units 7Y, 7C, 7M, and 7K of the process units 1Y, 1C, 1M, and 1K, respectively. The toner bottles 72Y, 72C, 72M, and 72K can be attached to or detached from the printer body independently of the process units 1Y, 1C, 1M, and 1K.
A gear unit (not shown) is formed on the outer circumferential surface at the head of each of the bottle units 73K, 73Y, 73C, and 73M of the toner bottles 72K, 72Y, 72C, and 72M, respectively. These gear units are covered over by the holder units 74K, 74Y, 74C, and 74M. A notch (not shown) is formed at a part of the circumferential surface of each of the holder units 74K, 74Y, 74C, and 74M to partially expose the gear unit, and the gear unit partially exposes itself through the notch. When the holder units 74K, 74Y, 74C, and 74M of the toner bottles 72K, 72Y, 72C, and 72M engage with the bottle driving unit 96, K, Y, C, and M bottle driving gears (not shown) included in the bottle driving unit 96 engage with the gear units of the bottle units 73K, 73Y, 73C, and 73M through the corresponding notches. The K, Y, C, and M bottle driving gears of the bottle driving unit 96 are rotationally driven by a driving system (not shown), so that the bottle units 73K, 73Y, 73C, and 73M are rotationally driven on the holder units 74K, 74Y, 74C, and 74M.
When the bottle unit 73Y is rotated on the holder unit 74Y in this way in
A horizontal feed pipe 79Y is coupled to a lower portion of the hopper unit 76Y, and the Y toner in the hopper unit 76Y slides down a taper under its own weight and drops into the horizontal feed pipe 79Y. A toner supply screw 80Y is placed in the horizontal feed pipe 79Y to horizontally feed the Y toner along a longitudinal direction in the horizontal feed pipe 79Y with rotational driving of the screw.
A drop guide pipe 81Y in a position vertically extending is coupled to an end of the horizontal feed pipe 79Y in the longitudinal direction. A lower end of the drop guide pipe 81Y is coupled to a toner supply opening 17Y of the first developer containing chamber 9Y of the developing unit 7Y. When the toner supply screw 80Y of the horizontal feed pipe 79Y rotates, the Y toner fed to the end of the horizontal feed pipe 79Y in the longitudinal direction drops through the drop guide pipe 81Y and the toner supply opening 17Y into the first developer containing chamber 9Y of the developing unit 7Y. In this way, the Y toner is supplied to the first developer containing chamber 9Y. The toner of other colors (C, M, and K) is supplied in the same manner.
In this configuration that enables to supply the toner by rotational driving of the toner supply screw 80Y, a supply resolution is not so high.
In the printer of the present embodiment, a lower limit B of a driving time of the toner supply device is set, and driving of the toner supply device is switched on and off under conditions that the driving time equal to or longer than the lower limit B is ensured. According to this supply, the fluctuation of the supply amount in each supply operation can be suppressed. A specific method for setting the lower limit B will be described in detail below.
In this printer, a driving speed of the toner supply device is set constant regardless of a required supply amount per unit time. The supply amount per unit time is adjusted according to the frequency of switching on and off of the driving. The frequency of switching on and off of the driving is set higher during a time period in which the required supply amount per unit is relatively large, while the frequency of switching on and off of the driving is set lower during a time period in which the required supply amount is relatively small. When images with high image area ratios are successively output under conditions that this switching control is performed, continuous driving during a rather long period may occurs as shown in an upper portion of
Accordingly, in the printer of the present embodiment, the upper limit E of the driving time of the supply operation is set as shown at a lower portion in
A toner supply control in a conventional image forming apparatus is explained.
A characteristic configuration of the printer according to the present embodiment is explained.
