1. Field of the Invention
The present disclosure relates generally to supply voltage regulation, and more specifically to a system and method for scaling supply voltage based on temperature.
2. Description of the Related Art
The performance of an integrated circuit (IC) implemented with CMOS semiconductor device fabrication technology depends on various factors including cell delay, in which cell delay varies with temperature among other factors. Cell delay is inversely proportional to the mobility and directly proportional to the threshold voltage. Mobility and threshold voltage both decrease with an increase in temperature. A decrease in threshold voltage tends to decrease cell delay, whereas a decrease in mobility tends to increase cell delay. In this manner, cell delay is dictated by which of the two factors, mobility and threshold voltage, have the more dominant effect. If the supply voltage (the gate overdrive voltage) is much larger than the threshold voltage, to the extent that the variation of the threshold voltage due to temperature is negligible, then mobility becomes the dominant factor for cell delay change with temperature. The result is that cell delay increases with temperature. If the supply voltage is not much larger than the threshold voltage, however, then the variation of threshold voltage due to temperature has a significant effect on cell delay so that threshold voltage becomes the dominant factor.
A higher supply voltage, such as about 1.2 Volts (V), was used for semiconductor fabrication technologies above 65 nanometers (nm). A lower supply voltage, such as down to about 0.9V, may often be used when CMOS technology is scaled below 65 nm, such as 55 nm, 40 nm, 28 nm, etc., so that the effect of threshold voltage becomes more prevalent resulting in temperature inversion. In this manner, for lower supply voltages, the cell delay decreases with increased temperature. Every 10 millivolts (mV) reduction in supply voltage can have about a 2-3% performance impact due to the relative elevation of threshold voltage.
A system on a chip (SOC) design may be implemented to operate within a pre-specified optimal frequency range to balance power consumption, performance and reliability. The performance parameters are more difficult to achieve, however, at extreme temperature corners, such as −40 degrees Celsius (° C.) and +165° C. Another factor impacting performance and efficiency is the type of devices implemented on the IC, particularly those in critical timing paths. Although devices implemented with a low threshold voltage (LVT) are generally faster with higher performance, LVT devices have relatively high leakage current as compared standard threshold voltage (SVT) devices and high threshold voltage (HVT) devices. It is often desired to use less leaky devices, such as HVT and SVT, to improve leakage power while reaching a higher frequency target for a given power budget. Furthermore, the supply grids that provide power to devices distributed across the IC have a resistance that develops a voltage caused by load current. The voltage drop on the ground supply grid may also have a negative impact on performance.
Embodiments of the present invention are illustrated by way of example and are not limited by the accompanying figures, in which like references indicate similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
The present inventors have recognized the need to maintain the performance of IC devices (including those incorporating SOCs and the like) across the temperature spectrum including hot and cold extreme temperature corners. The inventors have also realized the need for achieving frequency targets with less leaky devices to improve leakage power, and for reaching higher frequency targets for given frequency budgets. The inventors have also recognized the need for compensating voltage drop caused by ground grid resistance. The inventors have therefore developed a system and method of supply voltage regulation with temperature scaling that adjusts supply voltage to maintain performance within predetermined specifications across the expected temperature range. Supply voltage regulation with temperature scaling as described herein enables a reduction in the number of leaky devices used in critical timing paths on the IC by optimizing supply voltage according to operating conditions of the devices. Supply voltage regulation with temperature scaling as described herein also compensates for ground grid resistance effects.
