The present invention relates to the field of coating color matching, and more particularly to the field of full-automatic coating color matching. In particular, the present invention relates to a supplying device of fixed colorants volume for a colorant dispenser in an automatic coating color matching system. In addition, the present invention further relates to a colorant dispenser having the supplying device of fixed colorants volume.
In the field of coating color matching, a coating of a desired color is obtained usually by quantitatively pumping a predetermined colorant to a primer. Nowadays, people have higher requirements on colors, and therefore, precision of the amount of colorant fluid provided is critical for judging a color matching system and even quality of the coating. Moreover, at present, it is required that a colorant should be supplied rapidly, and therefore, a maximum colorant supply quantity per unit time of a colorant supply apparatus of a color matching system is expected to be improved. In addition, a colorant is generally in a form of abrasive viscous fluid (for example, the colorant contains mineral particles), which may have a negative effect on the service life of the colorant supply apparatus of the color matching system.
The prior art discloses multiple fluid dispensing systems for a colorant. For instance, the International Publication Document WO02/25225A1 discloses a fluid dispensing system, having a computer control system operatively connected to a stepper motor, the stepper motor being connected to a nutating pump (generally called DVX pump). The stepper motor actuates the nutating pump with a resolution less than a full revolution. The computer control system determines the number of steps according to a desired amount of fluid to be pumped by the nutating pump, so as to rotate the piston with a resolution less than a full revolution.
In addition, the U.S. Pat. No. 6,726,065B2 discloses an automatic colorant dispenser, having a modular colorant design, where a colorant module thereof is provided with a colorant canister, and a pump module connected to the colorant canister, and the pump module includes a stepper motor, a bearing shaft, a chamber receiving the bearing shaft, twin impellers rotated by the bearing shaft, and a seal. The twin impellers are disposed in the chamber for pumping a colorant quantitatively.
However, these existing colorant dispensing systems still cannot desirably solve the existing technical problems. For example, these colorant dispensing systems only have one pump channel, in a pump or module, for pumping colorant fluid, resulting in a small value of the maximum fluid amount pumped per unit time. In addition, a large number of moving parts of the pumps of the fluid dispensing systems in the prior art are severely worn, affecting the service life. Therefore, a demand for a colorant supply apparatus providing a precise colorant supply quantity, having a high maximum supply quantity per unit time and having a desirable service life remains to be met.
According to a solution of the present invention, a supplying device of fixed colorants volume for a colorant dispenser, is provided, including: a colorant source; a cylinder body having multiple piston cylinders arranged around a circumferential direction thereof; a swashplate having an oblique surface and arranged substantially coaxially with the cylinder body, configured to be capable of rotating around a longitudinal axis thereof and relative to the cylinder body; multiple piston mechanisms, where each piston mechanism includes a piston rod and a piston connected to the piston rod, the piston rod has a rolling abutment structure abutting against the oblique surface, and the piston is configured to be capable of making a stroke movement in the corresponding piston cylinder by means of rotation of the swashplate; an actuator for actuating the swashplate; a controller operatively connected to the actuator to control the amount of rotation of the swashplate; and an outlet for dispensing a colorant. The stroke movement of each piston includes a first stroke and a reverse second stroke, in the first stroke, the piston cylinder of the piston is communicated with the colorant source so as to suck a colorant from the colorant source, and in the second stroke, the sucked colorant is discharged out of the piston cylinder.
In the solution, the device may include an axial reset mechanism for biasing the rolling abutment structure towards the oblique surface along an axial direction.
In the solution, the device may further include a circumferential reset mechanism, configured to be capable of applying a circumferential restoring force to the rolling abutment structure during rotation of the swashplate so as to make the rolling abutment structure to tend to restore a predetermined abutment state with the oblique surface.
Through the device of the present invention, good pumping precision is provided. More importantly, a maximum pumping quantity per unit time can be effectively enhanced. Furthermore, the device provides a low-friction runtime environment while implementing normal pumping, which can effectively extend the service life of the device.
In addition, as the multiple piston mechanisms substantially uniformly abut against the swashplate during operation, abrasion (if any) of the swashplate would be uniform, and therefore, after the swashplate is worn, precision of a colorant supply quantity of the device is not significantly affected. This allows the device to have a longer effective service time.