A supply control unit 102 of the printer generates a driving control pattern for the toner supply device based on the image area ratio of each page to be output. At that time, the supply control unit 102 generates the pattern to obtain supply amount fluctuation that enables to negate the toner concentration fluctuation occurring with output of the page (toner concentration fluctuation expected to occur in the developer that has passed through the second developer containing chamber 14Y as a supply area). To generate these driving control patterns, a waveform of toner concentration fluctuation obtained when an entirely black image with an image area ratio of 100% is output (hereinafter, “reference consumption waveform”) is practically measured by a toner concentration sensor in a prior experiment. A waveform having an opposite phase to that of the reference consumption waveform is a fluctuation waveform of the toner supply amount that enables to completely negate the toner concentration fluctuation due to the output of the entirely black image with the image area ratio of 100% (hereinafter, “reference canceling waveform”). When the entirely black image with the image area ratio of 100% is output, the toner concentration fluctuation resulting from the output can be completely canceled by supplying the toner with the same supply amount fluctuation as that of the reference canceling waveform. When the image area ratio is 80%, the toner concentration fluctuation can be canceled by supplying the toner with supply amount fluctuation having a waveform with the same phase as that of the reference canceling waveform and 80% of the amplitude of the reference canceling waveform. For this purpose, an active noise control (ANC) filter circuit is provided to convert the amplitude of the reference canceling waveform to be adapted to an image area ratio of an output image and obtain a canceling waveform corresponding to the image area ratio.
The reference consumption waveform for an A4 sheet, for example, is the one at output of the entirely black image (the image area ratio=100%) as shown in
As shown in
Each of the driving control patterns is formed by arranging a plurality of rectangular pulse signals. When the driving control patterns are simply superimposed, the amplitude of the rectangular pulse signal is increased. In the printer of the present embodiment, however, the adjustment of the supply amount under the driving speed control is not performed but the driving speed is set constant, and thus such a control that increases the amplitude of the rectangular pulse signal cannot be performed. Accordingly, when overlap of the rectangular pulse signals occurs at the synthesis of the driving control pattern for the previous page and the driving control pattern for the subsequent page, the positions of the rectangular pulse signals are shifted to avoid the overlap.
Instead of successively synthesizing the driving control patterns for the subsequent pages with the unused portion of the driving control pattern of the previous page to control the driving of the toner supply device based on the synthesized driving control pattern, the ANC filter circuit can be configured as follows. That is, the ANC filter circuit can be configured to, when the pseudo impulse signal corresponding to the subsequent page is input, correct the subsequent output by synthesizing an un-output portion of the canceling waveform generated based on the pseudo impulse signal corresponding to the previous page with the canceling waveform based on the subsequent pseudo impulse signal. That is, the ANC filter circuit can be configured to output a synthesized waveform as shown in
While the above descriptions assume that the size and feed direction of the recording paper to be used do not change, the size and feed direction of the recording paper change practically. For example, sheets of A4 recording paper are fed horizontally along the lateral direction in some timing while the sheets of A4 recording paper are fed vertically along the longitudinal direction or sheets of recording paper in different sizes are fed horizontally in other timing.
Accordingly, the printer of the present embodiment includes a plurality of ANC filter circuits corresponding to the sizes and feed directions for a plurality of fixed sizes. When the pseudo impulse signal corresponding to the image area ratio is generated at the output of each page, the signal is output to only one of the ANC filter circuits corresponding to the size and feed direction of the output page. When considering an example in which a sheet of a size A is output first and then a sheet of a size B is output secondly as different sizes, the pseudo impulse signal is output only to an ANC filter A at the output of the first page of the size A and the pseudo impulse signal is output only to an ANC filter B at the output of the second page of the size B, as shown in
After the last page is output in a successive image-forming operation or only one page is output in an image forming operation for one-sheet output, driving of the devices is stopped after an idling operation for a predetermined time is performed. It is desirable that all the driving control patterns for the toner supply device have been processed at that time. However, when the toner concentration fluctuation resulting from the toner consumption for the previous page extends over a considerable number of subsequent pages, there are some cases where not all of the driving control patterns can be processed. In these cases, if the idling operation is extended until all of the patterns are processed, a quick stop of the print job is hindered. On the other hand, an idling operation for a predetermined time is commonly set prior to the start of image formation at the start of a print job. Even when the driving of the devices is stopped with a portion of the driving control pattern remaining unused at the end of the print job, the remaining portion can be used during the idling operation at the start of another print job. Accordingly, in the printer of the present embodiment, the supply control unit 102 is configured to, when there is an unused portion of the driving control pattern at the end of a print job, store the unused portion of the pattern in a data storage unit, and control driving of the toner supply device based on the stored pattern portion at the start of the subsequent print job. It is assumed, for example, that a timing chart as shown in
When the output waveform from the ANC filter circuit is to be corrected so that the synthesized waveform shown in
The printer of the present embodiment can switch two print speed modes (high-speed print and low-speed print) according to commands from the user. When the print speeds, that is, process linear speeds are different, the revolution speeds of the feed screw in the developing unit become different, and thus different reference consumption waveforms and canceling waveforms are obtained. Further, the driving control patterns become different. A driving control pattern at one process linear speed can be converted into a driving control pattern at the other process linear speed based on a difference in the linear speed. It is assumed that a driving control pattern as shown in
When the output waveform from the ANC filter circuit is to be corrected so that the synthesized waveform as shown in
Modifications of the printer according to the present embodiment are explained below. Configurations of the printers according to the modifications are the same as that of the above embodiment unless otherwise specified.