Although not shown, each IC, including the IC 100, may be implemented on a semiconductor die mounted on a corresponding package (not shown) with input/output (I/O) pads coupled to packaging pins via bond wires or the like. As shown in
The VDD pad 109 is internally coupled to a supply voltage grid 111 incorporated on the IC 100, and the VSS pad 113 is internally coupled to another supply voltage grid 115 incorporated on the IC 100, for distributing supply voltage to devices and components also integrated on the IC 100. A system load 117 is coupled between the supply voltage grids 111 and 115. Although shown coupled at one location, it is understood that the devices and components of the system load 117 are distributed across the IC 100 and conductively coupled to the supply voltage grids 111 and 115 at convenient locations. In an SOC configuration, the system load 117 may include one or more processors (PROC), a memory system (MEM), peripheral interfaces (PERIPH) and other devices coupled together via a system interface bus or the like. The system load 117 is shown coupled between a hot point 119 on the supply voltage grid 111 and another hot point 121 on the supply voltage grid 115. The hot point nodes 119 and 121 represent a location along the power supply grids carrying the highest level of system load current during normal operation. Techniques for determining supply grid hot points are well known and not further described.
A scaling resistor R is provided on the IC 100 having one end coupled to the hot point 119 of the supply voltage grid 111 and having another end coupled to a feedback node 123 developing a feedback voltage VFB. The feedback node 123 is coupled to a negative (or inverting) input of the voltage regulator amplifier 101. The voltage regulator amplifier 101 further includes a positive (or non-inverting) input receiving a reference voltage VREF. VREF may be developed on chip, but also may be provided from an external source and delivered via an I/O pad. A temperature scaling circuit 125 is included along with a temperature sensor 127. The temperature sensor 127 monitors the temperature of the semiconductor die of the IC 100 and develops a temperature sense (TS) signal indicative thereof. The TS signal is provided to an input of the temperature scaling circuit 125, which has an output coupled to the feedback node 123. The temperature scaling circuit 125 develops a temperature scaling current IS1 provided to the feedback node 123 for adjusting the voltage level of the supply voltage VDD as further described herein.
The supply voltage grids 111 and 115 each have a grid resistance measured between the external pad interface and the hot point of the corresponding supply grid. In particular, a supply grid resistance exists between the VDD pad 109 and the hot point 119 on the supply voltage grid 111. Likewise, a ground grid resistance exists between the VSS pad 113 and the hot point 121 on the supply voltage grid 115. The grid resistance of the supply voltage grid 111 is compensated by feedback operation of the voltage regulator amplifier 101. A voltage to current (V/I) converter 129 is provided on the IC 100 having a first input coupled to the VSS pad 113, a second input coupled to the hot point 121, and an output developing a second scaling current IS2 to a switch 131. The switch 131 is coupled between the output of the V/I converter 129 and the feedback node 123. The switch 131 has a control terminal receiving a ground resistance compensation (GRC) signal. The V/I converter 129 senses the ground grid resistance between VSS pad 113 and the hot point 121 and develops the scaling current IS2 indicative thereof. When the GRC signal is asserted closing the switch 131, IS2 is applied to the feedback node 123 to compensate for the ground grid resistance of the VSS supply voltage grid 115.
The V/I converter 129 is configured to sink (or source) a current level on IS2 to adjust the supply voltage VDD based on the voltage developed between the hot point 121 and the VSS pad 113 to compensate for ground grid voltage drop. During a high load level, a relatively large ground grid voltage drop develops thus effectively reducing overall supply voltage provided across the system load 117. This ground grid voltage drop is sensed by the V/I converter 129 which responsively generates a corresponding current IS2 applied through the scaling resistor R to adjust VDD by about the same voltage amount. For example, if the voltage level of the hot point 121 increases by an offset voltage level, the V/I converter 129 develops IS2 applied across R to cause the voltage regulator amplifier 101 to increase VDD by the same offset voltage.
The particular current level output of the V/I converter 129 depends on the resistance of the scaling resistor R and the expected ground grid voltage drop range. For example, if the scaling resistor R is 5 kilohms (kΩ) and the ground grid voltage level is 100 millivolts (mV) for a given load level, the V/I converter 129 may sink a current of about 20 microamperes (μA). The 20 μA current flows from VDD to VFB through R which might otherwise tend to decrease the voltage level of VFB by 100 mV. The voltage regulator amplifier 101 responsively increases the voltage level of VDD by 100 mV, so that the voltage drop between hot points 119 and 121 remains relatively unmodified. As the load level changes thus changing the ground grid voltage drop, the V/I converter 129 adjusts IS2 to adjust VDD to compensate for the ground grid voltage drop.
