This disclosure relates to supply independent biasing circuits.
Supply-independent biasing circuits, i.e., biasing circuits that provide DC levels with little dependence on supply levels, are widely used in analog systems such as differential amplifiers and other circuits that require constant current or voltage levels. These supply-independent circuits are still dependent on component process parameters and temperature variations. To avoid such variation, a bandgap reference and voltage-to-current combination must be used, which increases the complexity of the design, power consumption and area.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, terms concerning coupling and the like, such as “coupled”, “connected” and “interconnected,” refer to a relationship wherein structures communicate with one another either directly or indirectly through intervening structures unless expressly described otherwise.
Transistor M5 forms a third current mirror with PMOS M3 and is designed to have the same physical dimensions and biasing as transistors M3 and M4. As a consequence, when the gate voltage of M3 and M4 is applied to the gate of M5, the output current of M5 also becomes equal to IREF and IOUT. This current can be used to generate a supply independent output voltage VOUT, which is equal to IOUT×RS.
If M1 to M4 operate in saturation mode and the channel-length modulation parameter λ is assumed ignored (i.e., it is assumed that the transistor length is large), then the current IOUT simply equals K×IREF, where K is the size ratio between NMOS transistors M2 and M1. As should be apparent from the formula presented below, current will flow as long as K is not equal to 1. K is usually an integer, e.g. 8, 16 or even larger. For this circuit, IOUT and VOUT conform to the following equations:
where μn is the charge-carrier effective mobility, W is the gate width, L is the gate length and Cox is the gate oxide capacitance per unit area.
The on-die resistance can be provided by a polysilicon resistors or diffusion resistor. The current IOUT is relatively insensitive to small fluctuations in supply voltage VDD but is still dependent on the on-die resistance RS, which can vary significantly with process variations. Specifically, the current IOUT varies proportional to the reciprocal of the square of the resistance of RS. By way of example, if the on-die resistance can vary by +/−30%, then the current can easily vary from −50% to +70% from the target.
First, assume that the transistor size of MR and MS are the same and biased in triode region. The value of these resistances RMR and RMS then conforms to the following equation:
Using the IOUT formula from above, and plugging the equation for RMR into RS therein, then IOUT equals:
It is known that VOUT=(IOUT)(RMS). As such, VOUT equals:
By choosing the sizes of M2 and MR carefully, i.e., such that (W/L)m=(W/L)n, and knowing that VG conforms to the following
then the equation reduces as follows and VOUT equals:
In other words, the output voltage is independent of the supply voltage. The gate voltage VG can be generated from the gate of the diode connected transistor MD. The transistor size ration K, is not dependent in any significant way on process and temperature variations. By replacing the on-die resistance RS with a MOSFET, the bias current IOUT and bias voltage VOUT have been made independent of the supply voltage VDD and resistance variations. Further, this scheme can be adapted easily to other supply independent biasing circuits, as illustrated below in connection with
As shown in
The main difference between the biasing circuit 10 of
Though not shown in
Of course, it should be appreciated that the polarity of the transistors shown in
A method of supply independent biasing is shown in
Per the foregoing description, in one embodiment a supply-independent biasing source includes an upper current mirror including first and second PMOS transistors and a lower current mirror coupled to the upper current mirror including first and second NMOS transistors. The first NMOS and first PMOS transistors have drain terminals coupled together and form a first stack of transistors and the second NMOS and second PMOS transistors have drain terminals coupled together and form a second stack of transistors. A first resistive load is connected to one of the first and second stacks, wherein the resistive load comprises a first MOSFET transistor biased at triode region.
In another embodiment of a supply-independent biasing source, the biasing source includes an upper current mirror including first and second PMOS transistors having source terminals coupled to a high supply node; a lower current mirror coupled to the upper current mirror including first and second NMOS transistors having source terminals coupled to a low supply node, wherein the first NMOS and first PMOS transistors have drain terminals coupled together and form a first stack of transistors and the second NMOS and second PMOS transistors have drain terminal coupled together and form a second stack of transistors; a first resistive load connected to one of the first and second stacks, wherein the first resistive load comprises a first MOSFET transistor biased at triode region; a third current mirror coupled to one of the upper and lower current mirrors for mirroring an output current therefrom; and a second resistive load coupled to the third current mirror for providing a supply-independent output voltage, wherein the second resistive load comprises a second MOSFET transistor biased at triode region, the first and second MOSFET transistors being of a same size.
In yet another embodiment o a supply-independent biasing source, the biasing-source includes an upper current mirror including first and second PMOS transistors having source terminals coupled to a high supply node; a lower current mirror coupled to the upper current mirror including first and second NMOS transistors having source terminals coupled to a low supply node, wherein the first NMOS and first PMOS transistors are coupled together at their drain terminals in a first stack of transistors and the second NMOS and second PMOS transistor are coupled together at their drain terminals in a second stack of transistors; a first resistive load connected to one of the first and second stacks, wherein the first resistive load comprises a first MOSFET transistor biased at triode region; a third current mirror coupled to one of the upper and lower current mirrors for mirroring an output current therefrom; a second resistive load coupled to the third current mirror for providing a supply-independent output voltage, wherein the second resistive load comprises a second MOSFET transistor, the second MOSFET transistor having a same size as the first MOSFET transistor; and means for biasing the first and second MOSFET transistors at triode region.
In a method of supply-independent biasing, the method includes the step of generating a reference current and an output current using a self-biasing current mirroring circuit. The self biasing current mirroring circuit includes an upper current mirror including first and second PMOS transistors; a lower current mirror coupled to the upper current mirror including first and second NMOS transistors, wherein the first NMOS and first PMOS transistors have drain terminals coupled together and form a first stack of transistors and the second NMOS and second PMOS transistors have drain terminals coupled together and form a second stack of transistors; and a first resistive load connected to one of the first and second stacks, wherein the resistive load comprises a first MOSFET transistor. The method further includes the step of biasing the first MOS transistor in the triode region.
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly to include other variants and embodiments of the invention that may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.