[First Modification]
A printer according to a first modification of the present embodiment is the same as that of the embodiment except for a point explained below. That is, a combination of the lower limit B of the driving time as described above and a stop time G subsequent thereto is regarded as one driving control unit, and driving of the toner supply device is switched on and off in this driving control unit, as shown in
[Second Modification]
In the successive image-forming operation, the toner supply capacity of the toner supply device is changed when an average of the image area ratios of output images changes.
The printer according to the second modification obtains a moving average of the area ratios of output images and corrects the toner supply amount per unit image area ratio based on the obtained moving average in the successive image-forming operation.
A correction factor α corresponding to the moving average of the image area ratios is then determined by referring to a data table for determining a correction factor previously stored in a data storage unit (Step S3). Table 1 shown below is an example of the data table.
A smaller correction factor α is selected for a higher moving average in considering that the toner supply capacity of the toner supply device is increased when the moving average of the image area ratios becomes higher. A data table such as Table 2 or 3 below can be used for example, as long as it enables to select a smaller correction factor α for a higher moving average.
An amplitude (height) of the pseudo impulse signal: Xa(k) is then calculated (Step S4). A formula “the amplitude:Xa(k)=the image area ratio X(i)/100×β×α” is used here. In this formula, β denotes an amplitude when the image area ratio X(i) is 100%, and α denotes the correction factor. When the characteristics of the colors K, C, M, and Y shown in
As a specific example of the values, when images with the image area ratio 80% are output successively, the moving average of the image area ratios is 80%. The correction factor α is then determined as 0.85 based on the data table of Table 1. When the amplitude β is 1 when the image area ratio X(i) is 100%, the amplitude Xa of the pseudo impulse signal is calculated as 0.68 by calculation of “the amplitude Xa(k) of the pseudo impulse signal=0.8×1×0.85”. The toner supply amount per unit image area ratio is corrected by adopting this amplitude Xa. In this way, an inappropriate toner supply amount resulting from a change of the toner supply capacity due to a change in the average image area ratio can be avoided.
[Third Modification]
In a printer according to a third modification of the embodiment, color images are developed by a revolver developing device. Specifically, the printer according to the third modification includes a revolver developing device in the form of a drum placed in a position having its axis line direction along a horizontal direction. This revolver developing device holds the K, C, M, and Y developing units within a rotation support, and moves the developing unit of a different color to a position facing a photoconductor each time the rotation support is rotated 90 degrees. K, C, M, and Y latent images successively formed on the photoconductor by switching the developing units according to the rotational angle of the rotation support of the revolver developing device are successively developed to obtain K, C, M, and Y toner images. The K, C, M, and Y toner images are transferred on an intermediate transfer, with one superimposed on top of another.
The revolver developing units removably hold K, C, M, and Y toner cartridges, and with rotation of the rotation support about its rotation axis, cause the toner cartridges to revolve about the rotation axis. Toner is discharged from the toner cartridges by using the revolutions, and stored in a toner temporary storage. The toner is supplied from the toner temporary storage to the developing units by rotational driving of a rotating member. With this configuration, when the revolver developing continues development of a predetermined color for a long time while stopping at a predetermined rotational angular position, an amount of toner of the color stored in the toner temporary storage is gradually reduced. When one-colored images with a high image area ratio are then successively printed, an amount of toner supply from the toner temporary storage to the developing unit becomes larger than an amount of toner supply from the toner cartridge to the toner temporary storage caused by revolution of the revolver developing device. Accordingly, a space is generated in the toner temporary storage. When a bulk density of the toner in the toner temporary storage is reduced in this way, an amount of toner supply per unit time is reduced. That is, the toner supply capacity of the toner supply device becomes lower when the average image area ratio becomes higher.
Table 4 is an example of a data table for determining a correction factor in the printer according to the third modification.
A larger correction factor α is selected for a higher moving average in considering that the toner supply capacity of the toner supply device is reduced when the moving average of the image area ratios is increased. A data table such as Table 5 or 6 below can be used as long as the table enables to select a larger correction factor α for a higher moving average.