According to another solution of the present invention, a supplying device of fixed colorants volume for a colorant dispenser is provided, including: a colorant source; a cylinder body having multiple piston cylinders arranged around a circumferential direction thereof; a swashplate having an oblique surface and arranged substantially coaxially with the cylinder body, configured to be capable of rotating around a longitudinal axis thereof and relative to the cylinder body; multiple piston mechanisms, where each piston mechanism includes a piston rod and a piston connected to the piston rod, the piston rod has a rolling abutment structure abutting against the oblique surface, and the piston is configured to be capable of making a stroke movement in the corresponding piston cylinder by means of rotation of the swashplate; an actuator for actuating the swashplate; a controller operatively connected to the actuator to control the amount of rotation of the swashplate; and an outlet for dispensing a colorant. The stroke movement of each piston may include a first stroke and a reverse second stroke, in the first stroke, the piston cylinder of the piston is communicated with the colorant source so as to suck a colorant from the colorant source, and in the second stroke, the sucked colorant is discharged out of the piston cylinder. The device may further include a zero position indicating mechanism, used for indicating a zero position for rotation of the swashplate relative to the cylinder body.
With the configuration of the present invention, a precise amount of fluid can still be supplied even after long-term use.
According to a preferred embodiment, the device further includes a three-way valve disposed between the piston cylinder and the outlet, and the three-way valve is configured to selectively allow the colorant discharged from the piston cylinder to flow to the outlet or to return to the colorant source. Through such setting, in a process of resetting the swashplate to the zero position, the three-way valve is configured to allow the colorant discharged from the piston cylinder to flow back to the colorant source.
According to another solution of the present invention, a colorant dispenser is provided, which has at least one, preferably multiple, for example, four, six, eight or sixteen supplying devices of fixed colorants volume according to the present invention.
Some of other features of the present invention are obvious or well-known in the art, and some will be described below with reference to the objectives, functions, effects and/or advantages thereof. Through the following description and accompanying drawings, persons skilled in the art will understand other objectives and advantages of the present invention.
Embodiments of the present invention are described below in detail with reference to the accompanying drawings, where:
In the specification and the drawings of the present invention, the same or similar reference signs indicate the same or similar features or elements.
List of reference signs: 1: supplying device of fixed colorants volume for a colorant dispenser; 2: colorant inlet; 3: cylinder body; 5: fixed valve plate; 6: movable valve plate; 10: sleeve member; 11: rod portion; 13: spindle; 14: pressing mechanism; 15: first fixed valve plate opening; 16: second fixed valve plate opening; 17: communicating groove; 18: three-way valve; 21: cylinder bottom cap; 22: piston rod; 23: piston; 25, 25A: piston cylinder; 27: bearing seat; 28: spring; 29: bearing; 30: outer member (spherical suite); 31: pivot; 32: first end of the spring; 33: second end of the spring; 34: swashplate (drive plate); 41: end cover; 42: end cover cavity; 45: check valve; 52: shield; 53: support; 57: sensor fixture; 58: sensor mechanism; 58A: first sensor; 58B: second sensor; 63: zero position indicating dial; 65: coupling; 67: connecting frame; 68: support; 69: stepper motor; S: colorant source; O: output; A-F: piston mechanisms (piston cylinders); I-XII: rotation positions of the swashplate; α: rotation angle; β: swashplate angle; L1-L3: projection distances of the rotation positions; and H1-H3: strokes of the piston mechanism.
Exemplary solutions of the system and the method of the present invention are illustrated in detail with reference to the following description and the accompanying drawings. The drawings are not necessarily drawn to scale, and some features may be exaggerated, removed, or partially sectioned to better illustrate and explain the present invention. In addition, although the drawings depict some possible solutions, the description herein is not intended to be exhaustive or otherwise limit the scope of the present invention to the illustration in the drawings and the specific forms and structures disclosed in the following detailed description.
In addition, some directional expressions will be introduced to the following description. In general cases, the directional terms such as “upward”, “downward” and other directional terms will be construed as having their normal meanings and relating to the directions when the drawings are viewed normally. However, it is not intended to limit the scope and the solution of the present invention only to the implementation according to these directions. For example, the supplying device of fixed colorants volume shown in the drawings includes an outlet on the top and a stepper motor at the bottom, but in other embodiments of the present invention, it is also feasible to have the outlet at the bottom.