The reference voltage VREF is set at a level to establish a nominal voltage level for VDD for a nominal temperature level or nominal temperature range. Assuming that the temperature is within the nominal temperature range and that the scaling currents IS1 and IS2 are zero, the voltage regulator amplifier 101 drives the power transistor Q to maintain VDD at the nominal voltage level (+/− any offset voltage developed by the voltage regulator amplifier 101 and the scaling resistor R). The nominal voltage level is selected to achieve a target performance level in terms of the corresponding frequency of operation. The target performance level may be selected to balance power consumption, performance and reliability for a nominal temperature range. The temperature scaling circuit 125 operates to maintain the target performance level at any temperature.
As illustrated by
The temperature scaling circuit 125 is configured to compensate for the effects of temperature by adjusting the scaling current IS1 to adjust the supply voltage VDD to maintain operation within the desired performance range. In one embodiment, for example, as the temperature increases such that the performance level otherwise increases above PU, the temperature scaling circuit 125 outputs a positive IS1 current that flows through the scaling resistor R. Since the additional current IS1 tends to increase the voltage level of VFB relative to VDD, the voltage regulator amplifier 101 reacts by reducing the supply voltage of VDD. Since reduced supply voltage tends to decrease performance, the reduced supply voltage counteracts the increase of performance caused by increased temperature to maintain operation below PU and thus within specified performance levels.
In a similar manner, as the temperature decreases such that the performance level otherwise decreases below PL, the temperature scaling circuit 125 outputs a negative IS1 current that draws current through the scaling resistor R from VDD to VFB. Since the additional current IS1 tends to decrease the voltage level of VFB relative to VDD, the voltage regulator amplifier 101 reacts by increasing the supply voltage of VDD. Since increased supply voltage tends to increase performance, the increased supply voltage counteracts the decrease of performance caused by decreased temperature to maintain operation above PL and thus within the specified performance levels.
It is appreciated that the plots in
In one embodiment, the temperature scaling circuit 125 may be configured with a continuous adjustment of IS1 based on the temperature sense signal TS. In this manner, an optimal performance level may be maintained for any given temperature of operation. Such an embodiment may be suitable for some implementations, although with somewhat increased complexity and cost.
In the configuration of
Alternatively, if and when the temperature falls below a predetermined cold temperature threshold level TL so that TS falls below TH_COLD, the comparator 305 switches asserting CT and closing switch SW2 so that bias current IB2 is pulled from the feedback node 123. The bias current IB2 drawn through the scaling resistor R causes the voltage regulator amplifier 101 to increase the voltage level of VDD to a high voltage level VHI. Thus, when the temperature falls to the level such that the performance level would otherwise decrease below a predetermined low level (e.g., as indicated by PL of
The embodiment of the temperature scaling circuit 125 shown in
The specific resistance of the scaling resistor R and the current levels of IB1 and IB2 depend upon the particular implementation. In one embodiment, for example, R may be on the order or 1-10 kΩ with bias current levels on the order of 1-50 μA for feedback voltage level adjustments on the order of 1-500 mV. It is understood, however, that any other suitable resistance values and current levels may be used for particular implementations. Also, any one or more of the current devices may be reversed for configurations in which temperature and/or voltage has the opposite effect on performance, such as for older or larger CMOS technologies.
Although the present invention has been described in connection with several embodiments, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims. For example, variations of positive logic or negative logic may be used in various embodiments in which the present invention is not limited to specific logic polarities, device types or voltage levels or the like.
The terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.
Number | Name | Date | Kind |
---|---|---|---|
4298835 | Rowe | Nov 1981 | A |
5488288 | Elmer | Jan 1996 | A |
5757172 | Hunsdorf et al. | May 1998 | A |
5805004 | Tanten et al. | Sep 1998 | A |
8922178 | Zhong et al. | Dec 2014 | B2 |
8975951 | Inoue et al. | Mar 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
20150338864 A1 | Nov 2015 | US |