In the present invention, the driving control pattern for the toner supplying unit which is a pattern of the toner supply amount fluctuation canceling the toner concentration fluctuation expected to occur in the developer that has passed through the supply area to the developer carrying member in the circulation path of the developer is generated based on the image information of an output image. Normally, as described above, when an image of one page is output, toner concentration fluctuation resulting from toner consumption due to the output of the image continues for a relatively long time in a non-supply area of the circulation path. Therefore, the driving control pattern is generated to control the driving of the toner supplying unit for a relatively long time. In a successive image-forming operation, the driving control for the toner supplying unit for canceling the toner concentration fluctuation resulting from output of a previous page needs to be performed even until output of a subsequent page. Accordingly, the driving control pattern based on the image information of each page is generated individually and successively, and an unused portion of the driving control pattern generated based on the image information of a previous page is successively synthesized with a driving control pattern for a subsequent page, thereby controlling the driving of the toner supplying unit based on a synthesized driving control pattern. Alternatively, the pattern of the toner supply amount fluctuation generated based on the image information of the previous page is converted into the driving control pattern to be used for the driving control of the toner supplying unit, and the pattern of toner supply amount fluctuation generated based on the subsequent image information is synthesized with a portion of the toner-supply-amount fluctuation pattern of the previous page unconverted into the driving control pattern. A synthesized toner supply fluctuation pattern is then converted into the driving control pattern to be used for the driving control of the toner supplying unit. By this control, the toner supply amount can be fluctuated to successively follow the toner concentration fluctuation occurring for a relatively long time due to output of each page, and an amount of toner corresponding to the toner concentration of the developer at the position of the toner supply opening can be supplied. Therefore, the toner concentration can be stabilized more than the conventional technique.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2008-261563 | Oct 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5327196 | Kato et al. | Jul 1994 | A |
5493382 | Takagaki et al. | Feb 1996 | A |
5671470 | Maruta et al. | Sep 1997 | A |
5765059 | Kosuge et al. | Jun 1998 | A |
5970276 | Kato | Oct 1999 | A |
6081678 | Kato | Jun 2000 | A |
6366751 | Shakuto et al. | Apr 2002 | B1 |
6597881 | Hatori et al. | Jul 2003 | B2 |
6665511 | Takeuchi et al. | Dec 2003 | B2 |
6757509 | Shoji et al. | Jun 2004 | B2 |
6819901 | Yasutomi et al. | Nov 2004 | B1 |
6823163 | Sugimoto et al. | Nov 2004 | B2 |
6856780 | Kadota et al. | Feb 2005 | B2 |
7024141 | Takeuchi et al. | Apr 2006 | B2 |
7103305 | Koike et al. | Sep 2006 | B2 |
7116932 | Takeuchi et al. | Oct 2006 | B2 |
7171145 | Takeuchi et al. | Jan 2007 | B2 |
7245861 | Koike et al. | Jul 2007 | B2 |
7346286 | Matsumoto et al. | Mar 2008 | B2 |
7444107 | Takeuchi et al. | Oct 2008 | B2 |
7493058 | Takeuchi et al. | Feb 2009 | B2 |
7509060 | Yaguchi et al. | Mar 2009 | B2 |
7512364 | Muramatsu et al. | Mar 2009 | B2 |
7536121 | Shimizu et al. | May 2009 | B2 |
7551862 | Tanaka et al. | Jun 2009 | B2 |
8009997 | Ariizumi et al. | Aug 2011 | B2 |
20010017991 | Kobayashi et al. | Aug 2001 | A1 |
20060127109 | Itoyama et al. | Jun 2006 | A1 |
20070110457 | Kato et al. | May 2007 | A1 |
20070248368 | Kato et al. | Oct 2007 | A1 |
20080019712 | Tanaka et al. | Jan 2008 | A1 |
20080069580 | Oshige et al. | Mar 2008 | A1 |
20080075482 | Hirota | Mar 2008 | A1 |
20080273885 | Koizumi et al. | Nov 2008 | A1 |
20090041520 | Takeuchi et al. | Feb 2009 | A1 |
20090116861 | Oshige et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
2535965 | Jul 1996 | JP |
9-160364 | Jun 1997 | JP |
2001197297 | Jul 2001 | JP |
2008-65054 | Mar 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20100086322 A1 | Apr 2010 | US |