1. Field of the Invention
The present invention refers to a supply device of circuit branches with LED diodes.
2. Description of the Related Art
Liquid crystal displays are widely used in mobile telephones; said displays use a large number of LED diodes to permit the phenomenon of backlighting. The LED diodes are distributed in the displays uniformly and use the same bias current; to obtain this they are connected in series.
To feed serially connected chains of LED diodes that emit white light, devices suitable for increasing the supply voltage above the value of the supply voltage at their-input are employed.
The most adopted circuit solutions provide for the use of a boost converter which, supplying many branches connected in parallel and each one made up of a series of LED diodes, permit the setting of the current or the voltage on each one.
To regulate the current that passes through one or more branches of LED diodes there are two different modes: a current one and a voltage one.
In the first mode only the current of the main branch can be set. The output current is read and compared with a reference to generate a control in pulse width modulation (PWM) mode; the circuit branches that are not controlled directly can even have a current very different from that of the main branch.
The disadvantage lies in the parallel connection of the circuit branches. Even if the current that flows in the main branch with the highest number of diodes is controlled directly, the secondary circuit branches can have an additional voltage and a different current. Adding a series of resistances in the secondary branches the current set on the main branch can be reached seeing that the resistances compensate the voltage jump error between the main branch and the secondaries that is due to the connection in parallel. In any case even if the object is reached a consistent quantity of power dissipation (on the compensation resistances) causes the decrease in the efficiency of the control.
This disadvantage can be present not only when supplying the circuit branches with a different number of diodes, but also if the number of LED diodes is equal in all the branches. In fact the voltage jump between the LED diodes could be different even if the same current flows. As a consequence it is necessary to impose a different voltage jump for each branch, but this is not possible by connecting all the branches in parallel. Only by regulating the current that flows through the circuit branches with a maximum value of voltage jump and inserting variable resistances in the other circuit branches the parallel connection can be maintained.
The voltage mode provides for the setting of the output voltage for each circuit branch by means of a boost converter and a voltage divider. To control the current that flows through each circuit branch a resistance, connected in series to the LED diodes, is added to each circuit branch; said resistance enable the current required to be adjusted. Nevertheless the value of the current cannot be known in advance given that it depends on the voltage at the terminals of the circuit branches, on the number of LED diodes present in each branch and on the fall in voltage on each LED diode; the latter depends on the flow of current and on the process technology. Therefore the correct resistance value must be assessed in the different cases and must be set so as to compensate the variation of voltage due to the process technology.
One embodiment of the present invention provides a supply device of circuit branches with LED diodes that overcomes the inconveniences of the known devices.
In one embodiment of the present invention, a supply device supplies at least two circuit branches, each of the at least two circuit branches comprising at least one LED diode. The device includes a supply circuit that provides the electric supply of the at least two circuit branches, the supply circuit comprising at least one variable resistance. The device also includes a controller coupled to the at least two circuit branches and suitable for varying the resistance in reply to a variation of the current that flows in one of the at least two circuit branches to change the electric supply of the at least two circuit branches.
Thanks to the present invention it is possible to produce a supply device of circuit branches with LED diodes that ensures the electric supply of each circuit branch preventing some circuit branch from turning off because of insufficient supply.
In a preferred embodiment said supply device guarantees the regulation of the current of each circuit branch.
The characteristics and advantages of the present invention will appear evident from the following detailed description of an embodiment thereof, illustrated as non-limiting example in the enclosed drawings, in which:
With reference to
The resistance R2 is a variable resistance and said supply device 1 comprises a control circuit 3A coupled to said at least two circuit branches 10, 20 and suitable for varying the resistance R2 in reply to a variation of the current of one of said at least two circuit branches 10, 20.
The two circuit branches comprise resistances R10 and R20 positioned between the final LED diode 30 and ground; said control circuit 3A is coupled at the terminals of said two resistances R10, R20.
The control circuit 3A includes a first comparator 51 and a second comparator 52 having the non-inverting terminals connected with a terminal of said resistances R10 and R20 while on the inverting terminal the reference voltages Vref10 and Vref20 are present. The signals in output from the two comparators are sent to an OR gate 53 and the signal in output from the OR gate is sent to a counter 54 which by means of a signal Drive drives the variable resistance R2. If the voltage at the terminals of the resistance R10 is lower than the voltage Vref10 or if the voltage at the terminals of the resistance R20 is lower than the voltage Vref20 the counter 54 will increase the value of the resistance R2 so that the current generator 100 sends a current with a higher value to the circuit branches 10 and 20. In this manner the ratio of division of the resistances R1 and R2 is not chosen in advance but is dynamically adjusted to obtain the correct supply voltage of the circuit branches 10 and 20. In fact, in this case account is taken of the process technology of the LEDs to reduce to a minimum the consumption of power, if a higher supply voltage than that required is regulated, or to prevent a circuit branch from being turned off because the supply voltage is not sufficient.
The circuit block 61 is shown in more detail in
where V30 is the voltage at the terminals of each LED diode 30 and Rs is the resistance of the switch S10. The current is regulated at a value corrected by the feedback that forces the switch to turn on. In fact, with the sawtooth signal SW61, a pulsed signal with period T is generated and a pulse current I10 flows in the circuit branch 10. To regulate a correct average branch current Icorr it is necessary to impose V61=R10*Icorr so that the block 61 will regulate an average current Im=I10*D=Icorr.
The supply device according to the invention is applicable to more than two circuit branches containing LED diodes and in which the same circuit branches can contain a different number of LED diodes.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
05425065 | Feb 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6057651 | Usami | May 2000 | A |
6690146 | Burgyan et al. | Feb 2004 | B2 |
7088059 | McKinney et al. | Aug 2006 | B2 |
7170234 | Chikugawa et al. | Jan 2007 | B2 |
20010043113 | Hoshino et al. | Nov 2001 | A1 |
20020140380 | Biebl | Oct 2002 | A1 |
20030117087 | Barth et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
101 31 845 | Jan 2003 | DE |
1 458 224 | Sep 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20060186827 A1 | Aug 2006 | US |