As shown in
As shown in the figure, as an important feature of the present invention, the supplying device of fixed colorants volume for a colorant dispenser 1 further includes a drive plate 34 arranged substantially coaxially with the cylinder body, and the drive plate is in a form of a swashplate with an oblique surface. The rolling abutment structure abuts against the oblique surface. In the present invention, the swashplate is configured to be capable of rotating around a longitudinal axis thereof (which is also the longitudinal axis of the cylinder body) and relative to the cylinder body. In a preferred embodiment of the present invention, the cylinder body is fixed on a rack of the device, and the swashplate is rotatable around a rotation axis, but it is also feasible that the swashplate is fixed on the rack of the device and the cylinder body is rotatable around a rotation axis.
As shown in
In an operation process of the supplying device 1 according to the present invention, the controller controls rotation of the actuator as stated above. Through abutment between the swashplate 34 and the rolling abutment structure, rotation of the swashplate 34 causes the pistons 23 to make corresponding stroke movements in the corresponding piston cylinders 25 and 25A. The stroke movement of each piston includes a first stroke and a reverse second stroke, in the first stroke, the piston cylinder 25 of the piston 23 is communicated with the colorant source S so as to suck a colorant through the colorant inlet 2, and in the second stroke, the sucked colorant is discharged out of the piston cylinder 25, and is discharged and dispensed through an outlet (not shown) of the supplying device 1. Therefore, by controlling the amount of rotation of the actuator, control over the amount of fluid supplied by the supplying device 1 can be achieved eventually, so as to achieve the purpose of quantitatively supplying a colorant.
The specific structure of the piston structure according to the present invention and interaction of the piston structure with the swashplate are described below according to multiple figures of the present invention, especially
As specifically shown in
Referring to
In addition, in order to further reduce friction between the swashplate 34 and the piston rod 22 (the rolling abutment structure), the supplying device 1 is further provided with a circumferential reset mechanism, configured to be capable of applying a circumferential restoring force to the rolling abutment structure during rotation of the swashplate, so that the rolling abutment structure at least partially and preferably wholly tends to restore a predetermined abutment state with the oblique surface. It should be noted that, the term “circumferential” of the circumferential reset mechanism generally refers to a circumferential direction of the piston rod or the rolling abutment structure.
Although the following description is only used for explanation instead of limitation, generally, the rolling abutment structure may have an optimal or preferred state of abutment against the swashplate, and when the rolling abutment structure is in rolling contact along the swashplate in the optimal or preferred state, friction of the rolling abutment structure is as small as possible; and during rotation of the swashplate, if there is no circumferential reset mechanism, abutment between the rolling abutment structure (spherical suite 30) and the swashplate may deviate from the foregoing state, and therefore, it is likely that the abutment therebetween is no longer rolling contact, or the degree of rolling contact decreases. This may be similar to contact with a road surface when a vehicle travels along a straight road (rolling contact is maximized) and when the vehicle makes a turn (the degree of rolling contact is reduced or there is no rolling contact).
In the illustrated embodiment, the circumferential reset mechanism is also provided by the spring 28, and the spring 28 has a first end 32 fixedly connected to the rolling abutment structure and a second end 33 fixedly connected to the cylinder body. When the outer member 30 of the rolling abutment structure deviates from a predetermined (for example, ideal) rolling contact state, the first end 32 and the second end 33 of the spring 28 may apply a substantially circumferential restoring force to the rolling abutment structure so that the rolling abutment structure tends to restore the predetermined rolling contact state. Although in the illustrated preferred embodiment, the axial reset mechanism and the circumferential reset mechanism are jointly formed by a spring 28, the axial reset mechanism and the circumferential reset mechanism may be provided separately, as long as they can separately implement their own functions. Alternatively, the axial reset mechanism and/or the circumferential reset mechanism each may include multiple members. The spring 28, as shown in the figure, is a coil spring, but it may be any other suitable spring mechanism.
As the colorant is generally abrasive viscous fluid, the colorant is expected to be separated from moving parts or contact parts of the supplying device 1. Therefore, the piston can be configured such that the colorant in the piston cylinders 25 and 25A is isolated from the piston rod 22 in a colorant impermeable manner, so that the colorant does not have a negative effect on the movement of the piston rod 22 in the piston cylinders 25 and 25A and the abutment between the rolling abutment structure and the swashplate 34. Specifically, as shown in
In order to further reduce movement of the supplying device 1 and/or friction between frictional parts, the supplying device may further include a sleeve member 10 sleeved over the piston rod. The sleeve member 10 can be fixedly mounted in each of the piston cylinders 25 and 25A and can slide relative to the piston rod 22. The sleeve member 10 may be made of a low-friction material, for example, a self-lubricating material such as teflon. As a particularly preferred embodiment, an inner side of the sleeve member 10 is provided with a plurality of grooves, many balls are placed in the grooves, and the piston rod 22 is preferably at least partially in rolling contact relative to the balls.
As shown in
Specifically referring to
As specifically shown in
As shown in
Specifically referring to
The fixed valve plate 5 may have a first fixed valve plate opening 15 in fluid communication with the colorant inlet 2, and the number of the first fixed valve plate opening 15 is one as shown in
The pistons 23 in the first part of the piston cylinders are in the first stroke of the piston for sucking the colorant from the colorant source. The moving valve plate 6 further has a small-diameter portion (see
Preferably, the fixed valve plate 5 is made of a wear-resistant material. It can be thought that the fixed valve plate 5 may not be disposed, or an end portion of the cylinder body has the function of the fixed valve plate.
As shown in
Referring to
Operations of the supplying device of fixed colorants volume for a colorant dispenser 1 according to the present invention will be described as an example below with reference to
Position I: the piston cylinder A is cut off (the bottom dead center of the piston mechanism), the piston cylinder D is cut off (the top dead center), the piston cylinders B and C discharge the colorant (the second stroke), and the piston cylinders E and F suck the colorant (the first stroke);
Position II: the piston cylinders A, B and C discharge the colorant, and the piston cylinders D, E and F suck the colorant;
Position III: the piston cylinders C and F are cut off, the piston cylinders A and B discharge the colorant, and the piston cylinders D and E suck the colorant;
Position IV: the piston cylinders A, B and F discharge the colorant, and the piston cylinders C, D and E suck the colorant;
Position V: the piston cylinders B and E are cut off, the piston cylinders A and F discharge the colorant, and the piston cylinders C and D suck the colorant;
Position VI: the piston cylinders A, E and F discharge the colorant, and the piston cylinders B, C and D suck the colorant;
Position VII: the piston cylinders A and D are cut off, the piston cylinders E and F discharge the colorant, and the piston cylinders B and C suck the colorant;
Position VIII: the piston cylinders D, E and F discharge the colorant, and the piston cylinders A, B and C suck the colorant;
Position IX: the piston cylinders C and F are cut off, the piston cylinders D and E discharge the colorant, and the piston cylinders A and B suck the colorant;
Position X: the piston cylinders C, D and E discharge the colorant, and the piston cylinders A, B and F suck the colorant;
Position XI: the piston cylinders B and E are cut off, the piston cylinders C and D discharge the colorant, and the piston cylinders A and F suck the colorant; and
Position XII: the piston cylinders B, C and D discharge the colorant, and the piston cylinders A, E and F suck the colorant.
It can be known from
Therefore, the turntable 34 rotates by the rotation angle α, and a theoretical value of the amount of the colorant supplied by the supplying device 1 is: V=πr2(H1+H2+H3); where r is the radius of the piston cylinders, and it is assumed that the piston cylinders have the same radial dimension.
Similarly, in the rotation angle α, the amount of the colorant sucked by the supplying device 1 is also V.
Therefore, the supplying device of fixed colorants volume for a colorant dispenser 1 of the present invention can significantly increase the amount of colorant supplied. Moreover, the supplying device of fixed colorants volume for a colorant dispenser 1 can further provide precise quantitative supply and provide a single minimum supply as small as possible. In addition, the supplying device of fixed colorants volume for a colorant dispenser 1 is durable and has a long service life.
The present invention is illustrated and described with reference to the foregoing embodiments, and the description is merely illustrative. Persons skilled in the art will understand that various modifications can be made to the embodiments of the present invention described herein, to implement the present invention without departing from the spirit and scope of the present invention defined by the appended claims and equivalents thereof. The above description of the present invention should be construed as including all novel and non-obvious combinations of elements described herein.
Number | Date | Country | Kind |
---|---|---|---|
201210180754.0 | Jun 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2013/072214 | 3/6/2013 | WO | 00 |